Efficient adsorption of Mn(II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study

Mingjie Huang , Yingxin Zhang , Wei Xiang , Tao Zhou , Xiaohui Wu , Juan Mao


Received April 11, 2019,Revised , Accepted April 11, 2019, Available online April 25, 2019

Volume 31,2019,Pages 56-65

In this study, greatly enhanced Mn(II) adsorption was achieved by as-synthesized diethylenetriaminepentaacetate acid intercalated Mg/Al layered double hydroxides (LDHs-DTPA). The adsorption capacity of LDHs-DTPA was 83.5 mg/g, which is much higher than that of LDHs-EDTA (44.4 mg/g), LDHs-Oxalate (21.6 mg/g) and LDHs (28.8 mg/g). The adsorption data of aqueous Mn(II) using LDHs-DTPA could be well described by the pseudo-second order kinetics and Langmuir isotherm model. Thermodynamics study results also showed that the adsorption process of Mn(II) by LDHs-DTPA was exothermic as indicated by the negative ΔH value. Furthermore, based on the structural, morphological and thermostable features, as well as FT-IR and XPS characterizations of LDHs-DTPA and the pristine LDHs, the adsorption mechanism of Mn(II) was proposed. The carboxyl groups of DTPA were proposed to be the main binding sites for Mn(II), and the hydroxyl groups of LDHs also played a minor role in the adsorption process. Among the three common regeneration reagents, 0.1 mol/L Na2CO3 was the best for reusing LDHs-DTPA in Mn(II) adsorption. Besides, the Mn(II) adsorption performance could be hindered in the presence of typical inorganic ions, especially cations. Further specific modifications of LDHs-DTPA are suggested to get more selective adsorption of Mn(II) in practical applications.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3