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ABSTRACT

Catalytic oxidation is widely used in pollution control technology to remove volatile organic
compounds. In this study, Pd/ZSM-5 catalysts with different Pd contents and acidic sites were prepared
via the impregnation method. All the catalysts were characterized by means of N, adsorption-
desorption, X-ray fluorescence (XRF), Hy temperature programmed reduction (H2-TPR), and NH3
temperature programmed desorption (NH3-TPD). Their catalytic performance was investigated in
the oxidation of butyl acetate experiments. The by-products of the reaction were collected in
thermal desorption tubes and identified by gas chromatography/mass spectrometry. It was found
that the increase of Pd content slightly changed the catalytic activity of butyl acetate oxidation
according to the yield of CO, achieved at 90%, but decreased the cracking by-products, whereas
the enhancement of strong acidity over Pd-based catalysts enriched the by-product species. The butyl
acetate oxidation process involves a series of reaction steps including protolysis, dehydrogenation,
dehydration, cracking, and isomerization. Generally, butyl acetate was cracked to acetic acid and 2-
methylpropene and the latter was an intermediate of the other by-products, and the oxidation routes
of typical by-products were proposed. Trace amounts of 3-methylpentane, hexane, 2-methylpentane,
pentane, and 2-methylbutane originated from isomerization and protolysis reactions.

dioxide (CO,) and water at low reaction temperatures.

Introduction

Catalysts for the treatment of VOCs are supported noble
metals (Bendahou et al., 2008) and transition metal oxides
(Sager et al., 2011; Choudhary and Deshmukh, 2005).

Volatile organic compounds (VOCs), which are widely
emitted from industrial processes, are hazardous to the en-
vironment and public health. They are organic compounds
that can participate in photochemical reactions with nitro-
gen oxides in the presence of sunlight, thereby producing
more toxic compounds (Diaz et al., 2005). Among various
kinds of VOCs abatement treatments, catalytic oxidation
is considered to be one of the most effective and energy-
saving techniques because it can convert VOCs into carbon

* Corresponding author. E-mail: wanghailin@cee.cn

The catalytic activity of noble metal-based catalysts is
generally higher than that of metal oxides. Palladium (Pd)
nanoparticles are especially active for a wide range of
VOCs oxidation states (Giraudon et al., 2008). In recent
years, studies on catalysts have not only focused on
catalysts with superior performance for catalytic oxidation,
but also on the reaction processes and mechanisms of
VOCs oxidation. Researchers tend to understand the reac-

tion mechanism of catalytic oxidation over Pd-supported
catalysts via kinetic models, which inclpde the power-
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rate law model, the Mars-van Krevelen (MvK) model, and
the Langmuir-Hinshelwood (L-H) model. Among these
models, the MvK model has been widely accepted for
VOCs oxidation over Pd-supported catalysts. During the
active phase of VOCs oxidation over a Pd-supported
catalyst, Pd’* has been proposed to catalyze hydrocarbon
oxidation, and Pd® can promote the catalytic activity by
maintaining a Pd**-Pd° cycle during the dissociation of
VOCs. Thus, the reaction rate is accelerated (Nag, 2001).
However, the validity of each mechanism strongly depends
on the properties of the catalyst (noble metal and nature
of the support) as well as the features of the VOCs; thus,
the validity is difficult to generalize. A certain amount
of incompletely combusted product that is formed during
catalytic oxidation is inevitable. Thus, the reaction by-
products and processes need to be addressed.

In our previous work, the relation between reaction by-
products and the acidity of the catalyst was investigated
(Yue et al., 2013). In this article, we selected butyl acetate
oxidation, a subject that has not been studied in-depth,
to obtain more information about the influence of metal
and acidic sites on by-product distribution. Furthermore,
we explored the oxidation process by using the thermal
desorption/gas chromatography-mass spectrometry GC-
MS technique over Pd-supported catalysts.

