
Introduction

Photoelectrocatalytic (PEC) oxidation in the presence of
semiconductor photoelectrodes has been proven to be an
efficient process that can be used for degradation of various
organic pollutants, such as dyes (Zhang et al., 2007; Yang et
al., 2005; Shinde et al., 2012), pesticides (Philippidis et al.,
2009), aromatics (Chen et al., 2009; Yang et al., 2006;
Neumann-Spallart et al., 2013), and so on. In most of these
cases, an electrode coated with TiO2 film was used as a
photoanode. However, the wide bandgap of TiO2 (about
3.2 eV) results in a lack of absorption in the visible portion of
the solar light spectrum and limits the application of TiO2. In

order to increase the photocatalytic activity under visible
irradiation, extensive studies have focused on doping metals
(Fe, Cu, Cr, etc.) or non-metals (carbon and nitrogen) into TiO2

to narrow the bandgap of TiO2 (Zhang and Lei, 2008; Hua et al.,
2015; Yang et al., 2014; Chen et al., 2009; Lan et al., 2013). As an
alternative, some novel photocatalysts with response to
visible light, such as Fe2O3, WO3 and metal-free g-C3N4, have
been developed (Zhang et al., 2010; Hepel and Hazelton, 2005;
Cheng et al., 2007; Shinde et al., 2013, 2016). Fe2O3, WO3 and
g-C3N4 have narrow bandgaps of about 2.0–2.2 eV, 2.5 eV and
2.7 eV and can thus absorb part of the solar spectrum (Cesar et
al., 2006; Hu et al., 2008; Spichiger-Ulmann and Augustynski,
1983; Shinde et al., 2016).
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Birnessite films on fluorine-doped tin oxide (FTO) coated glass were prepared by cathodic
reduction of aqueous KMnO4. The deposited birnessite films were characterized with X-ray
diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy.
The photoelectrochemical activity of birnessite films was investigated and a remarkable
photocurrent in response to visible light was observed in the presence of phenol, resulting
from localized manganese d–d transitions. Based on this result, the photoelectrocatalytic
oxidation of phenol was investigated. Compared with phenol degradation by the electro-
chemical oxidation process or photocatalysis separately, a synergetic photoelectrocatalytic
degradation effect was observed in the presence of the birnessite film coated FTO electrode.
Photoelectrocatalytic degradation ratios were influenced by film thickness and initial phenol
concentrations. Phenol degradation with the thinnest birnessite film and initial phenol
concentration of 10 mg/L showed the highest efficiency of 91.4% after 8 hr. Meanwhile, the
kinetics of phenol removal was fit well by the pseudofirst-order kinetic model.
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Fig. 4 – Photocurrent response of birnessite films of different
thickness in the presence of 10 mg/L phenol (each line were
processed to subtract the baseline) (a) and photocurrent
response of birnessite films with the delivered charge of
0.5 C in presence of phenol of different initial concentrations
(b) at an applied potential of 1.0 V; the plot of the reciprocal
photocurrent as a function of the reciprocal phenol
concentration (c).
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Fig. 5 – Phenol degradation by birnessite film with the
delivered charge of 0.3 C at open circuit (OC) and a constant
potential of 1.0 V with and without light irradiation.

ig. 6 – Schematic diagram of birnessite photoelectrocatalytic
EC) system.
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The FTO electrodes coated with birnessite films of different
thicknesses showed different phenol degradation efficiency
(Fig. 7a). With FTO itself, the degradation ratio in light was
21.5%. With birnessite on FTO, the degradation ratios were
significantly enhanced. Phenol removal ratios with birnessite
from thin to thick (corresponding to delivered charge of 0.3,
0.5, 1.0, 2.0 C) reached 91.4%, 83.1%, 80.6% and 67.2%, respec-
tively. The results showed that thinner birnessite films had
higher phenol degradation rates, which was similar to trend
of the photocurrent. The kinetics of phenol removal with
birnessite from thin to thick (delivered charge 0.3, 0.5, 1.0 and
2.0 C) fitted the pseudo first-order kinetic model well, with rate
constants (k) of 0.305, 0.236, 0.198 and 0.136 hr−1 and R2 values of
0.996, 0.981, 0.988 and 0.994, respectively (Table 1 and Fig. 7b).
Comparing our result with a similar experiment using TiO2

(k = 0.216), it is evident that birnessite had even higher
activity in the degradation of phenol under visible light
(Bennani et al., 2015).

