Article ID: 1001-0742(2003)05-0680-05

CLC number: X131

Document code: A

# Control effects of p $\varepsilon$ and pH on the generation and stability of chlorine dioxide

PEI Yuan-sheng, WU Xiao-qing, LUAN Zhao-kun\*, WANG Tong

(1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: zkluan@mail.rcees. ac.cn)

Abstract: A new method, without assistance of activity ratio diagram, was applied to construct the p $\epsilon$ -pH diagrams for chlorine system. The optimal pH range for generation of ClO<sub>2</sub> by contacting Cl<sub>2</sub>(g) directly with ClO<sub>2</sub><sup>-</sup> solution is within pH 1.35—1.94, particularly within pH 1.35—4.00 only if minimizing the formation of Cl<sub>2</sub>. It is unachievable to synthesize pure ClO<sub>2</sub> from the reaction of Cl<sub>2</sub> and ClO<sub>2</sub>. Conversely. CIO2 may be present a variation of stability in different waters owing to the changed pe and pH. CIO2 could be relatively stable if not disproportionate into ClO<sub>1</sub><sup>-</sup>, coexisting with ClO<sub>2</sub><sup>-</sup> (ps 17.63 and pH > 9.68), Cl<sub>2</sub> (pH ≤ 0.92) or Cl<sup>-</sup> (pH 0.92—9.68). When chlorine system has already reached the ultimate equilibria, ClO2 is a stable species in strongly acid media. As the acidity decreases, ClO2 disproportionates into ClO3- and Cl2. Aqueous ClO2 is unstable within the normal pH range. This work initially, theoretically elucidates the generation and stability of ClO2 by way of the pe-pH diagrams.

Keywords: chlorine dioxide; generation; stability; pe-pH diagram

# Introduction

Due to the formation of some potentially hazardous by-products from chlorine disinfection in drinking water, chlorine dioxide (ClO<sub>2</sub>), as an alternative disinfectant and an effective oxidant, formed fewer halogenated DBPs than chlorine (Richardson, 1994; 2000; Bryant, 1992). Investigations of the generation and stability of ClO2 have already promoted its application. However, previous studies pay no attention to the factor of electron activity (pe) that actually affects the generation and stability of ClO<sub>2</sub>. The ignorance of pε appearance, particularly the combined effects of pε and pH, has restricted the application of ClO<sub>2</sub> to a certain degree. This paper discusses the generation and stability of ClO<sub>2</sub> by way of ρε-pH diagrams, which enrich the chemistry of ClO2, as well as particularly enhance the knowledge of chemist to characteristics of ClO2 and improve the application of ClO2 in water treatment.

A great number of methods for synthesis of ClO2 are valid from ClO2 and ClO3. ClO2 may be produced in large quantities by acidifying and reducing ClO<sub>3</sub> while many generation techniques is mainly focus on the reaction of Cl2 and ClO2 . Moreover, ClO2 is normally stored in aqueous solution with pH 2-3, protection against light(Richardson, 1994; 2000). A stabilized ClO<sub>2</sub> solution might be obtained at pH 6—8 by passing gaseous ClO<sub>2</sub> into an aqueous solution containing 12% sodium carbonate and hydrogen peroxide, yet ClO<sub>2</sub> is practically completely transited to ClO<sub>2</sub> in this method, thus the reduction of ClO<sub>2</sub> to ClO<sub>2</sub> may be partly interpreted as the storage technique for ClO<sub>2</sub> (Richardson, 1994; 2000).

The literature contains controversy as to whether or not ClO<sub>2</sub> is stable in aqueous solution. On one hand, aqueous solutions of ClO2 were quite stable if kept cool, well sealed, and protected from light. ClO2 was less sensitive to change in pH, and the stability of ClO2 is between that of Cl2 and ozone (Richardson, 1994). Some observations are on the other hand quite the reverse. ClO<sub>3</sub> may be present as a disproportionate reaction product in measurable quantities in chlorinated drinking water, depending on the applied ClO<sub>2</sub> dosage (Richardson, 1994). Because ClO<sub>2</sub> reacts primarily by a one-electron oxidative pathway, so the principal inorganic by-product is almost invariably ClO<sub>2</sub> . ClO<sub>2</sub> also decomposes into Cl<sub>2</sub>