1 Experimental

1.1 Catalyst preparation

ZSM-5 zeolite (Si/Al = 25, Tianjin Chemical Plant, China)
was impregnated in aqueous solutions of Pd(NOs), (0.3
wt%, 0.5 wt% and 1 wt%) to obtain 0.3PdZ, 0.5PdZ,
and 1PdZ catalysts, respectively. Pd/y-Al,03 (99.9%, Alfa
Aesar, USA) was prepared using the same impregnation
process. Pd/y-Al,O3 was then mixed with pure ZSM-5 to
obtain a mixture named MIX (Pd: 0.5 wt%). All samples
were dried at 80°C for 24 hr, and calcined at 500°C for 4
hr.

1.2 Catalyst characterization

The N, adsorption/desorption isotherms of the catalysts
were collected at 77 K using a gas sorption analyzer (NO-
VA 1200, Quantachrome Corp., USA). All samples were
degassed in vacuum at 300°C for 3 hr before measurement.
The total pore volume was estimated from the amount of
adsorbed nitrogen at a relative pressure (P/Py) of about
0.99. The specific surface area (Sggr) was calculated using
the Brunauer-Emmett-Teller (BET) method. The elemen-
tal composition of each sample was analyzed via X-ray
fluorescence (XRF) (XRF-1800 spectrometer, Shimadzu,
Japan) using a Rh tube as the excitation source.

The H, temperature-programmed reduction (H,-TPR)
was performed using a Chemisorb analyzer (ChemiSorb

2720, Micrometrics, USA). The TPR profiles were ob-
tained by passing a 5% H,/He flow (50 mL/min) through
the catalysts (approximately 100 mg), which were previ-
ously dried in helium (50 mL/min) at 300°C for 1 hr.

The NH; temperature-programmed desorption (NHj3-
TPD) was also performed using a Chemisorb 2720
analyzer. Prior to each TPD test, the sample (100 mg)
was pretreated in helium (50 mL/min) at 300°C for 1 hr.
The samples were then adsorbed with NHs/He (2%/98%,
V/V) to saturate them with NH3. The catalyst was flushed
with He (50 mL/min) at room temperature to remove the
physisorbed NH3. The desorption profile of NH3;-TPD was
then recorded from 25°C to 800°C at a heating rate of
10°C/min.

1.3 Activity measurements

The experiments were conducted in a continuous-flow
fixed-bed reactor, which consists of a steel tube (6 mm,
i.d.) at atmospheric pressure. In each test, 0.3 g of the
catalyst (40-60 mesh) was placed into the tube reactor.
A gas that contains VOCs was generated by bubbling air
through the VOCs saturator, which was further diluted with
another airstream before reaching the reaction bed. The
total flow rate was kept at 300 mL/min, i.e., a gas hourly
space velocity (GHSV) of 30,000 hr™!, with a butyl acetate
concentration of 1500 ppm. The reaction temperature was
first increased to 100°C as the feed stream passed over
the reactor bed and was then stabilized for 30 min. The
reaction bed temperature was increased to the following
setting and was maintained for 20 min for online detection
before performing the next procedure.

Online analysis was performed via simultaneous gas
chromatography (GC; model 6820, Agilent, USA) and
GC-mass chromatography (MS; Agilent 6890, Agilent,
USA). A gas chromatograph equipped with a flame ion-
ization detector (FID) and a thermal conductivity detector
(TCD) was employed for quantitative analysis, and GC-
MS was used for qualitative analysis. The by-products
were collected on a mixed Tenax/carbon tube for several
min at each temperature point and then desorbed by a
thermal desorber (Unity 2 series, Markes International
Ltd., UK) before passing into the GC-MS device.

2 Results and discussion

2.1 Catalyst characterization

The Pd loading, surface area, and total pore volume of
the catalysts are listed in Table 1. For the Pd-supported
catalysts, the percentage of Pd loading increased from 0.09
wt% to 0.40 wt%. The value for 0.5PDZ was similar to
that of MIX, which indicates that the Pd contents in these

two catalysts were similar. Meanwhile, pufe ZSM-5 had a
relatively high Sggr (346.0 m?/g), which [was larger than
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Table 1

Physicochemical properties of the synthesized catalysts

Catalyst Pd content ? (wt.%) Seer? (mz/g) D,*¢ (cm3/g)
MIX 0.15 186.6 0.21
ZSM-5 - 346.0 0.17
0.3PDZ 0.09 306.3 0.14
0.5PDZ 0.16 290.4 0.15
1PDZ 0.40 234.4 0.14

aPd content by XRF analysis; "BET specific surface area; total pore
volume estimated at P/Py = 0.99.