The UV–Vis spectra of the phenol solution (initial concen-
tration at 10 mg/L) in the range of 200–320 nm changed during
the reaction with irradiation (Fig. 8). The maximum absorbance
peak of phenol in aqueous solution was at 269 nm. In the course
of the reaction, the phenol absorbance band became weak and
finally disappeared after 8 hr. An absorption peak at 245 nm,
typical for p-benzoquinone (Ukrainczyk, 1992; Drozd et al.,
2014), appeared from 2 to 6 hr and finally the p-benzoquinone
band became indistinguishable after 8 hr, indicating that
p-benzoquinone might be an intermediate of PEC phenol
F
(P
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Fig. 7 – Kinetics curves and pseudo-first order kinetics plots of PEC phenol degradation on birnessite films of different thickness
in presence of 10 mg/L phenol at a constant potential of 1.0 V with light irradiation.

0.6

0.8

ce

0 hr
2 hr
4 hr
6 hr
8 hr

264 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 5 2 ( 2 0 1 7 ) 2 5 9 – 2 6 7
degradation. Besides, the TOC values of samples before and
after PEC oxidation were calculated to be 10.20 and 4.54 mg/L,
respectively, corresponding to a TOC removal of about 55.5%.
The results indicated that the majority of phenol was oxidized
completely to CO2, while some was oxidized incompletely to
some intermediates.

Phenol degradation for different initial concentrations is
shown in Fig. 9 and Table 2. When the phenol concentration
was 10, 40 and 100 mg/L, 91.4%, 38.2% and 14.0% phenol was
degraded, respectively. The degradation ratio and the appar-
ent rate constant (k) decreased as the initial concentration of
phenol increased. To determine the efficiency of the PEC
system with different concentrations, the net amount of
phenol degraded for different initial phenol concentrations
was calculated. The results showed that the net amount of
phenol degraded (3.24 μmol) with initial concentration of
40 mg/L, was the highest among the three (Table 2). Mean-
while, the amount of phenol degraded slightly decreased to
3.10 μmol when the initial concentration was raised to
100 mg/L. The current was monitored over the course of the
reaction (Appendix A Fig. S2). It was found that in the initial
14 min, the current for initial concentration of 100 mg/L was
higher than that of 40 mg/L, which was in accordance with
the result in Fig. 4b, then, it gradually dropped to the same
level as that with initial concentration of 10 mg/L, lower than
that with initial concentration of 40 mg/L. Then, after about
Table 1 – PEC kinetic rate constants and correlation
coefficients of birnessite electrodes with different thickness
at a constant potential of 1.0 V with light irradiation.

Charge
delivered

(C)

Thickness
(nm)

First-order
rate

constant k
(hr−1)

Correlation
coefficient

R2

Phenol
degradation

ratio

0 0 0.031 0.967 21.7%
0.3 178 0.305 0.996 91.4%
0.5 208 0.236 0.981 83.1%
1.0 219 0.198 0.988 80.6%
2.0 338 0.136 0.994 67.2%
1.5 hr, all the currents became similar. In the initial stage, the
photocurrent was kinetically controlled and was enhanced for
higher phenol concentrations. Afterward, the catalytic active
sites became rate-limiting for oxidization of phenol. At high
concentrations of phenol, the adsorption of phenol molecules
on the catalyst surface reached saturation so that the
degradation rate did not increase any longer.

The stability of the birnessite film on FTO electrodes was
investigated by repeating the phenol PEC degradation exper-
iments at the bias potential of 1.0 V for 8 hr for five repeated
cycles (Appendix A Table S1). The degradation efficiencies
over 2–5 cycles remained stable in the range of 86%–90%, very
close to that of the first cycle (91.4%), indicating that the
birnessite film on the electrode was stable for at least 5
repeated degradation experiments. The film after PEC reac-
tion was analyzed by Raman spectroscopy (Fig. 10), and
three major vibrational features corresponding to birnessite
at 512, 576 and 635 cm−1 were still observed, which confirmed
that the birnessite phase was stable on the FTO electrode.
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Fig. 8 – Time courses of phenol UV–vis absorption spectra in
PEC degradation process at a constant potential of 1.0 V with
light irradiation.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jes.2016.04.009.
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