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Abstract: A high-order sphitting scheme for the advection-diffusion equation of pollutants is proposed in this paper. The multidimensional
advection-diffusion equation is splitted imo several one-dimensional equations that are solved by the scheme, Only three spatial grid points are
needed in each direction and the scheme has fourth-order spatial accuracy . Several typically pure advection and advection-diffusion problems are
simulated. Numerical results show that the accuracy of the scheme is much higher than that of the classical schemes and the scheme can be
efficiently solved with little programming effort
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Introduction

With the development of modem industry, various pollutants discharge into the air, rivers, lakes and oceans, which
makes the environmental qualities worsen and has bad effect on the mankind’ s health and the sustained development of
industry and agriculture. The environmental pollution has been a worldwide problem that has drawn more and more attention.
The thorough studies on the activities and the fate of the harmful pollutants have important theoretical and practical mesnings
for the establishment of the accurate environmental protection strategy, for the guaranty of the sustained development of
national economic, and for the improvement of mankind living environment.

The changes of pollutants in the air or in the water consist of the physical, chemical and biochemical processes, and so
on. The physical changes of pollutants involve two main important processes, that is, advection and diffusion. The
mathematical model describing these two processes is the well-known advection-diffusion ecquation. Numerical methods should
be used at present io obtain the solution W a complicated advection-diffusion problem although the solution to a simple
advection-diffusion problem can be obtained analytically. The numerical methods for the advection-diffusion equation are much
more (Fletcher, 1991; Leonard, 1988; Noye, 1988; 1989, Sankaranarayanan, 1998; Shi, 1996; Sobey, 1983). In these
mwethods, some show low accuracy, some are accurate enough but deal with many grids points, which makes them difficult to
extended to be applied to practical problems. For this purpose a high-order splitting scheme is proposed and used to simulate
three classical pure advection and advection-diffusion problems in the paper. The results are satisfactory.

1 Mathematical model
i.1 Basic equation
The method will be introduced in this paper hy taking the two-dimensional advection-diffusion problem as an example.
The two-dimensional advection-diffusion equation is
dc de d¢ a3 de a dec
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where ¢ is the concentration of pollutants; u and v are the velocities in the x and y direction, respectively; D, and D, are
the diffusion coefficients; S, is the source or sink; ¢ is the time.
1.2 Numerical scheme
If the velocity field is known, the main difficulty of numerical solution of Eq.{1) lies in the simulation of the advection
terms . If the advection term is not dominated, many of the existing schemes can give satisfactory results. Otherwise, they may
cause large numerical errors. Based on the operator-splitting methed, a high-order scheme is proposed by taking the two-
dimensional advection-diffusion equation as an example. The extension of a two-dimensional treatment to a three-dimensional
one is straightforward .
According to Szymkiewicz (Szymkiewicz, 1993), the solving of Eq. (1) is equivalent to the solving of the following one
dimensional equations one by one, that is, Eq.(1) can be splitted into

ac(l) actl)
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The initial conditions for Eq. (2)—{5) are ¢!” =¢,, ¢ = ¢, ! = ¢®,, and ¢ = ¥, respectively. The

solution to Feg. (1) at time ¢ + A, ¢ is ¢,,5 = ¢ s, . Clearly by the above splitting processes, the solving of a two-
dimensional advection-diffusion equation is splitted into the solving of two one-dimensional pure advection equation, a one-
dimensional pure diffusion equation and a one-dimensional diffusion equation including source or sink. So it is necessary to
construct appropriate numerical schemes for these one-dimensional equations. For convenience, the superscripts in Egs.
(2)—(5) are omitted in the following sections.

If the Galerkin finite element method with linear interpolation is applied to Eq. {2}, the following system of equations can
be obtained {Fletcher, 1991):

w5E] + a5z <o, (6)

where M_ = (8,1 - 25, 8) is the directional mass operator. The application of the Crank-Nicolson scheme to the above

equation gives:

. [CT“ —c.—“] u[ac“' ac ] 0 )
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If the central difference is applied to the first order denvatives in the above equation, we can obtain after some arrangements
Pl + P, + P, c’:}f = Pyel, + Pyei 4+ Pely, (%)

where n and n + 1 represent the time ¢ and ¢ + At, respectively; i is the spatial grid number; P, = 8§ -0.25a;P, =1-
283P; = 8 +0.25¢; @ = uAt/Ax is the Courant number. If § = 0, Eq. (8) is simplified to the Crank-Nicolson finite
difference scheme.

Eq.{8)} is unconditionally stable and has a truncation error of O(Af*, Ax*) when & = 1/6 + 2% /12.

It should be noted that the time step in the numerical computation should net be too large although Eq. (8) is
unconditionally stable. The reason is the accuracy of numerical results will decline if the time step is too large due to the
second order accuracy in time.

Similarly, the numerical scheme for Eq. (3) can be easily obtained and will not be introduced here because of the space
limit .

For Eq.(4) with constant D, , Fletcher{Fletcher, 1991) gave several schemes and analyzed the stability, accuracy,
and advantage and shortcomings of them in details. Of these schemes the highly accurate Crank-Nicolson finile element
scheme is extended in this paper to the case with variable D, .

The application of the Crank-Nicolson finite element method to Eq.(4) and making some arrangements yield

Qe+ @t 4 Qi = Qucly + Qscl + Qgcly, (9)
where 0, =6 -0.55,_,,,0,=1-28+0.58_,+0.58,,,,0;,=86-0.55,,,,Q,=8+0.55_,,,0,=1-28-
0.5(D, + D, ,)

Ax®
of 0(AR , Ax*). Tf D, is constant and & = 1/12, the scheme has fourth order accuracy(Flecther, 1991).

