Article ID: 1001-0742(2006)06-1167-09

CLC number: X131

Document code; A

Ion adsorption components in liquid/solid systems

WU Xiao-fu*, HU Yue-li, ZHAO Fang, HUANG Zhong-zi, LEI Dian

(College of Resource and Environment, Central South University of Forestry and Technology, Changsha 410004, China. E-mail: wuxiaofu530911@vip.163.com)

Abstract: Experiments on Zn²⁺ and Cd²⁺ adsorptions on vermiculite in aqueous solutions were conducted to investigate the widely observed adsorbent concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 25—500 mg/L and adsorbent range 10—150 g/L. The results showed that the equilibrium ion adsorption density did not correspond to a unique equilibrium ion concentration in liquid phase. Three adsorbate/adsorbent ratios, the equilibrium adsorption density, the ratio of equilibrium adsorbate concentration in liquid phase to adsorbent concentration, and the ratio of initial adsorbate concentration to adsorbent concentration, were found to be related with unique values in the tested range. Based on the assumption that the equilibrium state of a liquid/solid adsorption system is determined by four mutually related components: adsorbate in liquid phase, adsorbate in solid phase, uncovered adsorption site and covered adsorption site, and that the equilibrium chemical potentials of these components should be equalized, a new model was presented for describing ion adsorption isotherm in liquid/solid systems. The proposed model fit well the experimental data obtained from the examined samples.

Keywords: adsorbent effect; adsorbate/adsorbent ratio; adsorption component; chemical potential; Zn²⁺; Cd²⁺; vermiculite

Introduction

The Langmuir isotherm refers to a mathematical relationship describing a plot of the volume of gas adsorbed on a solid as a function of the pressure at constant temperature (Langmuir, 1918). When adopted to describe adsorption phenomena in liquid-solid systems the Langmuir-type isotherm is given in the form with the equilibrium adsorption density $(q_e, ratio of adsorbate quantity to adsorbent$ quantity) as a single function of the equilibrium adsorbate concentration in liquid phase (C_e) (Singh and Mohan, 2004; Cordeiro et al., 2005; Özacar and Sengil, 2004; Sahu et al., 2000). The essential requirement for q_e being a single function of C_e is that q_e should correspond to a unique C_e , independent of initial adsorbate and adsorbent concentrations. This did not appear to be true as q_c was not found to have a unique value at a given C_e in many studies including the work done by Langmuir himself (1918). Similar to what was found by Langmuir (1918) for gas molecule adsorption on solid phases, inconstancy of the equilibrium coefficients defined by the Langmuir equation was widely observed in liquid-solid adsorption systems. The general trend was that the equilibrium constant (K_L) and the adsorption capacity parameter (q_m) were not constant over the entire adsorption domain and that their values not only varied with adsorbent concentration but also differed with different initial adsorbate concentration intervals (Cseh and Benz, 1998; Al-Asheh et al., 2003; Mura-Galelli et al., 1991).

Associated with the inconstancy of equilibrium constants, a decline of the adsorption isotherm with increasing adsorbent concentration, interpreted as particle concentration effect or adsorbent effect (Voice

and Weber, 1985; Pan et al., 1999), was reported in a number of laboratory studies on different types of adsorbates and adsorbents (O'Connor and Connolly, 1980; Voice et al., 1983; Cox et al., 1997; Sanudo Wilhelmy et al., 1996; Qin et al., 2004). As the sample pH and ionic strength were controlled in most of those studies, the particle concentration effect could not be explained by changes in pH and ionic strength factors

Pan and Liss (1998a, b) suggested that at the equilibrium state the chemical potential of the adsorbate in liquid phase (μ_L) should be equal to that in solid phase (μ_s) . Thus, based on the observation that the equilibrium adsorbate concentration in liquid phase C_c did not correspond to a unique value of the adsorption density q_e , they concluded that q_e is not a state variable, since C_e is a single function of μ_L while q_e is not. According to the metastable-equilibrium adsorption (MEA) theory (Pan and Liss, 1998a, b), the experimentally determined q_e is a variable at an MEA state and its chemical potential depends on the MEA state of the adsorbed molecules and therefore on the history of adsorption processes. By affecting the MEA state or the adsorption reversibility, changes in the adsorbent concentration W_0 lead to fundamental influences on adsorption isotherms. By including an adsorbent factor, Pan and Liss (1998a) further a Langmuir-type isotherm developed Freundlich-type isotherm. The key question relating to the MEA theory is whether or not the ideal equilibrium q_e in principle should correspond to a unique $C_{\rm e}$ at different adsorbent concentration levels.

