Radioactive tracer of the photochemical reaction of ¹⁴CS₂ with OH in the presence of O₂* #### Yang Wenxiang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Iyer RS, Rowland FS Department of Chemistry, University of California, Irvine, CA. 92717, USA Abstract—The photochemical reaction of $^{14}\text{CS}_2$ with OH has been studied. The results indicated that the main products of the reaction were ^{14}COS and ^{14}CO with a small amount of $^{14}\text{CO}_2$ in the reaction system ($^{14}\text{CS}_2\text{-H}_2\text{O}_2\text{-C}_3\text{H}_8\text{-N}_2\text{-O}_2$). The reaction was promoted by oxygen. ^{14}COS and ^{14}CO had the similar kinetic curves while $^{14}\text{CO}_2$ got a different kind of curve. The overall rate constant increased with the increasing of oxygen partial pressure. The rate constant for the removal of $^{14}\text{CS}_2$ was $K=3.4\times10^{-12}$ cm³/(mol.s) at 33330 Pa O₂. The conversion of $^{14}\text{CS}_2$ to $^{14}\text{CO}_2$ at room temperature was observed and the possible mechanism of the photochemical reaction was disacussed. Keywords: "CS₂; OH; photochemical reaction; kinetics. #### 1 Introduction Recently, it was found that the carbonyl sulfide widely distributed in the atmosphere, the concentration level is about 500 pptv. Such a large quantity of COS stable presence in the atmosphere. It pursues us to consider the sources and the path of formation of COS. The tropospheric mixing ratio reported for CS₂ indicates that its distribution is highly non-uniform and that the ratios fall off rapidly (Bandy, 1981) The tropospheric removal processes which have been proposed for CS₂ are (1) the OH initiated oxidation (Jones, 1983; Becker, 1990), (2) direct photooxidation involving the reaction of excited CS₂ with O₂ (Wine, 1981). The reaction of CS₂ with OH is an important reaction in the troposphere. Short lived reduced sulfur compounds are oxidized in the troposphere to form sulfur dioxide or be further oxidized to sulfuric ^{*} This paper is a part of visiting research work at Department of Chemistry UCI. acid. In fact the tropospheric life time of carbon disulfide is quite short (Carroll, 1985). The rapid disappearance of CS₂ from the atmosphere indicates the existence of one or more rapid oxidation routes under natural condition. Wood (Wood, 1971) studied the photooxidation of CS₂ with radiation at 313 nm. The reaction products were CO₁ COS, SO₂ and polymer. But CO₂ and SO₃ were not produced. Barnes (Barnes, 1983) reported that the reaction of OH with CS₂ was rapid when O₂ presented in the photolysis mixtures. A mechanism involving the addition of OH to molecule CS₂ to form a short time lived CS₂OH adduct was discussed. As products the reaction forms one COS and one SO₂ for every reacted CS₂. Jones reported that the study of O₂ dependent rate constants for the CS₂ removal rate by OH reaction, with COS and SO₂ identified as reaction products (Jones, 1982) And the rate constant of this reaction is much higher (10⁻¹² cm³/ mol.s) in the presence of O₂. However, Iyer (Iyer, 1980) studied the reaction ¹⁴CS₂ with OH, which was produced by photolysis of H₂O₂ at 254 nm. The rate of the reaction is sufficiently slow that it is neither an important atmospheric sink for CS₂ nor an important source for atmospheric COS. We carried out experiments on radioactive tracer to study the effects of O₂ on the reaction of OH with ¹⁴CS₂. The technique we used has the advantage that the sensitivity to impurities is unlike those encountered in flash photolysis OH disappearance measurements. Our experiments have involved the use of radioactively labeled ¹⁴CS₂, which allows the analysis of volatile products with high sensitivity by means of simple radio gas chromatographic technique (Lee, 1962). The