Foundation item: Partially by The Knowledge Innovation Key Project of the Chinese Academy of Sciences (No. KZCX2-409) and The State Key Project(No. 2002BA806B04-01B); \* Corresponding author

and  $O_2$  once the temperature has reached 15 °C (Richardson, 2000). OCl<sup>-</sup> has been known to cause  $ClO_2$  losses in moderately basic media (Richardson, 2000). Aqueous solution of  $ClO_2$  certainly contains  $Cl^-$  (Yin, 1998; Ni, 1997). Different scientists recognized the stability of  $ClO_2$  from their specific experiments, thus the recognitions is diversified. No united theoretical explanation is so far satisfactorily accepted.

#### 1 Method

The traditional method for constructing a  $p\epsilon$ -pH diagram usually needs to construct an activity ratio diagram either at a given  $p\epsilon$  or at a given pH, which may clarify the stability relations if any doubt should arise about which species predominates thermodynamically (Richardson, 2000). Excessive work is apparently taken when adopting the traditional method. We suggest a new method constructing the  $p\epsilon$ -pH diagrams based on the equilibria of tri-oxychlorine species. The method excludes the construction of activity ratio diagram and simplifies the construction of  $p\epsilon$ -pH diagram.

Consider oxychlorine species A, B and C, the oxidization states decrease sequentially. For any trioxychlorine species, only four kinds of equilibria among species A, B and C are summarized in Fig. 1. For instance, and  $ClO_3^-$ ,  $ClO_2^-$  and  $Cl_2$  satisfy the diagram in Fig. 1a;  $ClO_2$ ,  $ClO_2^-$  and  $Cl_2^-$  fit within the diagram in Fig. 1b;  $HClO_2$ , HOCl and  $Cl_2$  match the diagram in Fig. 1c; and compared with  $ClO_2$  and  $Cl_2$ , no predominance area for  $HClO_2$  can exist, which satisfy the diagram in Fig. 1d.

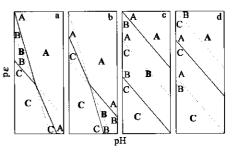



Fig. 1 pε-pH diagrams of tri-species equilibria

Derived from the basic diagrams above, the  $p\epsilon$ -pH diagrams for chlorine system with multi-oxychlorine species may be established gradually. The  $p\epsilon$ -pH diagram for chlorine system with HOCl, OCl<sup>-</sup>, Cl<sub>2</sub> and Cl<sup>-</sup> may be found in the literature (Richardson, 1994; 2000; Aieta, 1986a). This work has further established three  $p\epsilon$ -pH diagrams for chlorine system with six, seven and eight oxychlorine species based on the equilibria of tri-oxychlorine species,

respectively. In the diagrams, unit concentration ratios for oxidants and reductants are considered on the boundaries. The new method has overcome the shortcoming of the traditional method, thus it is simpler and more convenient than the traditional method.

#### 2 Results and discussion

Three pe-pH diagrams, in which the highest oxidation states are III ( $HClO_2$ ), IV ( $ClO_2$ ) and V ( $ClO_3$ ), have been established to analyze the generation and stability of  $ClO_2$ .

Fig. 2 shows the pe-pH diagram for chlorine system with  $HClO_2$ ,  $ClO_2^-$ , HOCl,  $OCl^-$ ,  $Cl_2$  and  $Cl^-$  (298 K, 1.013 × 10<sup>5</sup> Pa). The total dissolved chlorine ( $C_{T,Cl}$ ) is 0.03 mol/L. No predominance area for  $OCl^-$  is found in the diagram, which illustrates that  $OCl^-$  was unstable and transited to other oxychlorine species before the equilibria have been reached. In the diagram, seven pe-pH equations (Table 1) contribute to as many boundaries. The redox stability of water is in the area between two dot lines whose pe-pH equations are listed in Table 1.