Depending on how samples were are obtained, inconstancy of the coefficients might be accounted for by many factors, e.g., presence of the third phase (Voice and Weber, 1985; Benoit, 1995); pre-adsorbed

^{*} Corresponding author

substances (Grolimund et al., 1995); particle-particle interactions (Benoit, 1995; Nyffeler et al., 1984); implicit adsorbate competition (Curl and Keioleian, 1984; Higgo and Reos, 1986); impact on reversibility due to presence of other reactions (Mura-Galelli et al., 1991; Nagayasu et al., 2005), and so on. The most fundamental factor, however, may be whether or not the corresponding coefficients are rationally defined by the applied mathematical equations.

In constrast to the equilibrium adsorbate concentration in liquid phase (C_e) , the equilibrium adsorption density q_e is a ratio of adsorption quantity to adsorbent quantity. In addition to the chemical potentials of the adsorbate in liquid phase (μ_1) and solid phase (μ_s) , the adsorption potential of the adsorbent is also an essential component of the adsorption system. The present study was thus conducted to investigate: (1) if q_e will correspond to a unique ratio of C_e to the adsorbent concentration; (2) if the inconstancy of the traditionally defined equilibrium coefficient can be fully explained by the adsorbent effect; and (3) if the equilibrium adsorption condition can be simply determined by the relationship between the chemical potentials of the adsorbate μ_L and μ_S , or if not, what other factors need to be taken into account.

1 Materials and methods

1.1 Materials

The vermiculite mineral used as the adsorbent was a product of the Second Mineral Plant of Lingshou County, Hebei Province, China, with a chemica I form of Mg_x(H₂O)(Mg_{3-x}(AISiO₃O₁₀)(OH)₂) and a surface area of $400 \times 10^3 - 800 \times 10^3$ m²/kg. In order to obtain homogeneous samples the vermiculite minerals were sieved to the size of 0.2—0.4 mm, washed several times with distilled water and dried for about 5 d at room temperature.

Analytical grade zinc sulphate (ZnSO₄·7H₂O) and cadmium sulphate (3CdSO₄·8H₂O) were used to prepare the standard adsorbate solutions by dissolving the chemicals in distilled water.

1.2 Equilibrium tests

A series of equilibrium adsorption tests were carried out over relatively wide concentration ranges, 25—500 mg/L for the adsorbates (zinc and cadmium) and 10—150 g/L for the adsorbent (vermiculite). The adsorbate and adsorbent concentrations used varied to some extent to accommodate the experimental designs.

The samples were prepared by transferring an accurately weighed amount of the adsorbent and 100.00 ml of standard adsorbate solution of different concentrations into a 250-ml ground-glass stopper flask. Equilibrium experiments were conducted in a shaker bath shaken at a speed of 200 r/min for 24 h at a constant temperature of 30°C. After that the samples

were filtrated and the adsorbate concentration in the aqueous phase was determined by flame atomic absorption spectrometry (AAS).

Results from pre-tests indicated that adsorptions approached equilibrium after 10 h, and a period of 24 h was thus considered sufficient to ensure that the equilibrium was reached. Control and parallel tests were performed, and each experiment was repeated at least three times. The standard deviation analysis indicated good agreement between parallel and repeated measurements and average measurement values were thus used as basic data. The adsorption capacity of the adsorbent (q_m) was estimated by linear correlation analysis of experimental data.

In experimental testing the basic relationship between adsorption components, sample pH and the ionic strength were not controlled. The idea was to obtain adsorption systems consisting of only the concerned adsorbate and adsorbent in pure water solution. In other experiments conducted with the objective of investigating the influence of pH on Zn²⁺ and Cd²⁺ adsorption sulfuric acid (H₂SO₄) was used to adjust the sample pH.

