Effect of ceria on copper/Y-alumina catalysts for carbon monoxide and n-hexane oxidation

Jiang Xiaoyuan, Zhou Renxian, Yuan Xianxin, Zheng Xiaoming, Jin Songshou

Institute of Catalysis, Hangzhou University, Hangzhou 310028, China

Abstract — In this paper, oxidation activity of CuO/γ -Al₂O₃ catalysts and the addition of CeO_2 on CuO/γ -Al₂O₃ catalysts for oxidation reaction of n-hexane (n-C₆H₁₄) and carbon monoxide (CO) were studied by means of the flow method techniques, XRD and TPD-MS. Experimental results indicated that (1) the addition of CeO_2 improving disperse degree of CuO on CuO/γ -Al₂O₃ catalysts which caused a large increase in activity; (2) the addition of CeO_2 may increase oxygen supplying ability and oxygen recovery ability of catalyst surface.

Keywords; ceria; copper/Y-alumina; carbon monoxide; hydrocarbon; catalytic activity.

1 Introduction

In recent years, air pollution is recognized as a crucial problem in urban and heavily industrialized areas. Carbon monoxide, a product of incomplete combustion or partial oxidation of carbonaceous materials, is the most widely spread gaseous hazard. One of many ways for reducing air pollution is to eradicate carbon monoxide. An important reaction for cleaning up of emissions from automotive exhausts is the oxidation of carbon monoxide and hydrocarbon. The three way catalysts containing precious metal oxide Pt, Pd and Rh to control automotive exhaust have been studied and were used for this reaction, among which Rh has been selectively used to reduce NO_x into N₂, instead of NH₃. Because the precious metal are relatively rare and expensive, therefore some transition metal oxide and rare earth oxide catalysts for purifying automotive exhaust have been studied. CuO/γ-Al₂O₃ was widely used in complete oxidation reactions of CO and RH (Friedman, 1978; Strohmeier, 1985; Huang, 1989; Praserthdam, 1994). The rare earth oxide combined with the transition metal oxide, can adjust the performance of catalyst surface, were found with an excellent redox behavior and thermal stability (Yao, 1984). In this paper, the effect of addition of CeO₂ on CuO/γ-Al2O3 activities have been investigated by means of the flow method techniques, XRD and TPD-MS.

2 Experimental

2. 1 Catalyst preparation

The catalyst was prepared by the method of impregnation with Cu(NO₃)₂ and Ce(NO₃)₃ aqueous solution of desired concentration. The catalysts were dried at 120°C followed by calcination with air stream for 4h at 500°C (Content of active component were calculated using by pure Υ -Al₂O₃ support). For the series of CuO/ Υ -Al₂O₃ catalysts, the content of CuO decrease with the order: 25%CuO > 20%CuO > 15%CuO > 10%CuO > 5%CuO > 1%CuO; for CeO₂/ Υ -Al₂O₃ catalysts, the content of CeO₂ decrease with the order: 18%CeO₂> 14%CeO₂> 10%CeO₂> 6%CeO₂> 2%CeO₂; for CuO-CeO₂/ Υ -Al₂O₃ catalysts, content of all CuO are same, the content of CeO₂ decrease with the order: 18%CeO₂-15%CuO > 14%CeO₂-15%CuO > 10%CeO₂-15%CuO > 6%CeO₂-15%CuO > 2%CeO₂-15%CuO.

2.2 Measurement of oxidation activity of n-Hexane (n-C₆H₁₄)

Literature (Jiang, 1992) was referenced as process chart of activity measurement to n-C₈H₁₄.

2. 3 XRD analysis of crystal phase

Measurement of X-ray powder diffraction (XRD) was conducted by Riggku D/Max-IIIB.

2. 4 Measurement of oxidation activity of carbon-monoxide (CO)

The catalyst (0.5 ml) was placed in a quartz glass fixed-bed reactor (\$\phi\$mm), and was activated with O2 stream for 1h at 500°C, the catalyst was then cooled to a proper reaction temperature. Reactive tail gas was analyzed by GC, experimental data were calculated by a CR-6A data processing instrument. The condition of Gas Chromatography, GC column: Propark Q column to separation CO, temperature of column: 34°C; flow of carrier gas H2: 30 ml/min.

2. 5 TPD-MS

Surface oxygen desorption: the sample (100 mg) was activated with O_2 stream for 0.5h at 600°C, cooled to 50°C, changed into He stream 0.5h, then was conducted surface oxygen desorption at flow of He (β =20 K/min).

