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Improving the numerical stability of the MAGIC model
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Abstract: MAGIC is one of the most widely used models for forecasting long-term acidificetion. The model”s code, however, has
been experiencing numerical instability, though this might not be widely known to the public users. The major instability comes from
the analytical solution to two cubie equations for caleulating SO2 ™ concentration and the exchangeable fraction of Al on the soils. The
mathematical algorithim for calculating the concentration of SOZ2~ from a quadratic equation is also found instable. This paper is aimed
at improving the instability above through proved numerical algorithms.
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Introduction

The model of acidification of ground water in catchment ( MAGIC) is one of the most widely used models
wotldwide for predicting catchment acidification and is still under further upgrading (Cosby, 1985; Hinderer, 1995;
Cosby, 1995). The model, however, is inherently associated with nurnerical instability in its original computer
codes. The importance of these instabilities cannot be underestimated, as they are unknown to most public users,
given the scales, the public acceptability and trustworthiness of the model. Although it is difficult to quantify what
consequences these instabilities have caused in practice, it is esscntial that a model be free from any numerical errors.
1 The numerical instability

There are two numerical instabilities in the MAGIC model. The first one is associated with the solution to a cubic
equation for calculating either the 802 concentration in soil water or the exchangeable fraction of Al on the soils.
Both SC2™ and Al are the major components of the MAGIC model in influencing the changes of alkalinity in scil and
surface waters. In the numerical codes, this equation is invoked in each iterative time-step, and the associated errors
might thus be quickly propegated into other numerical calculations. To be representative, the cubic eguation for
calculating SO~ is used herein as an example to illustrate the instability. Mathematically, the equation can be written
as,

A - 803+ A,- 801+ A+ 80, + A, =0, (1)
in which A,, A;, A; and A, are given by
Al =4+ KS; - Al, (1a)
A, =2-(1+KS, - Al+C-+ K5+ Al, (1b)
Ay = C+ 8P+« EMX/V - TSO,/V + C + KS, + Al, {1c)
Ay =— C» TS0, /(2V), (1d)

where SO, is the concentration of sulfate in che soil water; KS; and KS; are equilibrium constants for the reactions
between AP* and SO~ , Al is the concentration of aluminum in the soil, C is the half saturation coefficient of the
sulfate adsorption, SP is the soil mass density, TSO, is the total amount of sulfate in the soil solution and stream
water and V is the volume of soil solution per unit area.

In the original computer program, a traditional analytical method was applied to solve the above eguation. The
equation is the first divided by A, to have the following form,

SO} +P-SOI+Q-S50,+R =0. ¢
Let
A=03Q-P)43 (2a)
and
B = (2P*-9.PQ +27TR) 27, (2h)
B A®
CHK = Y + 37 (2¢)

If CHK <0, the first real root can be solved directly as

soa=(—%+m)%+(—%—m‘ﬁ) - (20)
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The ahove value is then regarded as the final root of Eq. (1) . Otherwise f CHK <0, ( - g + +/CHK ) ¥ and

1
( - g - +/ CHK ) ¥ in Eq. (2d) are complex numbers. As the two components are conjugated, SO3 ™ in Eq. (2d)

will still be a real number.

Let
B 27
rx:acos(fi,\/*ﬁ), (26)
TRM = 2/ — A7, (2f)
Then Equation (2d) is changed into;
2 P
804y = TRM + cos (a+1'?n)—? i=0,1,2. (2e)

Here S0,y is the ith possible solution to Eq. (1). If SOy, >0, then SOy is treated as the final root, otherwise
8041y and 804z, are checked in the same way until a oot is identified. If all the three SOy, is less than zero,
there is no root to be practically accepted, and the computer simulation will be automarticelly stopped with an error
message.

There are at leasi two problems 10 the above analytical solution. First, since KS, is rather small at the
magnitude of 107 %, A, will be very small too and at the same magnitude. When Eq. (1) is divided by it, the error
can be significantly enlarged. Second, the above root selection procedure is not at least theoretically sound because
there is no evidence to prove that the selected one is the cne we need of the three roots.

2 The new algorithm

To avoid the above numerical instability, the well-known Newton iteration methed is applied to resolve Eq. (1),
the procedure of which can be summarized as follows, First the item { 50, )* is omitted from Equation (1) since its
coetficient is too small. Thus we have,

L SO+ Ay v SO, + A, = 0. (3)
Because of A;220 and A4=>0, Eq. (3) is sure to have a positive real root, which can be used as the initial estimate for
S0y by a numerical stable algorithm, i.e.