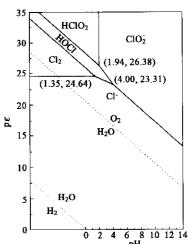



Fig. 2 pe-pH diagram for the chlorine system with  $HClO_2$ ,  $ClO_2^-$ , HOCl,  $OCl^-$ ,  $Cl_2$  (aq) and  $Cl^-$  (298K, 1.013 × 10<sup>5</sup> Pa,  $C_{T,Cl}$  = 0.03 mol/L.)

The pε-pH diagram for chlorine system with ClO<sub>2</sub>, HClO<sub>2</sub>, ClO<sub>2</sub>, HOCl, OCl , Cl<sub>2</sub> and Cl  $(298 \text{ K}, 1.013 \times 10^5 \text{ Pa}, C_{\text{T,cl}} = 0.03 \text{ mol/L}) \text{ is } \text{mol/L})$ shown in Fig. 3. In the diagram, HClO<sub>2</sub>, HOCl and OCl<sup>-</sup> are unstable. Five pe-pH equations (Table 1)are corresponding to the boundaries. Fig. 4 shows the pε-pH diagram for chlorine system with ClO<sub>3</sub>, ClO<sub>2</sub>, HClO<sub>2</sub>, ClO<sub>2</sub>, HOCl, OCl, Cl<sub>2</sub> and Cl (298 K,  $1.013 \times 10^5 \text{ Pa}$ ,  $C_{\text{T,Cl}} = 0.03 \text{ mol/L}$ ). In the diagram HClO<sub>2</sub>, ClO<sub>2</sub>, HOCl, and OCl had almost been transited to ClO<sub>3</sub>, ClO<sub>2</sub>, Cl<sub>2</sub> and Cl<sup>-</sup> before the equilibria were reached. Because the formation of ClO2 is always observed in waters, chlorine system is in fact far from the ultimate equilibria. Five pε-pH equations (Table 1) contribute to the boundaries in the diagram.

#### 2.1 Generation of chlorine dioxide

In Fig. 2, no coexisting boundary is presented between  $Cl_2$  and  $ClO_2^-$ , thus  $Cl_2$  reacts with  $ClO_2^-$  if they contact. On site, it is common to generate  $ClO_2$  from the reaction of  $Cl_2$  and  $NaClO_2$ . According to the diagram, by-products are certainly produced in the generation process because  $Cl_2$  may disproportionate into HOCl, further into  $ClO_2^-$  and  $Cl^-$ , which agrees

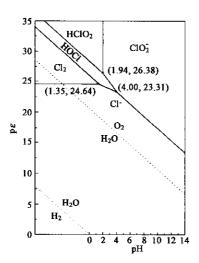



Fig. 3  $p\epsilon$ -pH diagram for the chlorine system with  $ClO_2$ ,  $HClO_2$ ,  $ClO_2^-$ , HOCl,  $OCl^-$ ,  $Cl_2$  (aq) and  $Cl^-$  (298K, 1.013 ×  $10^5$  Pa,  $C_{T,Cl}=0.03$  mol/L)

Table 1 The p $\varepsilon$ -pH equations reflected to the boundaries in Fig. 2, Fig. 3 and Fig. 4 (298 K, 1.013 × 10<sup>5</sup> Pa,  $C_{\tau,Cl}$  = 0.03 mol/L.)

