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Abstract; This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region,
accounting for the dynamic and stochastic character of meteorological conditivns. This is accomplished by integrating Monte Carle simulation and
using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban-scale 50, control problem in the Yuxi City
of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures .
This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents’
health. Finally, a discussion of the areas for further research are briefly delineated.
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Introduction

Starting with early work of Teller{Teller, 1968) and Kohn (Kohn, 1971) beginning in the seventies
and continuing to the present, a host of mathematical and decision support techniques have been developed
and employed to aid in forming air quality planning optimization models. According to the treatment of
parameters in these models, they can be classified into two major categories. The first category examines
deterministic models in which parameters are assumed to be known with certainty in advance. The second
one discusses the stochastic approaches which explicitly account for the uncertainties in the parameters.
These parameters are random variables involved in the estimation of a pollutant’ s impact, such as the
source emission rates, background deposition rates, cost-removal functions. But what is most emphasized is
the great variability in meteorological conditions.

The purpose of this paper is to provide a natural setting to view the development from deterministic
models to stochastic models and the shortcomings in these earlier modeling efforts, and then develop and
apply a modeling approach aimed at overcoming these limitations of present air plamming. In this paper, a
chance-constrained programming( GCP) based regional air quality model that allows random, statistically
dependent transfer coefficients of any distribution is developed and illustrated. Both long-term and short-
term air quality standards have been integrated into the requirement constraints with Monte Carlo
simulation. Dramatic increases in computational power over the past decade and the evolution of genetic
algorithms (GAs) actualize the solution.

The remainder of the paper is organized as follows. First, background information and a literature
review are given below. Then the model is described, and the solution algorithm is outlined. The approach
is illustrated using a realistic air quality management problem. Finally, results and conclusions from the
application of the model are discussed.

1 Background and literature review
1.1 Deterministic models

Deterministic model presuppose that the coefficients are known in advance with certainty and has a

constant value. The following is the simplest possible deterministic air quality optimization model. It is to

minimize the abatement quantity while subject to the non-violation of the air quality standard .

Min:f = >, ER;, (1)
i=1
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sty D E(1L-R)ty; + B, < D, i =1,2,7.m (2)
=1
0< R =1 Jj=1,2,>,n
where #; represent transfer coefficient for source j and receptor i, m is the number of receptors, n is the
number of sources, R, is the removal rate at source j. E; represenis the emissions from source j, B,
represents the background concentration at receptor ¢ and ), is the ambient limit at receptor i.

In order to describe the complex stochastic phenomena in a deterministic way, two methods have
been used. One takes the most undesirable air condition as the constani constraint value. The second has
all the possible meteorological conditions weighted by their probabilities of occurrence and then gets a
frequency-weighted meteorological input.

While being simple in solution, the shoricomings of deterministic models are obvious. A worst-case
analysis tends to vield strategies that may he more costly than necessary. Since expensive controls may be
required during days when the same amount of pollutants have little impact on air quality because of the
favorable air condition. When using the second method, complex meteorological scenarios are often
extrapolated from limited measurements and a small number of sources. The resulting strategies lead either
to violation of the annual air quality standard or to unnecessarily high costs for pollution abatement.

1.2 Stochastic models

In the late seventies and early eighties, researchers began to recognize shortcomings in deterministic
models. This led to stochastic approaches that mainly deal with great variability in meteorological
conditions . Transfer coefficients began to be itreated as having random components which mainly depend on
meteorological variables such as wind direction and speed. There are several solutions suggested for the
stochastic program( Fronza, 1984; Ellis, 1985; Fuessle, 1987). Among these research efforts, chance-
constrained programming is most developed and widely used.

A typical chance-constrained program based approach consists of transforming the stochastic program
into the following chance-constrained program.

Min:f = iEI-RJ-,

=1
S't'Pr{EEi(I_R;)LU"'BiSDs! za i=12,",m,
i=1
O0< R <13 j=512,>,n.

This model requires that the probability of meeting ambient standard D, is greater than or equals to a
preassigned reliability level a;. The transfer coefficients ¢; are functions of randomly distributed annual
frequencies of meteorological conditions and are therefore themselves random variables.

The traditional method for solving CCP model is to formulate deterministic equivalents to the chance
constraints and then apply an appropriate algorithm to the resulting deterministic optimization model. Initial
work was illustrated by Chames and Cooper ( Chames, 1959; 1961), later, Ellis(Ellis, 1985) and
Guldmann (Guldmann, 1988) . Such a method is also based on the worst possible distribution, therefore
tending to vield constraints that may be considerably tighter than necessary too. What’s more, assumption
of zero-order decision rules and normal distributions are commonly used to obtain deterministic equivalents.,
When the normal distribution assumption cannot be satisfied, the deterministic equivalent becomes
infeasible. Since random variables are sometimes non-normal and statistically dependent, this standard
technique of CCP is limited in real problems.