reaction was studied by a competitive kinetic technique in a static photolysis system in which mixtures of *CS₂, a reference propane, O₂, N₂ and H₂O₂ were irradiated with UV light. Subsequent analysis by radio gas chromatography of the ¹⁴C distribution among volatile compounds permits the measurement of ¹⁴C products and the loss of ¹⁴CS₂. In general, more information about the routs of oxidation of CS₂ can be obtained. # 2 Experimental part #### 2.1 Chemical Radioactive $^{14}\text{CS}_2$, specific activity 55 mCi/mmol was obtained from Amersham and diluted with chromatoquality CS₂ (Matheson, Coleman and Bell) to a specific activity of 24 μ Ci/mmol. The resulting mixture contained ^{14}COS as an impurity and was purified by gas chromatography. Hydrogen peroxide (90% FMC Corporation) was concentrated to 95% at room temperature by vacuum distillation. And stored in liquid nitrogen. Propane, Matheson, Instrumental grade, stored in a flask linking in a vacuum system, and degassed before use. Oxygen, Matheson, purity 99. 999%; nitrogen, Matheson, purity 99.99%. ## 2.2 Light source and photolysis cell The light source is a 1000 W Xeon Mercury arc lamp operated through a Bausch & Lomb monochromator for irradiation at 320 nm and 254 nm. A cylindrical (15×6.1 cm³) quartz photolysis cell with Superasil window was used through out the experiments. The light was focused by a quartz lens onto the entrance slit of monochromator. After pass through a quartz lens and a diaphragm, the radiation entered the front window of the photolysis cell, which contained ¹⁴CS₂ and other reactants. The transmitted radiation was measured by a RCA-935 phototube. In order to reduce wall effect, the inner wall of the quartz photolysis cell was coated with halocarbon wax. ## 2.3 Analytic method for the products of photolysis reaction After 0-4 hours of irradiation at a given wavelength, the samples containing ¹⁴CS₂, COS, C₃H₈, CO, CO₂, O₂, N₂ were passed through a glass bead trap cooled by liquid nitrogen. The part which trapped by glass bead was called condensible fraction. The non-condensible fraction was absorbed by a silica gel loop in liquid nitrogen. The glass bead trap was connected with silica gel loop in series. We pay more Fig 1 Scheme for radiochromatographic analysis of the reaction products - 1: He tank; 2: cooling finger; 3: liquid nitrogen traps; - 4: injection loop; 5: column oven; - 6: chromosorb 102 column; 7: charcoal column; - 8: TCD cell; 9: proportional counter; - 10: high voltage supply; 11: amplifier; 12: multichannel analyzer series 30; 13: glass bead traps; - 14: silica gel loop; 15: propane tank attention to separate these two fractions as well as possible. Warmed up glass bead to room temperature, the condensible fraction was transferred from glass bead trap to a cooled injection loop. After warmed the injection loop up to room temperature, the contain of the loop was then analyzed by a radio gas chromatography equipped with TCD and a 152 cm. Chromosorb 102 column which could separate CO₂, COS, C₃H₈, and CS₂ in the order respectively. The temperature of column oven kept at 65 °C during chromatrographic separation of CO2, COS, C3H8, while it kept at 110°C for the separation of CS₂. The responsible coefficient of C3H8 was measured at each run, therefore, the recovery of C₃H₈ were determined more accurately. The uncondensible fraction was absorbed by silica gel loop in liquid nitrogen. The loop was connected with a 1524 cm charcoal column which can be used to separate the reaction product ¹⁴CO. When the temperature of the loop raised to room temperature, the reaction products were desorbed and injected into the gas radio chromatography. ## 2.4 Determination of 14C radioactivity The radioactive compounds of the reaction