2 Results and discussion

2.1 Absorbent effect

The data from the equilibrium sample series are presented in four types of plots for Zn²⁺ in Fig.1 and Cd2+ in Fig.2. When plotted against the equilibrium adsorbate concentration in liquid phase (C_e) , the equilibrium adsorption density q_e decreases while the equilibrium adsorption quantity Qe increases with increasing adsorbent concentration W_0 (Figs. 1a and 1b, Figs. 2a and 2b), showing clearly the influence of W_0 on Q_c-C_c and q_c-C_c relations. The plots in Figs.1a and 2a indicate that unless W_0 or C_0 is given, the traditionally defined adsorption isotherm (the q_c - C_c plot) cannot be determined. In contrast, the curves corresponding to different W₀ levels are more or less overlapping where q_c is expressed as a function of C_c W_0 and where Q_0/C_0 is expressed as a function of C_0/C_0 (Figs.1c and 1d, Figs.2c and 2d). Although there are deviations among the measured values (shown by the deviation of the measured points from the trend curves), there is a clear trend that the adsorbate/ adsorbate and adsorbate/adsorbent ratios are uniquely related with each other in the tested area regardless of the C_0 and W_0 levels. Measurements of different W_0 sample series gave similar results when conducted at different times in a number of separated experiments, thus suggesting good reproducibility. The observed adsorbent effect is in agreement with the reports from Pan et al. (2002) and Qin et al. (2004).

2.2 Adsorbate/adsorbent ratios

The dimensions of C_e and q_e are different. Unlike C_e which is a ratio of the total adsorbate quantity in

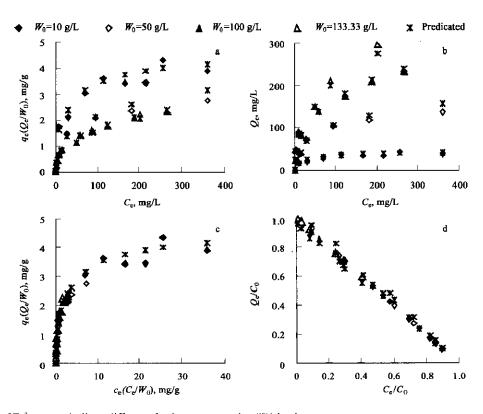


Fig.1 Adsorption of Zn^{2r} on vermiculite at different adsorbent concentration (W_0) levels a. q_e-C_e plot; b. Q_e-C_e plot; c. q_e-c_e plot; d. $Q_e/C_0-C_e/C_0$ plot; predicted values are given by Eq. (8) with k=1.07 and $q_m=4.65$ mg/g (for symbols definitions see Appendix)

bulk solution to the system volume given in mg/L, q_c is a ratio of the total quantity of adsorbate adsorbed on solid surface $(Q_c, mg/L)$ to the adsorbent quantity $(W_0,$ g/L) given in mg/g. The adsorption density is calculated as $q_e = Q_e/W_0 = (C_0 - C_e)/W_0$ using C_c values measured in experiments. Thus for a given C_0 , the relationship between q_e and C_e will further depend on W_0 while that between q_e and C_0/W_0 is in principle determined. There is no doubt that q_e is a function of $C_{\rm c}$. The point is that $q_{\rm e}$ is not a single function of $C_{\rm c}$ but rather a single function of the ratio $C_{\bullet}W_{0}$. If this argument holds in general, the phenomena of q_s corresponding to a unique C_{\bullet}/W_{0} should be observed in designed experiments. The plots in Figs.1c and 2c give support for this argument. Carefully designed trials were further conducted to test the relationship between the adsorbate/adsorbent ratios by fixing the C_0/W_0 ratio at different C_0 and W_0 levels. Since $q_e =$ $C_0/W_0 - C_e/W_0 = c_0 - c_e$, then for a given c_0 , q_e will correspond to a unique c_e , and for a given c_e , q_e should therefore correspond to a unique c_0 . This means that the verification of q_e corresponding to a unique c_0 is equivalent to the verification of q_e corresponding to a unique c_e . Testing the relationship between q_e and c_0 is much easier than testing the relationship between q_c and $c_{\rm c}$ as there are practical difficulties in obtaining fixed values for c_e .

Tables 1 and 2 give the experimental data (values of parallel tests) for Zn^{2+} and Cd^{2+} adsorption on

vermiculite at three given c_0 levels. The general trend noticed in the tables is that for a given c_0 , c_e and particularly q_e remain nearly unchanged. Differences in the q_e values at given c_0 levels were found to be statistically insignificant and their relative deviation (RD) values (see definition of RD below Table 1) were surprisingly low. In comparison, deviations between the measured c_e values at given c_0 levels are larger. The measured values of c_e are much lower than the corresponding q_e values, so that a small measurement error will have a greater effect on RD values for c_e than for q_e . The differences in absolute values of the measured c_e for a given c_0 were found to be within the allowed range of measurement accuracy.