| No. | pe-pH equations                         | Standard electron activity, pe° | Boundaries                          |
|-----|-----------------------------------------|---------------------------------|-------------------------------------|
| ŀ   | $p\varepsilon = 24.64^a$                | 23.64                           | Cl <sub>2</sub> -Cl -               |
| 2   | $p\varepsilon = 27.31 - pH$             | 27.31                           | ClO <sub>2</sub> -Cl                |
| 3   | $p\varepsilon = 28.32 - pH$             | 28.32                           | HClO <sub>2</sub> -HOCl             |
| 4   | $p\varepsilon=25.99-pH^{\alpha}$        | 26.99                           | HOCl-Cl <sub>2</sub>                |
| 5   | pH = 1.94                               |                                 | HClO <sub>2</sub> -ClO <sub>2</sub> |
| 6   | $p\varepsilon = 29.31 - 1.5pH$          | 29.31                           | ClO <sub>2</sub> -HOCl              |
| 7   | $p\varepsilon = 25.31 - 0.5pH$          | 25.31                           | HOCl-Cl -                           |
| 8   | $p\epsilon = 25.56 - pH^a$              | 25.81                           | ClO <sub>2</sub> -Cl <sub>2</sub>   |
| 9   | $p\varepsilon = 25.39 - 0.8 pH$         | 25.39                           | ClO <sub>2</sub> -Cl                |
| 10  | $p\varepsilon = 17.63$                  | 17.63                           | ClO <sub>2</sub> -ClO <sub>2</sub>  |
| 11  | $\mathrm{p}\epsilon=20.39-2\mathrm{pH}$ | 20.39                           | ClO <sub>3</sub> -ClO <sub>2</sub>  |
| 12  | $p\varepsilon = 24.53 - 1.2pH^a$        | 24.73                           | ClO <sub>3</sub> -Cl <sub>2</sub>   |
| 13  | $p\varepsilon = 24.55 - pH$             | 24.55                           | ClO <sub>3</sub> -Cl                |
| 14  | $p\varepsilon = 20.6 - pH$              | 20.6                            | $O_2$ - $H_2O$                      |
| 15  | $p\varepsilon = -pH$                    | 0                               | H <sub>2</sub> O-H <sub>2</sub>     |

Notes: \* The first coefficient in the equation is different from the standard electron activity  $(p\varepsilon^{\alpha})$  because the coefficient is related to the concentrations of oxychlorine species (Yen, 1999)). The boundaries in Fig. 2 are drawn by Equations (1)—(7). The boundaries in Fig. 3 are drawn by Equations (1),(2),(8)—(10). The boundaries in Fig. 4 are drawn by Equations (1),(8), (11)—(13). Equations (14) and (15) describe the boundaries of  $O_2 - H_2O$  and  $H_2O - H_2$ , respectively.

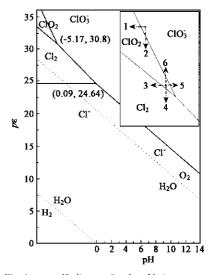



Fig. 4 p $\epsilon$ -pH diagram for the chlorine system with ClO $_3$ , ClO $_2$ , HClO $_2$ , ClO $_2$ , HOCl, OCl $^-$ , Cl $_2$  (aq) and Cl $^-$  (298K, 1.013 × 10<sup>5</sup> Pa,  $C_{T,Cl}$  = 0.03 mol/L)

to the experimental observation (Richardson, 2000). If adopting the reaction of contacting  $Cl_2(g)$  directly with  $ClO_2^-$  solution to generate  $ClO_2$ , the more optimal pH range is within pH 1.35—1.94. Only for minimizing the formation of  $Cl_2$ , without consideration of  $ClO_2^-$ , the pH range may enlarge to pH 1.35—4.00. In practice, if the p $\varepsilon$  is suitably controlled, highly pure  $ClO_2$  can be produced within pH 2—3 (Aieta, 1986b) and pH 3—4(Lauer, 1986). However, it is indeed unachievable to generate pure  $ClO_2$ .

Similar to even clearer than Fig. 2, Fig. 3 shows that,  $\text{Cl}_2$  and  $\text{ClO}_2^-$  are stable under different pH and ps ranges. The redox reaction of  $\text{Cl}_2$  and  $\text{ClO}_2^-$  produces  $\text{ClO}_2$  and releases  $\text{Cl}^-$ . Upon introduction of acid into a  $\text{ClO}_2^-$  solution, the equilibrium shifts toward left along the half dash-dot line 1 ( $L_1$ , "L" represents the half dash-dot line, and the subscription "1" represents the serial number), thus  $\text{ClO}_2$  and  $\text{Cl}^-$  may be produced from  $\text{ClO}_2^-$ . Then  $\text{Cl}^-$  is however more predominant than  $\text{ClO}_2$ . The acidification of  $\text{ClO}_2^-$  solution might have been a way of the generation of  $\text{ClO}_2$ , yet this method cannot produce  $\text{ClO}_2$  well because of the presence of rather excessive  $\text{Cl}^-$ . Likewise, if pH is held as a constant and ps grows along  $L_2$ ,  $\text{ClO}_2^-$  will be oxidized to  $\text{ClO}_2$ . Electrolytic route may produce  $\text{ClO}_2$  from  $\text{ClO}_2^-$  solution. Actually, generation of  $\text{ClO}_2$  from  $\text{ClO}_2^-$  involves the combined process of acidification and oxidization. As shown in Fig. 4, it is also feasible to synthesize  $\text{ClO}_2$  from  $\text{ClO}_3^-$ . The processes of acidifying ( $L_1$ ) and reducing ( $L_2$ )  $\text{ClO}_3^-$  may produce  $\text{ClO}_2$ , which two processes function together in practice.

