Photo-degradation organic dyes by Sb-based organic-inorganic hybrid ferroelectrics


Xiaoshan Wu , Yuying Wu , Zhangran Gao , Xiaofan Sun , Hongling Cai

DOI:10.1016/j.jes.2020.08.014

Received April 14, 2020,Revised , Accepted August 16, 2020, Available online August 30, 2020

Volume 101,2021,Pages 145-155

The organic-inorganic hybrid halide compounds have emerged as one of the most promising photoelectric material for their superior optoelectronic properties and hold great prospects for renewable energy substitutes and environmental protection as photocatalysis. Here, we report the optical properties of the Sb-based organic-inorganic hybrid ferroelectric materials: pyridine-4-aminium tetrachloroantimonate ((C5H7N2)SbCl4, sample 1), piperidin-1-aminium tetrachloroantimonate ((C5H13N2)SbCl4, sample 2) and tris(trimethylammonium) nonachlorodiantimonate (((CH3)3NH)3Sb2Cl9, sample 3), which are a kind of exploited efficient photocatalysts. Samples 2 and 3 exhibit distinct photoelectric respond, which are mainly ascribed to their minor narrow band-gap compared with sample 1. For the ferroelectrics, the intrinsic of spontaneous polarization of sample 3 at room temperature is favourable for the separation of photogenerated electrons and holes within the photorespond process. Moreover, sample 3 shows the highest efficiency of photo-decomposed Rhodamine B (90.2% within 80 min) and Methyl Orange (MO) (97.4% within 50 min), thanks to the photo-excited electrons and holes promoting the formation of oxidative radical species during the photo-redox progress. These findings prove that the development of a novel Sb-based organic-inorganic hybrid halide compounds with good stability in the degradation of organic dyes paves a way to designing new photocatalyst.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3