TY - JOUR ID - 10.1016/j.jes.2020.06.017 TI - Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban shanghai from 2010–2018 AU - Lu Yang AU - Xuan Zhang AU - Wanli Xing AU - Quanyu Zhou AU - Lulu Zhang AU - Qing Wu AU - Zhijun Zhou AU - Renjie Chen AU - Akira Toriba AU - Kazuichi Hayakawa AU - Ning Tang VL - 33 IS - 1 PB - SP - 72 EP - 79 PY - JF - Journal of Environmental Sciences JA - J. Environ. Sci. UR - http://www.jesc.ac.cn/jesc_en/ch/reader/view_abstract.aspx?file_no=S1001074220302734&flag=1 KW - Corresponding author.;Air pollution;Fine particulate matter;Polycyclic aromatic hydrocarbons;Nitropolycyclic aromatic hydrocarbons;Health risk;Shanghai AB - This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of ƩPAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of ƩPAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities. ER -