Generation of  $ClO_2$  through the processes of acidification, oxidization and reduction embodies as the change of ps and pH in the diagrams. As a result, the generation of  $ClO_2$  is in fact to shift the equilibria of chlorine system into the predominance area of  $ClO_2$ .

### 2.2 Stability of chlorine dioxide

As indicated in Fig. 3, the oxidizing power of  $ClO_2$  is stronger than that of  $O_2$ , thus  $ClO_2$  may oxidize  $H_2O$ , releasing  $O_2$ .  $ClO_2$  exists above the stable areas of  $Cl_2$ ,  $Cl^-$  and  $ClO_2^-$ , thus  $ClO_2$  can steadily coexist with them on the boundaries. When pH is less than 0.92,  $ClO_2$  can coexist with  $Cl_2$ , which maybe explain the phenomenon of  $Cl_2(g)$  releasing from  $ClO_2$  solution (Griese, 1992). As  $ClO_2$  concentration decreased,  $ClO_2^-$  concentration generally increased (Richardson, 2000). According to the diagram,  $ClO_2$  has the same concentrations with  $ClO_2^-$  at p $\epsilon$  17.63 when pH is higher than 9.68.  $ClO_2$  also coexists with  $Cl^-$  within pH 0.92—9.68, which approves that aqueous solution of  $ClO_2$  certainly contains  $Cl^-$  (Yin, 1998; Ni, 1997).

Fig. 3 shows that  $ClO_2$  may decrease its stability and transit to  $Cl^-(L_3, L_4, L_8 \text{ or } L_9)$ ,  $Cl_2(L_7 \text{ or } L_8)$  and  $ClO_2^-(L_9)$  by the variation of pe and pH.  $ClO_2$  may tend to be much stable when the number of protons or electrons decreases  $(L_5 \text{ or } L_6)$ . Apparently, the experimental observation does not satisfy the conclusion of which  $ClO_2$  favors alkaline solution. Further discussions are addressed next.

In Fig. 3, the disproportionation of  $ClO_2$  has been not considered. The ultimate equilibria of chlorine system including the disproportionation of  $ClO_2$  are shown in Fig. 4, which reflects the stability of  $ClO_2$  absolutely.  $ClO_2$  may transit to  $Cl_2(L_3 \text{ or } L_4)$ ,  $Cl^-(L_4)$  and  $ClO_3^-(L_5 \text{ or } L_6)$  by the variation of pe and pH. In Fig. 4,  $ClO_2$  is only a stable species in strongly acid media, and disproportionates into  $ClO_3^-$  and  $Cl_2$  when the acidity decreases. Thus  $ClO_2$  cannot steadily exist within the normal pH range. In addition, the lower boundary of the predominance area of  $ClO_2$  parallels to the upper boundary of that of  $H_2O$  in Fig. 4 (also Fig. 3), no coexisting area both for  $ClO_2$  and  $H_2O$ , thus aqueous  $ClO_2$  cannot steadily exist even in strongly acid media.

As described above (see Introduction), there appears controversy as to whether or not  $ClO_2$  is stable in aqueous solution. The actual stability of  $ClO_2$  should be essentially between the descriptions of the

diagrams in Fig. 3 and Fig. 4. The ps and pH may control the disproportionation of  $ClO_2$  and equilibria of chlorine system.  $ClO_2$  consequently expresses itself completely dissimilar stabilities under different conditions in waters. Therefore, the ps and pH should be the principal factors when evaluating the stability of  $ClO_2$ .