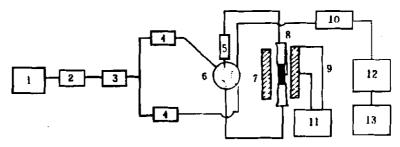


Fig. 1 Process chart of TPD-MS tester systems

- 1. He steel bottle 2. Pressure reducer 3. Deoxidation tube
- 4. Flowmeter 5. Sampler 6. Six-way pipe 7. Heater
- 8. Quartz glass reactor 9. Thermocouple 10. GC-MS separator
- 11. Temperature controller 12. MS tester 13. Data processing instrument

Surface oxygen recovery: the sample (100 mg) was activated with He stream for 0.5h at 650°C, cooled to 400°C, this moment, sample surface adsorption oxygen has been com-

pletely desorbed, changed into O_2 stream 0.5h, cooled to 50°C; changed into He stream 0.5h, then conducted surface oxygen recovery (β =20 K/min). TPD-MS equipment was refitted by the GC-MS of type ZHD-OIS. The process chart is shown in Fig. 1.

3 Results and discussion

3.1 Correlation between CeO2, CuO-contents and oxidation activity

The minimum reaction temperature of reactant conversion efficiency $\geqslant 99\%$ may be used as activity target of evaluation for oxidative catalyst. It is shown by T_{99} (°C). The higher the activity is the smaller value of T_{99} . The order of activity of CuO/γ -Al₂O₃ and CeO_2/γ -Al₂O₃ were respectively: CuO/γ -Al₂O₃ systems, 15%CuO > 20%CuO > 25%CuO > 10%CuO > 5%CuO > 1%CuO; CeO_2/γ -Al₂O₃ systems, $10\%\text{CeO}_2 > 6\%\text{CeO}_2 > 14\%\text{CeO}_2 > 18\%\text{CeO}_2 > 2\%\text{CeO}_2$. The results are shown in Fig. 2 (A,B). But as the addition of CeO_2 on CuO/γ -Al₂O₃ catalysts, from Fig. 2(C), it can be seen that the value of T_{99} for 15%CuO catalyst decreased a range from 70-80°C. The results are shown in Fig. 2.

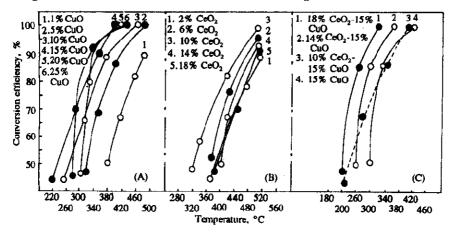


Fig. 2 Oxidation activity of catalysts to n-C₆H₁₄
(A,B)₁ the order of activity of CuO, CeO₂/γ-Al₂O₃ for oxidation reaction of n-C₆H₁₄
(C)₁ effect of the addition of CeO₂ on oxidation reaction of n-C₆H₁₄

The correlation between CeO₂, CuO-contents and oxidation activity were investigated by means of the flow method techniques and XRD. Results showed that CuO are highly dispersed on carrier. It did not appear diffraction peaks of CuO on XRD spectra for 1% CuO, 5%CuO and 10%CuO. But as the CuO-content increases to 15%CuO, there begins to appear several diffraction peaks which correspond to the crystal state CuO on catalysts. This moment, the oxidation activity of 15%CuO was the highest. Further increasing CuO-content, diffraction peaks of CuO increased gradually, oxidation activity becomes lower. Thus it can be seen that the oxidation activity was mainly attributed to the quantity of uncrystallized state CuO. The more production of crystal state CuO, may block some aperture of catalysts, or covered a part of surface of uncrystallized state CuO, thus resulted in decrease of activity with increasing the CuO-content.

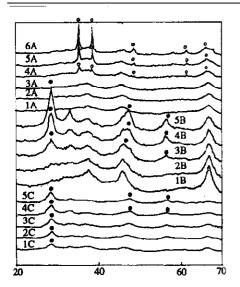


Fig. 3 XRD spectra of CuO, CeO₂ and CeO₂- CuO/ γ -Al₂O₃

°CuO ·CeO₂

1A. 1%CuO, 2A. 5%CuO, 3A. 10%CuO, 4A.
15%CuO, 5A. 20%CuO, 6A. 25%CuO; 1B.
2%CeO₂, 2B. 6%CeO₂, 3B. 10%CeO₂, 4B.
14%CeO₂ 5B. 18%CeO₂; 1C. 2%CeO₂-15%CuO, 2C. 6%CeO₂-15%CuO, 3C. 10%CeO₂15%CuO, 4C. 14%CeO₂-15%CuO, 5C. 18%
CeO₂-15%CuO

It is well known that CeO₂ is more chemical stable and oxidation activity was lower for itself. XRD spectra of CeO₂ have also explained that correlation between oxidation activity and content. As the CeO₂-content are between 2%CeO₂-18%CeO₂, appeared all CeO₂ diffraction peaks with different shape. It indicates that CeO₂ form crystal state CeO₂ very easy. After mixing CuO and CeO₂, the great majority of CuO on catalysts existed in the uncrystallized state. Because the uncrystallized state dispersed highly on catalysts, so the activity of catalysts may be improved quickly after mixing CuO and CeO₂ (Fig. 3).

3. 2 The activity of CeO₂-CuO/γ-Al₂O₃ for oxidation of CO

 T_{99} (°C) of CeO₂-CuO/ γ -Al₂O₃ for oxidation of CO under the condition of lean O₂ (CO 3.1%, O₂ 1.8%) and abundant O₂ (CO 3.3%, O₂9%) are shown in Table 1.