products were determinated by a radio active chromatography equipped with a 1524cm Chromosorb 102 column, a TCD and a two layer sandwich Mylar film proportional counter. A multichannel Analyzer Series 30 was used to record the counts of each radioactive compound. The schematic diagram of the radio chromatographic analysis is shown in Fig. 1. #### 3 Results #### 3.1 The effects of O_2/CS_2 on the yield Some experiments on the O_2 pressure dependence of the reaction of OH with CS_2 in the $^{14}CS_2$ - H_2O_2 - O_2 - C_3 H₈ system have been carried out. The effects of ratio O_2/CS_2 on the yields of the reaction products are shown in Fig. 2. When O_2/CS_2 is less than 78, the yields of all products increase fast with increasing O_2/CS_2 . When O_2/CS_2 is greater than 78, the yields of the products COS and CO increase slowly. But the yields of CO_2 level off rapidly. It seems that the mechanism of formation of CO_2 is different Fig. 2 Effects of O2/CS2 on the yields of the products Fig. 3 Relationship between $lg (\Delta^{14}COS/\Delta C_3H_{\pi})$ and oxygen pressure from that of COS and CO. # 3.2 The effects of O₂ pressure on the effective rate constants Investigations of the O₂ pressure dependence on the yields of the reaction in the ¹⁴CS₂-C₃H₈-H₂O₂-O₂-N₂ system have been made. The results are shown in Fig. 3. It indicates that there are two types of effects presence in these reactions. If the partial pressure of O₂ is less than 10025 Pa, the higher the partial pressure presents, the higher the yields of COS, CO and CO₂ can be obtained. Propane was selected as a reference compound in this system, and then the yields of the reaction products can be normalized by deriving-C₃H₈. The plot of log {[COS]/[-C₃H₈]}vs partial pressure of O₂ is shown in Fig. 3. Obviously two different slops can get from the figure. When the partial pressure of O₂ was greater than 10025 Pa, a remarkable decrease in slop was observed. On the other hand, the effect of O₂ on the yield of CO₂ is very small. It indicates that more than two kinds of paths of the effects of O₂ on the CS₂ oxidation process present. In our experiments, propane was used as a reference compound. Under steady state, if the removal of CS₂ and C₃H₈ occurs solely through reaction with OH radical, the following relationship holds: $$\frac{\ln \frac{[CS_2]_t}{[CS_2]_0}}{\ln \frac{[C_3H_8]_t}{[C_3H_8]_0}} = \frac{K_{cs2}}{K_{c3}H_8}.$$ (1) If $K(C_3H_8)$ is known (2.0×10^{-12}) cm³/(mol.s), the overall rate constants of the reaction can be calculated. The rate constants were plotted vs. O_2 pressure as shown in Fig. 4. The measurement of the decrease in C_3H_8 through its reaction with OH served Fig. 4 Effect of oxygen pressure on the rate constant of the reaction Fig. 5 Rate constants of the reaction at different irradiation times as monitor for either the removal of ${}^{14}\text{CS}_2$ or for the formation of ${}^{14}\text{C}$ products. The relative specific yield (${}^{14}\text{COS}\%/\text{C}_3\text{H}_8\%$) of ${}^{14}\text{COS}$ increased by an order of magnitude as the pressure of O_2 was varied from 2666 Pa to 33330 Pa, the corresponding rate constants being 1.6×10^{-13} and 1.6×10^{-12} cm³ /(mol.s), respectively. The overall rate constant for removal of $^{14}\text{CS}_2$ was 6.7×10^{-13} cm³ /(mol.s) at $[O_2] = 2666\text{Pa}$, and increased to 3.4×10^{-12} cm³/(mol.s) at $[O_2] = 33330$ Pa. It is found that the results agree with the FTIR results of Barnes (Barnes, 1983). The overall rate constant for removal of ¹⁴CS₂ at different irradiation times was shown in Fig. 5. #### 3.3 The formation of ¹⁴CO, One of the interesting results is that significant yields of ¹⁴CO₂ was observed in all over our experiments. In order to find out the possible path of the production