For Eq.(5) it is difficult to give & general scheme due to the different source or sink . If the special source or sink terms
are given, a numerical scheme can be easily obtained by using the above method.

2 Examples and analysis

To illustrate the accuracy of the scheme given in the preceding section, we will apply it to several classical pure
advection and advection-diffusion problems in the following.

2.1 Calculation of two-dimensional pure advection in a uniform flow

In an infinite two-dimensional plane, a couple of Gaussian distributions are advected downstream at constant velocity u =
0.5 m/s, v=0.5 m/s. The initial locations of each Gaussian distribution’s center are (x,, y,) = (1400m, 1400m) and
(xy, ¥, )} = (2400m, 2400m). The initial values of peak concentrations are ¢, = 10.0 and ¢, = 6.5, and the standard
deviations are ¢, = 264m and g, = 264m, respectively. The analytical solution to the problem is

(x - x, - l.r,.',)2 + (y—y, - vt)z]
24° *

0.58,.1,-0.55,10:Qs=8+0.55,,2:5_1n = At. Eq.(9) is neutrally stable with a truncation error

c{x,y,t) = c,exp[ -

(x -2 - wl + (y -y, - w)’
A exp[ - 72 ] .

Substituting £ = 0 into the above equation gives the initial condition. In the numerical computation, the time step and
the space step are taken to be 100s and 100m, respectively. Fig.1 shows the comparisen of the numerical results obtained by
four numerical schemes with the analytical solutions along the line ¥ = x. It can be seen that the results obtained by the
present scheme are almost the same as the analytical solutions, while the results obtained by the other classical schemes show



446 ZHENG Yong-hong et al. Vol. 13

12 12

10 10
g 3
g 6
g 4 4
5 2r 2
< 0 S

2k L A . -2

4300 5500 6500 7500 8500 4500

5500 6500 7500 8500

X, m x,m

(a) Present scheme {b) Crank-Nicolson finite difference scheme

12

10 10 F
g 8 8
g 6 6 F
§4 al
g5 2 2r
U op o

-2 . R , -2 . . L
4500 5500 6500 7500 BS00 4500 5500 6500 1500 8500

X,m x,m

{¢) Lax-WendrofT scheme (d) Two-point upwind difference

Fig.1 Cmparison of several schemes for two-dimensional pure advection in a uniform flow(along line y = x), Ax = Ay = 100m, As = 100s
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large discrepancy from the analytical solutions. Clearly the results obtained by the present scheme are much better.
2.2 Calculation of two-dimensional pure advection in a rotational flow
Suppose in a finite two-dimensional plane exists a totational flow, the flow velocity is given by
u=-awly-y)ov=wlsx-x),
where w is the angular rotation rate; w = 2w/12000(rad/s}; (x,,y,) are the coordinates of the rolational center, (x, y)
are the coordinates in the plane. A Gaussian distribution centered at (x,, ¥, ) is in the plane with the initial values given by

(z - =) + (y- J’.)z]
e{x,y,0) = lﬁexp[— 2 % 200° .

The center of the Gaussian distribution does not coincide with the rotational center, that is, x, = ¥, = 2400.0m, %, =
¥, = 1400m . The computational domain is bounded by 0 x < 5000 m and 05 ¥ < 5000m. The time step and the space step
are taken to be 50.0s and 100m, respectively.

Fig.2 shows the comparison of the numerical results by four schemes with the analytical solutions after one tum of
rotation. It can be seen that the resulls obtained by the present scheme are much closer to the analytical ones while the results
obtained by the other three schemes show large discrepancy from the analytical solutions. Table 1 gives the relative errors
between the calculated peak values and the analytical one. The results illusirate once more that the present scheme can give
highly accurate results for two-dimensional pure advection problems.

Table 1 Relative errors between the calculated peak values and the analytical one

. . P Crank-Nicolson Lax-Wendroff Two-point
Analytieal solution nt scheme finite difference scheme upwind scheme
Peak value 10.0 9.6291 3.5188 3.8825 0.8973
Relative emor, % 3.71 64,81 61.18 91.03

2.3 Two dimensional advection-diffusion problem

Hete the two-dimensional advection-diffusion of a Gaussian pulse in a rectangular domain is simulated to investigaie the

accuracy of the present scheme. The Gaussian pulse of unit height is centered at (0.5m, 0.5m). The initial condition is
given by

c{x,y,0) = exp[ -
The analytical solution to the problem is
B 1 [ (x-0.5- w) (y—0.5—v£)2]
loyt) = 1™ - " DGis D T DGesD I
where, D, = D, =0.01 m /siu=v=0.8 m/s. The computational domain is bounded by O <2 and 0 y <2. The time

(x-05) (y- 0.5)1]
D D g

x ¥
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Fig.2 Comparison of several schemes for two-dimensional pure advection in a rotational flow(along line ¥ = ), Ax = Ay = 100m, At =50s
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step and the space step are 0.00625s and 0.05m, respectively. Fig.3 shows the comparison of the numerical results obtained
by four numerical schemes with the analytical solutions at ¢ = 1.25s. It can be seen that the results given by the present
scheme are almost the same as the analytical ones and the results given by the Crank-Nicolson finite difference scheme and
Lax-Wendroff scheme are closer to the analytical solutions. There exists serious numerical diffusion in the results given by the
two-point upwind scheme, the accuracy is very low. The results show further that the accuracy of the present scheme is high.
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3 Conclusions

A new high-order splitting scheme for the advection-diffusion equation of pollutants is proposed in this paper. Three
classical pure advection and advection-diffusion problems are simulated. Comparisons of the numerical results with the
analytical solutions and the results obtained by the other schemes show that the present scheme is highly accurate, can be
easily programmed and extended to give refined prediction of the practical advection-diffusion problems.
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