In previous work the exogenously specified air quality standards are almost long-term, The thought of

integrating short-term standards in a probabilistic programming framework (eg. 1-hours, 3-hours, 24-hours
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and monthly average) had been put up by Jean-Michel Guldmann (Guldmann, 1986). He provided two
methods to actualize the solution. Real-time control and dynamic approach to compute the concentration of
every short time. But with the statistical and computation difficulties, he did not actualize the selution.
1.3 Model objects

Most of the previous work placed economic efficiency as the foremost ohjective with preemptive
priorities to guide the development of models and the choices of solution(Teller, 1968; Guldmann, 1986
Fronza, 1984; Loughlin, 2000; Ellis, 1985). “Health effects” associated with pollution were less
considered. Kohn and Burlingame’s LP model ( Kohn, 1971} is the first one to explicitly include health
effects. But it did not account for the variability of meteorology conditions and the correlation hetween

observed concentration values and mean hospital stay is difficult to be precisely determined.

2 Model description

The model in this paper consists of a linear program and an air quality simulation. The linear program
is chance-constrained. The ohjective is to determine the maximum annual aggregate emissions subject to
achieving exogenously specified both long-term and short-term air quality standards. Gaussian air model
was used as the modeling algorithm that connects the linear chance-constrained program and the simulation .

If emission sources are distributed continuously, the model can be formulated as follows:
Max HO dxdy,
E[ﬂ(a,,xj) + B 1< S,

s5.t. .
P[ﬂ(a,jxj) + B < 8] > a,
j=1,2,,n,i =1,2,>,m,
In real planning work, we usually select discrete emission sources as control points, so the above

model can be written as:

n

N
Max @) = 2 X,

i

E[Z(a,,xj)+8,]g S, (3)
soe. T
P[E(aij-xj)+B‘-__<_S'i]>a,, {4)

i=1

Jj= 12, ,n0,i =1,2,,m,

where, () is the maximum allowable total annual emission in the control region(t/y), n is the number of
emission sources in the inventory, j is the source index; m is the number of receptors (air quality
checkpoints), i is the receptor index; «; is the maximum allowable emission{t/y) at control site j ; E is
the expected annual ambient pollutant concentration in the control region; P represents probability, a; is
the transfer coefficient in terms of pug/m’ of pollutant contributed to receptor i from emission source j. a,
is a random variable and is a function of the following random variables: &, is the wind speed; £, is the
wind direction, £, is the total sky cover/low sky cover category, &,; is the ohservation ordinal number. On
the basis of these four random variables, we can obtain meteorological inputs to the Gaussian diffusion
model to determine the value of a@;. The four meteorological variables: £, £,, &, §, were treated as
discrete variables respectively and may follow any disiribution. They may be got from the time sequence

meteorological statistics by Monte Carlo simulation, B; is the background pollutant concentration for

i

receptor i. S, is the maximum allowable average annual ambient pollutant concentration for receptor i in
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terms of pg/m’ . The value of S; varies from low to high according to the different function of the region

where receptor i is located. S’ is the threshold guaranteeing no air pollution threat to human’s health. o

is a preassigned constraint reliability level, which can also be defined as the meaning of risk the
probability of cecurrence of a high popularity of disease among sensitive populations.

Eq. (3) and (4) contain air quality constraints assuring that annual and instant pollutant
concentration regulations are satisfied respectively. The left-hand side of Eq.{3) estimates the expected
emissions under different metecrological situations. Chance-constraint set of Eq. (4) requires that the
allowable instant concentration S must be satisfied at receptor i at least percent of the time.

The goal of ensuring public health weighs heavily in the model when judging potential strategies. In
our research in Yuxi, it is discovered that air pollution damage varies not only with the length of exposure,
namely the value of annual or a long period of average pollutant concentration, but related closely with the
frequency of the occurring of pollutant concentrations that exceeds certain threshold. Sa in this model ( Yuxi
air quality planning report,1997), we not anly require the achievement of an average annual level of air
quality to prevent chronic and long-term effects, we also integrate short-term standards as certain threshold
to minimize the threat to human health in a probabilistic programming framework to confine the frequency of
short-term acute effects.