of ¹⁴CO₂, we carried out some experiments in special cases, such as without UV irradiation or without H₂O₂ or without O₂ in the reaction system. The results are given in Table 1. From the data in Table 1, it seems that a dark reaction may take place to produce ¹⁴CO₂ in the oxidation of ¹⁴CS₂. In our experiments, the minimum detectable activity of ¹⁴CO₂ is 0.17%. However in run #604, without irradiation the yield of ¹⁴CO₂ was 0.41%. Even without O₂, as in the case of ¹⁴CS₂-H₂O₂-C₃H₈ system, 0.89% of ¹⁴CO₂ was observed. It is possible that under UV irradiation hydroperoxide may dissociate to produce O₂ and O. This may be accounted for formation of ¹⁴CO₂. | | #301 | #306 | # 512 | #514 | #604 | #605 | |------------------------------------------|-------|-------|--------------|-------|-------|-------| | ¹⁴ CS ₂ (Pa/133.3) | 0.75 | 0.81 | 0.80 | 0.66 | 0.87 | 0.87 | | H_2O_2 (Pa/133.3) | 2.60 | _ | 2.65 | - | 2.67 | 2.69 | | C ₃ H ₈ (Pa/133.3) | 1.22 | 1.58 | 1.60 | 1.57 | 1.54 | 1.58 | | O ₂ (Pa/133.3) | _ | 111.8 | - | 171.5 | 171.5 | 171.5 | | N ₂ (Pa/133.3) | _ | _ | 758.5 | 598.8 | 598.8 | 598.8 | | Total 14C, Cts. × 14-4 | 2.60 | 2.78 | 1.97 | 1.65 | 2.15 | 2.15 | | Irradiation time, h | 3 | 3 | 3 | 3 | - | 3 | | Wavelength, nm | 302 | 302 | 302 | 302 | _ | 302 | | ¹⁴ CO, % | 6.76 | 5.32 | 0.51 | 0.79 | ND | 10.89 | | ¹⁴ CO ₂ , % | 0.82 | 115 | 0.89 | 0.95 | 0.41 | 2.20 | | 14COS, % | 1.24 | 3.07 | 0.52 | 0.13 | 0.02 | 13.64 | | C ₃ H ₈ , % | 4.24 | 4.97 | 13.25 | 2.24 | 1.65 | 15.84 | | ¹⁴ CS ₂ , % | 85.16 | 87.96 | 94.64 | 96.60 | 95.17 | 68.22 | | ¹⁴ C recovery, % | 93.98 | 97.50 | 96.56 | 98.47 | 95.60 | 94.95 | Table 1 Formation of 14CO2 in various reaction condition In general, our experiments have shown that ¹⁴COS and ¹⁴CO are the main products of the reacting with some amount of ¹⁴CO₂. The ¹⁴CO₂ can be produced in the dark reaction. The formation of ¹⁴CO₂ is promoted by either UV irradiation or O₂ presence in the system. In the present time, the nature of the interaction between O₂ and ¹⁴CS₂ and the intermedium species also remain unspecified in this report. #### 3.4 The dependence of irradiation time on the yields of products Experiments were carried out under the following conditions: $O_2/N_2 = 0.28$; irradiation wavelength, 302 nm; irradiation time, from 0 to 4.5 hours. The results are presented in Fig. 6. It is obvious that the kinetic curves of products of ¹⁴COS and ¹⁴CO are similar while that of ¹⁴CO₂ is different type. When the irradiation time is Fig. 6 Irradiation time vs. the yields of the products less than 2 hours, the plot of yields of ¹⁴COS, ¹⁴CO and ¹⁴CO₂ against irradiation time are all straight lines. The ¹⁴COS and ¹⁴CO lines pass through the origin. But the line of ¹⁴CO₂ does not pass through the origin. 3.5 The effects of irradiation wavelength on the yields of the reaction Two sets experiments have been carried out at different irradiation wavelengths, one at 302 nm and the other at 254nm. If the wavelength was selected at 254nm; $O_2/N_2 = 0.28$; irradiation time in the range from 0 to 4.5 hours; the results are shown in Fig. 7. It is interested that the photo- lysis products always contain ¹⁴COS, ¹⁴CO and ¹⁴CO₂ when the irradiation selected either at 302 nm or at 254 nm. As the irradiation time less than one hour, the yields of ¹⁴COS, ¹⁴CO and ¹⁴CO₂ increase linearly with increasing irradiation time. The slop of ¹⁴COS, ¹⁴CO, ¹⁴CO₂ lines are 19.6, 11.2, 3.2 respectively. After one hour irradiation, the yield of ¹⁴CO increases rapidly. At the termination of irradiational at 254 nm, we always observed some grey depositions on the front and rear windows of the photolysis cell. This may be results from photodissociation of carbonyl disulfide. Fig. 7 Relationship between irradiation