the other Pd-supported catalysts. The MIX catalyst had
the smallest value (186.6 mz/g). For the PdZ series, the
value of Sgger decreased with the increase of Pd content
as follows: 0.3PdZ (306.3 m?/g) > 0.5PdZ (290.4 m?/g)
> 1PdZ (234.4 m?/g). The total pore volume (Dy) of the
prepared samples was 0.21 cm’/g for MIX, 0.17 cm?/g for
ZSM-5,0.14 cm3/g for 0.3PdZ, 0.15 cm3/g for 0.5PdZ, and
0.14 cm?/g for 1PdZ.

NH;-TPD was performed to evaluate the acid strength
and the acid site numbers. The results are shown in Fig. 1.
The temperature was kept above 100°C to eliminate the
physisorption of NHj3 (Zhou et al., 2009). Three types
of NH; desorption peaks were observed for all catalysts
investigated, corresponding to three types of acid sites. The
desorption temperature and quantitative molar number of
the acid sites are listed in Table 2. The peaks in the range
of 100°C to 200°C correspond to the weak acid sites (He
et al., 2010). The high desorption temperature peak (HT
peak) in the range of 300°C to 500°C was caused by the
desorption of ammonia from the strong acid sites, and this

1PdZ

TCD signal

0.5PdZ

0.3PdZ

MIX

L 1 L 1 L
0 200 400 600

Temperature (°C)
Fig. 1 NH;3-TPD profiles of MIX, 0.3PdZ, 0.5PdZ and 1PdZ catalysts.

process has an important function in the catalytic reaction.
The MIX catalyst (0.47 mmol NH3/g-cat) had fewer strong
acid sites than the other catalysts (0.3PdZ, 0.5PdZ and
1PdZ), and the quantities of strong acid sites over 0.3PdZ,
0.5PdZ and 1PdZ were about 0.8 mmol NHj3/g-cat. The
strong acidity was not changed when the Pd content was
increased.

The H,-TPR profiles for the MIX, 0.3PdZ, 0.5PdZ, and
1PdZ catalysts are displayed in Fig. 2. A negative peak
(70°C to 75°C) can be observed for all samples because
of the desorption of weakly adsorbed hydrogen and the
decomposition of PdHy (Bonarowska et al., 2002). This
result indicated that PdCl, or PdO was easily reduced to
Pd metal in an H, atmosphere at ambient temperature
(Sangeetha et al., 2009), as expected in a hydrocarbon
atmosphere. The temperatures of the desorption peaks over
these catalysts were quite the same, while the intensity of
desorption peaks increased with increasing Pd contents.
The intensity of the desorption peak is associated with the
metal sites and the structure of the support (Sangeetha et
al., 2009). Thus the different amounts of metal sites caused
the discrepancies in the intensity of desorption peaks.

2.2 Butyl acetate oxidation

2.2.1 Catalytic behavior

The CO, yields of the MIX, 0.3PdZ, 0.5PdZ, and 1PdZ
catalysts during butyl acetate oxidation are presented in
Fig. 3. The catalytic activity over Pd-based catalysts had
slight differences, and the activity order decreased as fol-
lows: 1PdZ (310°C) > 0.5PdZ (337°C) > MIX (351°C) >
0.3PdZ (406°C), based on the Ty values (the temperature

1PdZ
75°C
0.5PdZ
E
=l
on
7 | 70°C
o
S MIX
74°C
0.3PdZ

100 200 300 400 500
Temperature (°C)

Fig.2 H,-TPR profiles of MIX, 0.3PdZ, 0.5PdZ elnd 1PdZ catalysts.
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Table 2

Acidity of MIX, 0.3PdZ, 0.5PdZ and 1PdZ catalysts

Catalyst Desorption temperature (°C) Acidity? (mmol NH3/g-cat) YAcidity (mmol NH3/g-cat)
MIX 123 209 401 0.23 0.51 0.47 1.21
0.3pPdzZ 118 211 425 0.39 0.46 0.77 1.62
0.5PdZ 108 208 396 0.78 0.46 0.89 2.13
1PdZ 117 223 395 1.05 0.31 0.89 2.25