This model emphasizes three aspects of considerations: the assimilative capacity of the air, air quality

and it’s implication on human health

3 The algorithm

3.1 Simulate the probability distribution of meteorological variables

The four meteorological vanables: £,, £,, &, £, were treated as discrete variables respectively and
may follow any distribution.

Observation ordinal number is a parameter that has no relationship to the meteorological condition.

For a long and stable observation, it can be formulated by uniform distribution, where is a random
variable .

1
b-a’

Wind direction, total sky cover and low sky cover are purely meteorological statistics, which can be

flx) =

a =< x < bh.

processed as discrete variables in stochastic simulation.
According to the previous research work, wind speed can be fitted by the method of interpolation such
as Log-normal distribution, which can be expressed as follows:
1 (Inx - p)’
Ax) = exp| - 7 yx > 0,
v 2mox [ 20 ]

where 4 and a are parameters, and ¢ is a random variable.
3.2 Generating random numbers from probability distribution functions

Kok, Xyttt

PoPiP:™""
satisfy the complete condition, then we can simulate by generating random from uniform distribution U(0,

k-1 k
D.¥>p <7<
i=0 i=

3.3 Computing the expectation function and probability function

Supposing random variables have density matrix [ ] andevent A, = (& = x,),i = 1,2,

pi » then the random variable is x, accordingly.
Q

According to the theory of stochastic simulation, the expectation of the left side of the Eq.(3) can be
estimated by the follows:
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N
lNZ; Clx,y,8),
where £, is the random vector of the 4 variables, &,,,&,,, &5, , &,,, which are random variables extracting
from the distribution @ (&}, ®(&,), P(£,),D(£,) separately, N is the number of samplings.

Similarly, generate N random vectors &, according to the probability distribution of each variable.
Supposing that there are &’ random vectors satisfying Eq.(4), then the probability of the left side of Eq.
(4) can be estimated by the limit theorem using the following formulation ;

N
g = v
3.4 Genetic algorithm

GAs can be applied to obtain good solutions for many problems to which traditional optimization
approaches have not proven successful. Several CA approaches have been developed and applied into the
water management field ( Scott, 1995; Wang, 1991; Liong, 1995; Brian, 1994). However, there are
almost no such cases in air quality management .

GAs are a class of probabilistic procedures that search for good solutions to problems by emulating the
“survival to the fittest” concept seen in nature. The principle idea of the GAs can be summarized as
follows .

In a GA, a potential solution to a problem is most often
represented as a vector of values or genes. In the context of this °

model, each gene may represent the allowable emission level at a

controlling emission source in the study region. In GA the set of Generate initial population

potential strategies are also called a population, generally consisting ¥ _§
of about 50 to 200 strategies, which are generated at random or Evaluate the objective E
seeded with good solutions. The problem is subjected to several function and fitness value gﬁ
probabilistic operators that are analogous to natural selection, 3 g
mating { including genetic combination) and mutation. In the Select the fitzer §
selection step, pairs of strategies are selected for reproduction from 3 3
the population in a manner such that fitter strategies are sclected Es
more frequently . Each pair of strategies may then undergo mating or Crossover E
crossover to form two new strategies. The new strategies are then v g
ordered to create a new population. The selective and mating steps Mutaten &

|

continue until the new population is the same size as the current
population, The performance of each sirategy in the population is 0
characterized by a fitness value. After the new population has been
generated, use Monte Carlo simulation to evaluate the fitness of a Fig.1 The flowehart of GA
strategy. For example, the vector representing an air control
strategy is first decoded to determine which emission level are allowable at each source. An air quality
model is then run to determine the resulting air quality. The strategy is assigned a fitness that is a function
of how effectively it meets the ambient target as well as other modeled objectives and constraints. After
repeating the process for required number of generations, best strategies are sure to be found.

The GA search process is depicted in Fig. 1.

Mente Carlo simulation is used to compute the value of expectation and probability in Eqs. (3) and

(4) during selection and mutation .

4 Case study
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The CCP model based on Monte Carlo simulation and GA algorithm has been applied to a case study
involving 80, control for Yuxi City. Although there are regulations for several air pollutants, the total and

subregional impacts of SO, from power plants are the focus of model application in this study.

4.1 Data and parameteres

The study region includes seven county in Yuxi, covering about 757.2 km’.

levels which are shown in Fig. 2. The first class area include Chunhe tourist area, Dongfeng dam water

. . . . . 2
resourse conservation and ecological environmental protection zone, covering about 19 km” .

The national ambient standard for annual
average cocentration of SO, is 0.02 mg/m’ for the
first class control level and .06 mg/m’ for the
second class control level, The national ambient
standard for 1h concentration of SO, is 0. 15
mg/m’ for the first class control level and 0. 350
mg/m’ for the second class control level .