time and the yields of the products at $\lambda = 254 \text{nm}$ #### 4 Discussion Recent measurements have been shown that carbonyl sulfide is widely distributed in the atmosphere. The sources and sinks of atmospheric COS are of particular interest for assessing the nature of this involvement in the stratospheric sulfur cycle. It has been suggested that CS₂ may be a precursor for atmospheric COS. Kurylo proposed that the reaction of OH with CS₂ proceeds via formation of a long lived collision complex (Kurylo, 1978). $$OH + CS_2 \xrightarrow{K_1} [S - C - S]^* \longrightarrow \text{products},$$ $$OH$$ (2) $K_1 = 1.85 \times 10^{-13}$ cm³ /(mol.s) However Rowland and Wine reported that K_1 is less than 1.5×10^{-15} cm³ /(mol.s) (lyer, 1980; Wine, 1980). Therefore, the reaction of OH with CS₂ can no longer be considered as the main sink route of CS₂. But the large temporal variability in CS₂ and the sharp CS₃ vertical gradient suggest that the tropospheric life time of CS₄ is short, about a week or two at most. One possible photooxidation route of CS₂ has been proposed by Wine (Wine, 1980). $$CS_{2} \xrightarrow{h\nu > 280nm} CS_{2}^{*}, \qquad (3)$$ $$CS_{2}^{*} + O_{2} \xrightarrow{b} CS_{1} + O_{2}, \qquad (4)$$ $$CS_{2}^{*} + O_{2} \xrightarrow{b} CS_{1} + O_{1}. \qquad (5)$$ They suggested that photooxidation may be an important tropospheric sink for CS₂ and oxidation of CS₂ may be an important source of COS. In fact, in the atmosphere the reaction of OH is very important. Barnes (Barnes, 1983) reported that the overall rate constant measured for the reaction of OH with CS₂ was dependent upon the mole fraction of oxygen present in the system. The results obtained from our studies on the reaction of OH with 14CS₂ in the presence of O₂ are discussed as follows. #### 4.1 Oxygen effects From the photolysis product yields measured for the reaction of CS_2 with OH, the yields increase with increasing O_2/CS_2 ranged from 0 to 78 but decrease slowly when O_2/CS_2 becomes higher. This phenomenon may be due to the fact that there are three main steps involved in the reaction. First, CS_2 is excited to CS_2^* . The second step is the addition of OH to CS_2^* to form an adduct. The third step is the reaction of O_2 with *CS_2OH and CS_2^* . As we know, O₂ can be acted as a quencher or an oxidant. If the O₂/CS₂ is high, oxygen may act as a quencher. As a result, the concentration of CS₂* and *CS₂OH decrease, and therefore the yields of the reaction decrease. In case O₂/CS₂ is low, oxygen can not quench CS₂* and / or *CS₂OH. It may then react with *CS₂OH and CS₂* to form the products. *CS₂OH + O₂ $$\longrightarrow$$ [*CS₂OH O₂] \longrightarrow COS \longrightarrow CO. Therefore, in the presence of suitable amount of O₂, the yields of reaction products are higher. #### 4.2 CO₂ formation and dark reaction All of our experimental results indicate that ¹⁴CO₂ is produced in the photooxidation of ¹⁴CS₂. The formation of ¹⁴CO₂ may be from two possible routes. First, by secondary reactions: If it is true, then most part of ¹⁴CO₂ is produced from ¹⁴COS and the ratio of CO/ (CO₂+COS) should be constant during the reaction. In fact, the ratio of CO/ (CO₂+COS) was found to be almost constant, if the reaction time was less than 2 hour. The results are given in Table 2. Second by dark reaction: Our experiments showed that small amount of ¹⁴CO₂ were formed when the reactants (¹⁴CS₂-C₃H₈-H₂O₂-O₂-N₂) were induced into the quartz photolysis cell and kept in dark for 2 or 3 hours at room temperature. It is obvious that a dark reaction takes place in the system, but the mechanism of it remains unknown. In order to distinguish the dark reaction from other reaction we use the following expression. $$^{14}CS_2^* + O_2 \longrightarrow ^{14}CO_2.