The observed q_c - c_c relationship in the tested range confirms that unless W_0 is given, q_c corresponds to a unique C_c/W_0 rather than to a unique C_c , and that the decline of the q_c - C_c isotherm with increasing W_0 is an expected result in the tested W_0 range.

The physical meaning of the observed $q_e - c_e$ relation (Figs.1c and 2c, Tables 1 and 2) is that given the system volume as well as other conditions, the adsorption density is uniquely determined by the ratio of initial adsorbate concentration C_0 to adsorbent concentration W_0 . Therefore, as long as c_0 is kept constant, q_e will be constant, irrespective of variations in C_0 , W_0 or C_e . Reports concerning the relationship between the adsorbate/adsorbent ratios observed in the present study have not been found elsewhere in the

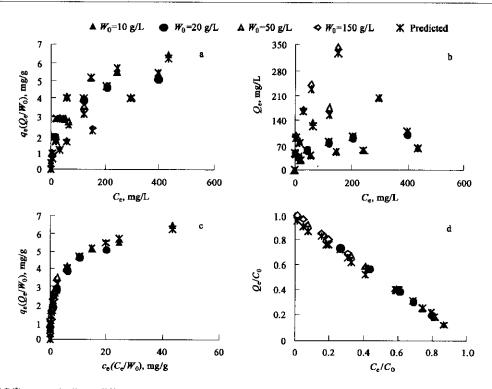


Fig.2 Adsorption of Cd^{2+} on vermiculite at different adsorbent concentration (W_0) levels a. q_e-C_e plot; b. Q_e-C_e plot; c. q_e-c_e plot; d. $Q_e/C_0-C_e/C_0$ plot; predicted are values given by Eq. (8) with k=1.104 and $q_m=7.35$ mg/g (for symbols definitions see Appendix)

Table 1 Measured adsorbate/adsorbent ratios (Zn2*/vermiculite, temperature: 30°C)

C ₀ , mg/L	W ₀ , g/L	C _e , mg/L	Mean $C_{\rm e}$, mg/L	$c_0(C_0/W_0),$ mg/g	$c_{e}(C_{e}/W_{0}),$ mg/g	Mean c_{ϵ} , mg/g	$RD(c_e)$	$q_{s}(Q_{s}/W_{0}),$ mg/g	Mean q_{\circ} , mg/g	$RD(q_z)$
25	50	1.48	1.46	0.5	0.030		-0.150	0.470	·	0.011
25	50	1.44		0.5	0.029		-0.173	0.471		0.013
40	80	2.42	2.50	0.5	0.030		-0.132	0.470		0.010
40	80	2.57		0.5	0.032		-0.078	0.468		0.006
50	100	4	3.98	0.5	0.040		0.148	0.460		-0.011
50	100	3.96		0.5	0.040		0.137	0.460		-0.010
75	150	5.89	5.88	0.5	0.039		0.127	0.461		-0.010
75	150	5.86		0.5	0.039	0.035	0.121	0.461	0.465	-0.009
50	50	8.26	8.48	1	0.165		-0.112	0.835		0.025
50	50	8.7		1	0.174		-0.064	0.826		0.015
80	80	13.89	14.18	1	0.174		-0.066	0.826		0.015
80	80	14.46		1	0.181		-0.028	0.819		0.006
100	100	17.87	19.05	1	0.179		-0.039	0.821		0.009
100	100	20.22		1	0.202		0.087	0.798		-0.020
150	150	31.02	30.98	1	0.207		0.112	0.793		-0.026
150	150	30.94		1	0.206	0.186	0.109	0.794	0.814	-0.025
100	50	28.19	28.56	2	0.564		-0.164	1.436		0.083
100	50	28.92		2	0.578		-0.142	1.422		0.072
160	80	51.15	52.62	2	0.639		-0.051	1.361		0.026
160	80	54.09		2	0.676		0.003	1.324		-0.002
200	100	74.25	73.30	2	0.743		0.101	1.258		-0.052
200	100	72.35		2	0.724		0.073	1.277		-0.037
300	150	112.06	110.18	2	0.747		0.108	1.253		-0.055
300	150	108.29		2	0.722	0.674	0.071	1.278	1.326	-0.036

Notes: For symbols definitions see Appendix; RD. relative deviation; $RD(c_e)=(c_e-\text{mean }c_e)/(\text{mean }c_e)$, $RD(q_e)=(q_e-\text{mean }q_e)/(\text{mean }q_e)$