In this study, we select seven aggregated
emission sources and seven sensitive receptor
locations as control sites, which are also indicated
in Fig. 2.

centers of each county. They can he used to

Receptors are mainly geometrical

reperesent the different control requirement of
each functional area. Emission sources represent
the average emission power of certain area. They
are choosed according to different natural
conditions and the density of pollutant emissions.

The meteorological data used in this study
are drawn from a series of observations made at
the local weather service station from 1994 1o

1998,

including wind speed, wind direction

{ specified according to 16 sectors), total sky cover and low sky cover categories. We state the occurrence

Table 1 The wind speed
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Fig.2 Boundary of study region, involving seven couny in Yuxi,

Yunnan. Triangles and circles on the map represent the emission
The first

represented by dark-colored area. The air mass movement is from

sources and receplors respectively. class area is

the northeast to the southwest

probability of these meteorological

parameters{ Table 1 - 3) .

Wind speed, m/s =1.9 2-2.9 3-4.9 5-5.9 =6
Accounting for the fact that
Frequency of .
ooCUTEnCE 6.715 0.13 0.12 0.018 0.017 polluting souces of Yuxi are mainly
area sources, the physical stack
Table 2 The wind direction . .
height of each hypothetical source
Wind directi E .
ind direction NN NE ENE E ESE SE SSE S SSW is taken as 15m. Backgrond
0.004 0.009 0.01 0.022 0.01 0.02 0.018 0.04 0.111 . .
o concentration of SQ, is 0. (1
Wind direction SW WSW W WNW NW NNW N C i
Freq. of occur. 0.154 0.052 0.036 0.014 0.013 0.005 0.004 0.478 mg/m". The upper bound
searching area @, is 50000 ton
Table 3 Total sky cover/low sky cover categories A
roughly set according to the present
Total/low =4/=4 §5-T=4 =8/=4 =55-7T =8/=8 . .
pollution level and controlling
Freq. of occur, 0.65 0.019 0.038 0.0s5 0.238

the resulis of trials using different

Vol. 14

According to the

different application purposes and natural enviroumental conditions, it can be divided into two control

emission goal in Yuxi. Based on
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Povwand P, crossover frequency and mutation frequency are selected to bhe 0.6 and 0. 2
respectively
4.2 Model results

The CCP model was solved by VB programs. The resulting optimal emission and allocation between
areas are presented in Table 4.

The total permitting annual emission of the Table 4 Optimal emission and allocation(10 thousand ton )

study region is 22700 ton, slightly below that Emission sources 51 52 83 54 85 S 57

based upon deterministic LP model (1) - (2) Maimum emission 0.78 2.85 3.06 4.12 4,23 3.87 3.7
which is 34000 ton. This demonstrates that

regulation put aside by short-term air quality standard is stricter.

The allowable maximum emission varies among areas, with an obvious increasing trend in diffusion
from south to north. This matches with the fact that the local predominant wind pattern is S, SSW and
SW, which verify the rationality of the CCP model to some extent.

5 Conclusions

There are also some extensions that can be suggested as areas for further research.

In this model the acceptable violation probability was set accoring to the national short-term air quality
standard. However, in order to set more suitable and empirical value estimation, long-term times-series
observation on receptor exposures to pollution and resulting damages is required.

The use of transfer coefficents discussed above are all in a linear programming contex. However, if
the pollutant is nonlineraly reactive for which the source-receptor relationship is non-linear, then non-lincar
optimizing models are required .

In this model, we only considered the random variables related to meterology . However, the pollution
generation and treatment such as sulfur content and heating value etc. all display stochastical
characteristics. Another factor: emission rate, which always be taken as constant inputs to the Gaussian
diffusion model, in fact also changes from time to time. These stochastical factors should all be accounted
for and incorporated as random variables into the future model,

Time varable character of meterological conditions has been accounted for in planning models but not
in real-time control. That is to say, planners cannot get information about how to dynamically allocate the
total emissions between desiarable and undesirable weather conditions. For example, we know in Yuxi,
emission in winter should be much lower as compared to that in summer. But what is exactly the variable
allocation strategie and what is the emission ratios between monthes during a year, this can be realized by
develeping other dynamic real-time control air planning models.

Computational burden is a great concern, requiring totally 8 hours computing time in our study. Since
in most GAs, every strategy in the population must be tested in each generation of the algerithm. For an air
quality problem, this means that an air quality model must be run thousands or even tens of thousands of

times during the search process.
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