# 3 Conclusions

Generation, storage, and use of  $ClO_2$  have a strong relationship with the stability of aqueous  $ClO_2$ . It is unachievable to synthesize pure  $ClO_2$  from the reaction of  $Cl_2$  and  $ClO_2^-$ .  $ClO_2$  may be present a variation of stability in different waters owing to the changed pe and pH.  $ClO_2$  could be relatively stable if not disproportionate into  $ClO_3^-$ . When the ultimate equilibria of chlorine system have been achieved,  $ClO_2$  is a stable species in strongly acid media. Aqueous  $ClO_2$  is unstable within the normal pH range.

## References:

- Aieta E M, Roberts P V, 1986a. Kinetics of the reaction between molecular chlorine and chlorite in aqueous solution [J]. Environ Sci & Technol, 20(1): 50-55.
- Aieta E M, Berg J D, 1986b. A review of chlorine dioxide in drinking water treatment [J]. J Am Water Works Association, 78(6): 62-71. Bryant E A, 1992. Disinfection alternatives for safe drinking water [M]. New York.
- Frank R S, 1999. Choosing disinfection alternatives for water/wastewater treatment [M]. Pennsylvania: Technomic Publishing Company, Inc. Gordon G, Adam L C, Bubnis B P et al., 1993. Controlling the formation of chlorate in liquid hypochlorite feedstock [J]. J Am Water Works Association, 85(9): 91—97.
- Gordon G., Pacey G., Bubnis B et al., 1997. Safety in the workplace: ambient chlorine dioxide measurements in the presence of chlorine [J]. Chem Oxid, 4: 23-30.
- Griese M H, Kaczur J J, Gordon G, 1992. Combining methods for the reduction of oxychlorine residuals in drinking water [J]. J Am Water Works Association, 84(11): 69-77.
- Huang J, Chen Y, 1999a. The species and the performance analysis of oxychloride in the "stabilized chlorine dioxide" solution [J]. Environmental Chemistry, 18(3): 366-372.
- Huang J, Chen Y, 1999b. The UV absorption spectrum, specificity of paper chromatogram, microstructure and energy spectrum analysis in the "stabilized chlorine dioxide" solution [J]. Environmental Chemistry, 18(3); 373—379.
- Lauer W C, Lohman S R, Rogers S E, 1986. Minimizing chlorite ion and chlorate ion in water treated with chlorine dioxide [J]. J Am Water Works Association, 78(6): 79-87.
- Ni Y, Wang X, 1997. Mechanism of the methanol-based chlorine dioxide generation process[J]. J Pulp Pap Sci., 23(7): J345-J352.
- Richardson S D, Thruston Jr A D, Collette T W et al., 1994. Multispectral identification of chlorine dioxide disinfection by-products in drinking water [J]. Environ Sci Technol, 28: 592—599.
- Richardson S D, Thruston Jr A D, Caughran T V et al., 2000. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramines, and chlorine [J]. Water Air & Soil Pollution, 123(1/4): 95—102.
- Singer P C, 1988. Alternative oxidant and disinfectant treatment strategies for controlling thribalomethane formation [R]. EPA-600/S2 88 044: Cincinnati, Ohio.
- Stumm W., Morgan J J., 1995. Aquatic chemistry, chemical equilibrium and rates in natural waters [M], 3rd ed. New York: John Wiley & Sons, Inc.
- Tang T, Gordon G, 1984. Stoichiometry of the reaction between chlorite ion and hypochlorous acid at pH 5 [J]. Envir Sci & Technol, 18(3): 212-216.
- Van Nostrand Reihold, Masschelein W J, 1979. Chlorine dioxide: chemistry and environmental impact of oxychlorine compounds [M]. Mich: Ann Arbor Sci Publ.
- Yen F T, 1999. Environmental chemistry, chemical principles for environmental processes [M], v. 4B. New Jersey: Prentice Hall PTR.
- Yin G, Ni Y, 1998. Quantitative description of the chloride effect on chlorine dioxide generation from the ClO<sub>2</sub> HOCl reaction [J]. Can J Chem Eng, 76(5): 921—926.