2Amounts of NH3 desorbed at different temperatures.

r —HE—MIX
%0 —@—0.3PdZ
—A—(0.5PdZ
L —V—1PdZ
60 —
S
= L
Q
ES
o) 40 —
o
20
0 -

1 L 1 L 1 L 1 L | L | L 1
100 150 200 250 300 350 400
Temperature (°C)
Fig. 3 CO; yield of butyl acetate oxidation over MIX, 0.3PdZ, 0.5PdZ
and 1PdZ catalysts.

required to achieve 90% CO, yield). Compared with the
acidity of the catalysts, the quantities of the strong acid
sites were almost the same for the PdZ catalysts. This
result implied that the acidities of PdZ catalysts were
not proportional to the catalytic performance in butyl
acetate oxidation. However, the catalytic activities of PdZ
series catalysts were related to the results of H,-TPR. The
catalytic activity was enhanced over the 1PDZ catalyst
because the amounts of metal sites of the catalyst were
greater. The MvK kinetic model is usually preferred for
VOCs catalytic oxidation over supported noble metals
(such as Pd catalysts) to describe an alternative redox
cycle of the metal catalyst by oxygen and hydrocarbons
(Aranzabal et al., 2006). During the active phase of VOCs
oxidation over a Pd-supported catalyst, Pd’>* has been
proposed to catalyze the hydrocarbon oxidation, and Pd°
has been proposed to promote the catalytic activity by
maintaining a Pd**-Pd® cycle during the dissociation of
VOCs. Thus, the reaction rate is accelerated. Therefore,
larger amounts of metal sites brought about higher re-
ducibility, which resulted in an enhancement of catalytic
activity. In addition, 0.5PDZ and MIX showed differences

in strong acidity even though they had similar Pd content.
Generally, only the tetrahedral Al species contribute to
the strong acidity of materials (Wu et al., 2004). He et
al. (2012) proposed that the acidity of the catalysts was
in good accordance with the Pd dispersion order, which
proved that the support acidity had positive influence on
Pd particle dispersion and catalytic activity. Clearly, the
catalytic activity of butyl acetate oxidation over 0.5PdZ
was better than that over MIX due to its larger quantities
of strong acid sites (presented in Table 2).

2.2.2 Distribution of butyl acetate oxidation by-
products

For efficient VOCs catalytic oxidation, understanding the
catalytic activity is essential, and the reaction process
must also be investigated (Arzamendi et al., 2009; Ai,
1984). Figure 4 displays the yield (moles of butyl acetate
converted into a given product/moles of butyl acetate into
the reactor) of the main products from the partial oxidation
of butyl acetate over MIX, 0.3PdZ, 0.5PdZ, and 1PdZ

—=— Aceticacid =~ —2— [-Propene,2-methyl

1.0r MIX 0.3PdZ

0.6

0.4r

0.0r -

1.0L 0.5PdZ 1PdZ

0.8 -

0.6

Partial oxidation products yield

0.4r

0.0r

100 200 300 100 200 300
Temperature (°C)

Fig.4  Yields of butyl acetate oxidation producgs as a function of

reaction temperature over MIX, 0.3PdZ, 0.5PdZ and [|PdZ catalysts.
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catalysts. The yield of acetic acid increased when the
reaction temperature was increased from 100°C to 150°C,
and then decreased when the reaction temperature was
further increased. For PdZ catalysts, the maximum yields
of acetic acid decreased with increasing Pd content, and
the maximum values were 0.70 for MIX, 0.97 for 0.3PdZ,
0.80 for 0.5PdZ, and 0.76 for 1PdZ. 2-Methylpropene
was also observed during butyl acetate oxidation, and the
maximum values were 0.09 for MIX, 0.21 for 0.3PdZ,
0.18 for 0.5PdZ, and 0.16 for 1PdZ. This result indicates
that 2-methypropene had the same tendency with acetic
acid with increasing Pd content. This phenomenon can be
elucidated by the redox process of metallic sites. Based
on the results of H,-TPR, the maximum amounts of the
by-products were reduced with increasing reducibility. A
fast conversion over 1PdZ can transform these by-products
to CO, and H,O in a short reaction time. This result
was in agreement with the superior catalytic performance
of the 1PdZ catalyst. Compared with MIX, 0.5PdZ had
a similar Pd content but had larger quantities of strong
acid sites. Therefore, a stronger acidity is related to
more by-products. In addition, by-products (acetic acid
and 2-methylpropene) were formed before the formation
of CO, over Pd-based catalysts. A cracking reaction of
butyl acetate occurred on the strong acid and metallic
sites, thereby resulting in the formation of acetic acid
and 2-methylpropene over the Pd-based catalyst at lower
temperatures.

