TY - JOUR ID - 10.1016/j.jes.2020.02.018 TI - Toxic effect of perfluorooctane sulfonate on plants in vertical-flow constructed wetlands AU - Rong Li AU - Tianhao Tang AU - Weichuan Qiao AU - Jun Huang VL - 32 IS - 6 PB - SP - 176 EP - 186 PY - JF - Journal of Environmental Sciences JA - J. Environ. Sci. UR - http://www.jesc.ac.cn/jesc_en/ch/reader/view_abstract.aspx?file_no=S1001074220300620&flag=1 KW - Perfluorooctane sulfonate;Wetland plants;Toxicity;Vertical-flow constructed wetlands;Effect AB - Per-and polyfluoroalkyl substances (PFASs) can be taken up and bioaccumulated in plants, but the toxic mechanisms of PFASs on wetland plants are still unclear. In present study, the toxic influences of perfluorooctane sulfonate (PFOS) on Eichhornia crassipes (E. crassipes) and Cyperus alternifolius (C. alternifolius) in a vertical-subsurface-flow constructed wetland were evaluated. The results showed that E. crassipes was more tolerant to PFOS stress than C. alternifolius, and the growth and chlorophyll synthesis of the two plants were promoted by low concentration (<0.1 mg/L) of PFOS, and the chlorophyll synthesis was inhibited by high concentration (10 mg/L) of PFOS but the growth did not change obviously. The catalase activity and malondialdehyde content in the leaves of the two plants increased, peroxidase activity decreased under exposure to high concentrations of PFOS, and superoxide dismutase activity did not change. Under PFOS stress, the membrane of plant leaves and the cell structure of the two wetland plants were destroyed, and the mitochondrial contour of root cells became incomplete. Tanscriptomic analysis showed that the expression levels of genes related to cell wall formation, the cell apoptosis pathway, material synthesis, and metabolism in the plants were changed by PFOS. Analysis in fluorogenic quantitative real time polymerase chain reaction (RT-qPCR) also confirmed that the photosynthesis system of E. crassipes was inhibited, while that of C. alternifolius was promoted. ER -