Table 2 Measured adsorbate/adsorbent ratios (Cd2+/vermiculite, temperature: 30°C)

1 able 2 Measured adsorbate/adsorbent ratios (Cd*/vermiculite, temperature: 30°C)										
C ₀ , mg/L	W ₀ , g/L	C _s , mg/L	Mean C _s , mg/L	$c_0(C_0/W_0),$ mg/g	$c_{\rm c}$ ($C_{\rm c}/W_{\rm 0}$), mg/g	Mean c_s , mg/g	$RD(c_e)$	$q_* (Q_{\sigma}/W_0),$ mg/g	Mean q₅ mg/g	$RD\left(q_{s}\right)$
30	60	0.63	0.625	0.5	0.011		-0.256	0.490		0.007
30	60	0.62		0.5	0.010		-0.267	0.490		0.008
40	80	0.95	0.91	0.5	0.012		-0.158	0.488		0.005
40	80	0.87		0.5	0.011		-0.229	0.489		0.007
50	100	1.73	1.71	0.5	0.017		0.226	0.483		-0.007
50	100	1.69		0.5	0.017		0.198	0.483		-0.006
75	150	2.34	2.63	0.5	0.016		0.106	0.484		-0.003
75	150	2.92		0.5	0.019	0.014	0.380	0.481	0.486	-0.011
50	50	3.91	4.115	1	0.078		-0.082	0.922		0.008
50	50	4.32		1	0.086		0.014	0.914		-0.001
80	80	6.51	6.59	1	0.081		-0.045	0.919		0.004
80	80	6.67		1	0.083		-0.021	0.917		0.002
100	100	9	8.93	1	0.090		0.056	0.910		-0.005
100	100	8.86		1	0.089		0.040	0.911		-0.004
150	150	12.73	13.02	1	0.085		-0.004	0.915		0.000
150	150	13.31		1	0.089	0.085	0.042	0.911	0.915	-0.004
100	50	15.9	16.675	2	0.318		-0.134	1.682		0.030
100	50	17.45		2	0.349		-0.049	1.651		0.011
160	80	29.24	28.705	2	0.366		-0.004	1.635		0.001
160	80	28.17		2	0.352		-0.041	1.648		0.009
200	100	38.17	39.14	2	0.382		0.040	1.618		-0.009
200	100	40.11		2	0.401		0.093	1.599		-0.021
300	150	56.37	57.645	2	0.376		0.024	1.624		-0.005
300	150	58.92		2	0.393	0.367	0.070	1.607	1.633	-0.016

Notes: For symbols definitions see Appendix; relative deviation: $RD(c_e) = (c_e - \text{mean } c_e) / (\text{mean } c_e)$, $RD(q_e) = (q_e - \text{mean } q_e) / (\text{mean } q_e)$

literature.

2.3 Coefficient inconstancy

For describing adsorption in liquid/solid systems, the Langmuir equation is given as,

$$q_{\rm e} = q_{\rm m} C_{\rm c}/(K_{\rm L} + C_{\rm e}) \tag{1}$$

where K_L is the equilibrium coefficient (commonly referred to as the Langmuir constant) and q_m is the adsorption capacity. When q_c and q_m are given in mg/g, K_L has the same dimension as G_c in mg/L. Establishment of the Langmuir equation was based on an assumption that at equilibrium the adsorption rate $k_1p(1-\theta)$ is equal to the desorption rate $k_2\theta$,

$$k_1 p(1-\theta) = k_2 \theta \tag{2}$$

where p stands for the partial pressure of gas molecules at equilibrium (which is equivalent to C_e for liquid/solid systems), θ is the fraction of the adsorption sites on solid surface occupied by gas molecules at equilibrium (equivalent to $q \not = q_m$ or $Q \not= Q_m$), and k_1 and k_2 are the proportionality factors for the adsorption and desorption rates, respectively

(Langmuir, 1918). Substitution of p, θ , k_1 and k_2 , respectively, by C_e , q/q_m and K_L (the ratio of k_2 to k_1) into Eq. (2) will yield Eq.(1). Rewriting Eq.(1) as

$$C_e = q_{\rm m}(C_e/q_e) - K_{\rm L} \tag{3}$$

shows that for K_L and q_m being constant, C_0/q_c should be linearly related to C_c .