Acetic acid and 2-methylpropene should be equivalent.
Indeed, the yields of acetic acid were larger than that
of 2-methylpropene. Thus, 2-methylpropene could be an
intermediate by-product that could be transformed to other
products. The molar ratio of 2-methylpropene to acetic
acid presented in Fig. 5 clarified the conversion extent
of 2-methylpropene over the 0.5PdZ and MIX catalysts.
Compared with the MIX catalyst, the molar ratio over the
0.5PdZ catalyst was low because the transformation of 2-
methylpropene to other by-products was fast, whereas the
strong acidity of 0.5PdZ was higher than that of MIX. The
results indicate that more side reactions occurred when
the acidity was further increased. Some trace amounts of
by-products were detected via the thermal desorption/GC-
MS method, which included 2-butanone, 1-butene, 3-
methylpentane, hexane, 2-methylpentane, pentane, and
2-methylbutane. Based on the by-product distribution, the
catalytic oxidation processes of butyl acetate was pro-
posed as shown in Fig. 6. 2-Methylpropene underwent a
rearrangement of cations and oxidation in air to form 2-
butanone. 1-Butene was derived from the isomerization
process of 2-methylpropene. As shown in Fig. 6, more
high-energy intermediates (carbenium ions) were formed
through isomerization and -cracking reactions. This result
coincides well with the fact that oc.y and oc.c bonds are
directly protonated by strong acid sites (Louis et al., 2010).
Therefore, the formation of more by-products should be

by
(=]
T

0.5PdZ MIX

!\)
W
T

g
(=}
T

1.0

N %&7
%
7 v
7 %
7 %
7 1%
0.0 ¢ BJEE
100 300

200

Molar ratio of (CH,),C=CH, to CH,COOH

(=]
ANNNNNNY

100 200 300
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Fig. 5 Molar ratio of 1-propene, 2-methyl to acetic acid during butyl
acetate oxidation as a function of reaction temperature over MIX, and
0.5PdZ catalysts.

CH;COO(CH,);CH;, [Pd]

[Pd]
ﬁ“ ’\[O]
Si’O\Al o
CH;COOH pa) 0] %
CH, /
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HC/ \CH3
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H;C/e \Cﬁs i @
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Fig. 6  Main frame for butyl acetate oxidation process over MIX,
0.3PdZ, 0.5PdZ and 1PdZ catalysts.

attributed to the strong acidity of the catalysts.

3 Conclusions

In summary, a series of ZSM-5-based Pd catalysts with
different amounts of metal content and acidic sites was
prepared via an impregnation method. The catalytic pro-
cesses of butyl acetate oxidation over the MIX, 0.3PdZ,
0.5PdZ, and 1PdZ catalysts were studied by GC and

thermal desorption/GC-MS techniques. The by-products
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of butyl acetate oxidation include 2-methylpropene, acetic
acid, 1-butene, 2-butanone, 3-methylpentane, hexane, 2-
methylpentane, pentane, 2-methylbutane, and CO, through
a series of reactions such as dehydrogenation, dehydration,
cracking, and isomerization. The strong acidity of the
support favored the formation of carbenium ions for PdZ
catalysts, and secondary or tertiary reactions occurred. A
larger quantity of strong acid sites led to the formation of
more types of by-products. In addition, more amounts of
metal sites accelerated the reaction to complete oxidation,
which was thought to benefit the reduction of by-products.
Thus, a catalyst with a lower quantity of strong acid sites
and higher redox ability should be suitable for butyl acetate
oxidation.
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