Table 1 Correlation between CO conversion and reaction temperature of catalysts

Lean O2,	Abundant O2,	ΔT^* ,
$T_{\mathfrak{gg}}(\mathbb{C})$	$T_{99}(\mathbb{C})$	(℃)
220	180	40
170	150	20
130	120	10
120	110	10
110	100	10
100	100	` o
	T ₉₉ (℃) 220 170 130 120 110	$T_{99}(\mathbb{C})$ $T_{99}(\mathbb{C})$ 220 180 170 150 130 120 120 110 110 100

^{*} $\Delta T = T_{99}$ (lean O_2)- T_{99} (abundant O_2)

From Table 1, it may be seen that the oxidation activity of CeO_2 - CuO/γ - Al_2O_3 catalysts for CO at the condition of lean O_2 were lower than the abundant O_2 , ΔT (20 \rightarrow 10) $^{\circ}$ C, as content of active component increased gradually from $2\%CeO_2$ —15%CuO to $14\%CeO_2$ —15%CuO. But as the CeO_2 -content increased to more than $14\%CeO_2$ —15%CuO, $\Delta T = 0\%$. It indicates that the addition of CeO_2 improving catalytic activity at lean O_2 state. Because of oxidation activity of catalysts for CO is dependent on the adsorption state oxygen of catalyst

surface to a great extent. From the range of descent of lean O_2 activity (ΔT), it can be seen that the increasing of content of CeO_2 , may decrease the value of ΔT . It indicates that when the oxygen concentration of gaseous phase decreases, the oxygen supplying ability of catalyst surface for oxidation reaction of CO becomes apparently. In addition, the effect of oxygen concentration on oxidation activity becomes smaller, if oxygen supplying ability of catalyst surface is getting better.

3. 3 Effect of CeO2 on surface oxygen desorption and recovery of CuO/Y-Al₂O₃

The activity of catalysts is decided by the adaptability of groups structure of reactant molecule and the oxygen supplying ability of surface active centers, the oxygen supplying ability is composed by the number of oxygen supplying centers and activity. The surface oxygen desorption and recovery of catalyst under the condition of non-reaction were investigated by means of the TPD-MS technique. The determine of the O³²⁺ signal may show the information of surface oxygen desorption and recovery. Fig. 4 shows the information of surface oxygen desorption of catalysts. Fig. 5 shows the information of surface oxygen recovery of catalysts.

From Fig. 4 it can be seen that there are three O2-TPD feature peaks, by inference the peaks of low and middle temperature is adsorption oxygen peak of CuO, the peak of high temperature is the lattice oxygen peaks of CuO. The desorption oxygen feature peaks of CeO2 is not apparent. With CeO2-content increasing, the third O2-TPD feature peaks of CuO decreases gradually, it indicates that

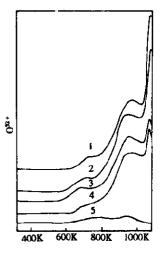


Fig. 4 O2-TPD spectra of catalysts

- 1. 10%CeO2 2. 15%CuO
- 3. 2%CeO2-15%CuO
- 4. 10%CeO2-15% CuO
- 5. 18%CeO2-15%CuO

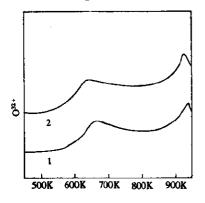


Fig. 5 O2-TPD spectra of catalysts 1. 15%CuO 2. 18%CeO2-15% CuO

the addition of CeO2 restrains the desorption of lattice oxygen of CuO. In addition, from Fig. 4, it can been clearly seen that the addition of CeO2, and with CeO2-content increasing, make peak temperature location of adsorption oxygen to move forward to the direction of lower temperature, it indicates that the correlation between active increasing and advance of peaks temperature of adsorption oxygen. In order to explain the correlation, we have also studied the surface oxygen recovery ability of catalyst. It is usual considered that the surface adsorption oxygen of higher activity catalyst can be recovered after it was desorbed. From Fig. 5, it can be seen that though surface adsorption oxygen can not recover to original level after the addition of CeO2, but it makes the areas of desorption peaks of adsorption oxygen to become bigger than CuO/γ-Al₂O₃ catalyst and peaks temperature advances. It shows that catalyst active contribution is mainly that the surface adsorption oxygen can be recovered after it was desorbed.

References

Friedman RM, Freeman JJ. J Catal, 1978, 55:10

Huang TJ, Yu TC, Chang SH. Applied Catalysis, 1989; 52:157

Jiang XY, Yu QR, Jin SS. J Environ Sci. 1992; 13(2):44

Praserthdam P, Majimapakul T. Applied Catalysis A: General, 1994; 108:21

Strohmeier BR, Leyden DE, Field RS, Hercules DM. J Catal, 1985; 94:514

Yao HC, YuYao YF. J Catal, 1984; 86:254

(Received September 25, 1994)