Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide–silica composite as a multifunctional adsorbent


Muneer Ba-Abbad , Ebrahim Mahmoudi , Sepehr Azizkhani , Abdul Wahab Mohammad , Law Yong Ng , Abdelbaki Benamor , Wei Lun Ang

DOI:10.1016/j.jes.2020.05.013

Received December 08, 2019,Revised , Accepted May 07, 2020, Available online June 18, 2020

Volume 32,2020,Pages 151-160

Graphene oxide is a very high capacity adsorbent due to its functional groups and π−π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3