$$ (8) #### 4.2 Reaction mechanism Based on the above discussion, we propose the following mechanism for the reaction studied. In the system, three kinds of reaction may take place. #### 4.2.1 Photo oxidation In the first step, carbon disulfide molecule is excited by irradiation; then the excited CS₂* reacts with OH radical and / or O₂ to form a series of products. In other case, excited CS₂* may be quenched by O₂ and converted back to CS₂. The reactions are expressed as follows. | | | | , - | | | | |------------------------------------------------------|------|------|-------|-------|-------|--| | | #601 | #602 | #603 | #605 | #606 | | | ''CO, % | 2.94 | 2.42 | 6.64 | 10.89 | 12.24 | | | ¹⁴ CO ₂ + ¹⁴ COS, % | 6.27 | 4.04 | 12.90 | 15.84 | 17.50 | | | $^{14}CO / (^{14}CO_2 + ^{14}COS)$ | 0.47 | 0.60 | 0.51 | 0.69 | 0.70 | | Table 2 The ratio of CO / (CO + COS) $$CS_2 + h\gamma \longrightarrow CS_2^*,$$ $$CS_2^* + OH \longrightarrow [CS_2]^*,$$ $$(9)$$ $$(10)$$ $$CS_{2}^{*} + OH \longrightarrow [CS_{2}OH]^{*},$$ $$[CS_{2}OH]^{*} + O_{2} \longrightarrow [CS_{2}OHO_{2}]^{*},$$ (10) $$CS_{2}^{*} + O_{2} \longrightarrow CS + S - OO$$ $$| \qquad \qquad | \qquad \qquad SO_{3}. \qquad (12)$$ $$CS + O_{2} \longrightarrow COS + O$$ $$CS + O_{2} \longrightarrow COS + O$$ $$COS + O_{2} \longrightarrow CO + SO,$$ $$CO + SO,$$ $$CO + SO,$$ $$CO + SO$$ $$CS_{2}^{*}+O_{2} \xrightarrow{\text{quench}} CS_{2}+O_{2}. \tag{14}$$ #### 4.2.2 Secondary reaction Because of using only 14C as the labeled atom in our studies, the discussion here is limited on the secondary reaction of carbon atom only. The formation of 14CO, may results from the following secondary reactions. $$COS + OH \longrightarrow [O - C - S] \longrightarrow CO_2 + HS,$$ $$|$$ $$OH$$ $$(15)$$ $$CO + OH \longrightarrow [HOCO] \longrightarrow CO_2 + H.$$ (16) Experimental results showed that CO, is mainly formed from the reaction of COS with OH. #### 4.2.3 Dark reaction It seems that a dark reaction also takes place in this system. The reaction mechanism remains to be investigated in the future. #### 5 Conclusion With O_2 and N_2 as diluent gases and one atmosphere total pressure, rapid removal of $^{14}\text{CS}_2$ was observed when H_2O_2 was present in the irradiation mixture. The main products were COS and CO. The overall rate constant for the removal of $^{14}\text{CS}_2$ was determined to be 6.7×10^{-13} cm³/(mol.s) at $O_2 = 2666$ Pa, and increasing to 3.4×10^{-12} cm³/(mol.s) at $O_2 = 33330$ Pa. Therefore the reaction of OH with CS₂ in the presence of O_2 may be considered as important route of CS₂ sink in the atmosphere. ¹⁴CO₂ was detected in all of our photochemical experiments. Even in dark reaction, a few amount of ¹⁴CO₂ can be determined, at the same experiments ¹⁴COS and ¹⁴CO can not be detected any more. We proposed that CS₂ can be oxidated to form CO₂ in dark at room temperature. The possible reaction mechanism is discussed. Three kinds of reaction may take place in the system studied; these are photooxidation reaction, secondary reaction and dark reaction. #### References Barnes I, Becker KH, Fink EH, Reimer A, Niki H. Int J Chem Kinet, 1983; 15:631 Becker KH, Nelsen W, Su Y, Wirtz K. Chem Phys Lett, 1990; 168:559 Caroll MA. J Geophys Res, 1985; 90:10483 Bandy AR, Maroulis PJ, Shalaby L, Wilner LA. Geophys Res Lett, 1981; 8:1180 Iyer RS, Rowland FS. Geophys Res Lett, 1980; 7:797 Jones BMR, Burrows JP, Cox RA, Penkett SA. Chem Phys Lett, 1982; 88:372 Kurylo MJ. Chem Phys Lett, 1978; 58:238 Lee JK, Lee EKC, Musgrave B, Tang YN, Root JW, Rowland FS. Anal Chem, 1962; 34:741 Maroulis PJ, Bandy AR. Geophys Res Lett, 1980; 7:681 Wine PH, Shah RC, Ravishankara AR. J Phys Chem, 1980; 84:2499 Wood WP, Hucklen J. Phys Chem, 1971; 75:856 (Received May 28, 1993)