ZA
50 = - = ) (3a)
A3 + Ag - 4‘41A4
The iteration method is then applied to calculate more accurare values for 80,, i.e.,
Soanrl) — Soin) . A‘l * [SO‘(I")]s + AJ - [SOS”) ]2 + A SO( n =+ A] (4)

3-A, [SOV1P+2 A5 5057 + A,
Since the initial value of SO, is quite close to the real root, which is denoted as $Qyyy , the iteration procedure only

20.00 takes several steps to converge. The CPU time by the
[ Newton iteration method is even less than the one by
the znalytical method. After finding the first root of

_______ Modificed Eq. (1) , the other two can be solved by the [vllowing
Orisi equation :
1600 |- riginel SO3 + (8040 + PYSO, +
% (8O%0) + P+ SOuoy + Q = 0. (5)

It is easy to see that there is at most onc positive root
for Eq. (1) because of the characteristics of its
coetficients, i.e.,A; 220, A,=20, A;<0. The only

Concentration of suifate , meq/m’

1200 |t A : . ‘ :
8 | O g positive root thereafter is the final result. In general,
vy Y the first root SO4p; is the needed one.
- [ 3 Results and conclusions

The differences of the original and proposed
3.00 | " , . 4 . 1 methods are assessed by the data from White Oak Run,

00000 0.0002 00004 00006 00008 00010 00012 based on which the MAGIC model was iritially
Concentration of aluminum, meg/m* developed ( Cosby, 1985). This was achieved by

assessing the root differences of the two methods under
Fig.1 The numerical stability of different algorithms for Eq. (1} different concentrations of aluminum. The reason for
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that is due to the direct sensitivity of aluminum to the coefficients of Eq. (1), especially A| and A,. Fig.1 showed
Lhe SO%f conceniration by the orginal method when Al concentration was subject to the range of 0.00001 to 0.001
meq/m’. It is apparent that the resolved S(%~ concentration became extremely unstable when the Af concentration
was less then 0. 00030 meq/m®. On the contrast, however, the Newton iteration method presented a constant root of
8CE-.

In addition to the above numerical instability, the following equation, which is to resolve the concentration of
S0%” in the stream water via total sulfate, is also noted to be numerically problemaric,

2+ Al - KS;+ 805+ (1+ Al - KS;)S0, — TOTS = 0, (6}

when resolved through,

(1+ Al - KS))+./(1+ Al » K5 +BAf - KS, » TOTS

4 Al KS, (6a)
This is because its denominator is close to zero when Al concentration is low. We thereafter, suggested the following
equation to replace Eq. (6a),

SO

80, =

_ 2. TOTS

YU+ AL-KS) + /Tt % AL+ KS, 2 + BAl - KS, - TOTS
Again the numerical instability is eliminated as shown in Fig.2.

Notation: 2000
C: hall saturetion constant for the sulfate adsorption
isotherm ( mf:q/m3 Y3 EMX: meaximum adsorption
isotherms {meq/m®); SP: amount of soil per unit area =, 16.00~ ———  Modified
of watershed (kg/m?®), assuming n specific gravity of§ weeee Original

(6b)

2.65; V: agueous volume per unit area of watershed
(m); Al: aqueous concentrations of the aluminumg 12,00}
(mitlimeles m *); SO,: aqueous sulfate concentration &

(millimcles m™?}; TOTS ; total amount of free aqueous B
subfate concentration ( millimoles m 3); TS0,: total g 800 —
g

catchment sulfate {meq/m?)}; KS,: constant for the

aqueous reaction of sullate with aluminum (millitnoles !

(500, ] oS 4o
AP - TSCE-] where means |
the concentration of the item included in it { millimoles
m™?); KS,: constant for the aqueous reaction of sulfate

m®), and KS, =

0.00 T T T T T T \
0.00 0620 0.40 0.60 0.80 1.00
Concentretion of aluminum, meg/m*

with aluminum millimoles ™2 m? Y, and KS, =
% , where [+] means the concentration

of the item included in it {millimoles=m™3).

Fig.2 The numerical stability of different algorithms for Eq. (8)
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