The equilibrium coefficients of Eq. (3) obtained by linear correlation analysis of Zn^{2+} and Cd^{2+} adsorption on vermiculite are given in Table 3. The values of the squared correlation coefficient (R^2) are higher than 0.938 at all adsorbent concentration levels tested. The equation parameters $(K_L \text{ and } q_m)$, however, are not constant and they decrease with increasing adsorbent concentration, except for K_L =20.362 at W_0 = 10 g/L for Zn^{2+} adsorption (Table 3). The results in Table 3 confirm that the adsorbent concentration effect is the key factor responsible for the variation of equilibrium parameters. The high R^2 values in Table 3 suggest that the Langmuir equation can be applied to describe the q_e - C_e relationship at a given adsorbent

concentration level. It will not, however, be possible to use a single Langmuir equation to fit the combined

data obtained from all tested adsorbent concentration levels.

Table 3 Estimated equilibrium coefficients of Langmuir equation for zinc and cadmium adsorption on vermiculite at different adsorbent concentration levels (temperature: 30°C)

Adsorbent		Zn ²⁺		Adsorbent	Cd ²		
concentration, -	q _m , mg/g	K _L	R^2	concentration, - g/L	q _m , mg/g	K _L	R ²
10	4.260	20.362	0.998	10	6.785	59.805	0.982
50	3.387	43.087	0.996	20	5.514	37.410	0.997
100	2.391	28.498	0.993	50	4.350	27.253	0.993
133.33	2.175	16.955	0.938	150	2.358	16.372	0.951

Note: R^2 , squared linear correlation coefficient

2.4 Adsorption components

When developing his equation, Langmuir (1918) actually mentioned four interrelated components in adsorption system. molecule components in the liquid/solid system are the adsorbate in liquid phase c, the adsorbate on solid surface q, the uncovered adsorption site w_u (or the fraction of uncovered adsorption sites $1-\theta$), and the covered adsorption site w_c (or θ). Considering that the adsorption is a process in which c, q, w_u and w_c all undergo changes with time, an ion adsorption reaction model is presented in Fig.3 for an adsorption system with unit system (V=1 L) and adsorbent concentration $(W_0 = 1 \text{ g/L})$. Thus in the system, the total number of the available adsorption sites in equivalent quantity is $w_0 = W_0 q_m = q_m$, and the ratio of the initial ion concentration C_0 to W_0 is $c_0 = C_0 / W_0 = C_0$. Since the number of ions adsorbed onto the solid surface corresponds to the number of the covered adsorption sites, namely $w_c = q$ and thus $w_u = q_m - q$.

Based on the model described in Fig.3, the adsorption reaction will be

$$c + w_u = q + w_c \qquad \qquad R(1)$$

which implies that an adsorbate in the liquid phase c plus an uncovered adsorption site $w_{\rm u}$ yields an adsorbate on the solid surface q plus a covered adsorption site $w_{\rm e}$.

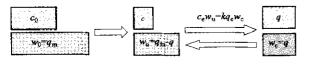


Fig.3 Ion adsorption reaction model proposed for a system with system volume V=1 L and adsorbent concentration $W_0=1$ g/L (the ratio of initial ion concentration C_0 to W_0 : $c_0=C_0$ / $W_0=C_0$, the total available adsorption sites: $w_0=W_0$: $q_{10}=q_{10}$, the model assumes that the ions in the solvent (c) move to the solid phase (q) balanced by the uncovered adsorption sites (w_0) and covered adsorption sites (w_0) , and the adsorption equilibrium arrives at c_0 : $w_0=Kq_0$: w_0

If there are no other substances in the system than the adsorbate, adsorbent and water, and the temperature and the volume of the aqueous system is kept unchanged, the change in Gibbs free energy of the system at any state of the adsorption process will be,

$$dG = dG_c + dG_{Wu} + dG_q + dG_{We}$$

$$= d(c\mu_c + w_u \mu_{Wu} + q\mu_q + w_c \mu_{We})$$
(4)

The term μ_i in Eq. (4) denotes the chemical potential of component i, which is related to the component activity a_i , activity coefficient γ_i and concentration c_i by

$$\mu_i = \mu_i^{\theta} + RT \ln(a_i) = \mu_i^{\theta} + RT \ln(\gamma_i c_i)$$
 (5)

where μ_i^{θ} denotes the chemical potential of pure substance i at standard temperature and pressure, and R is the universal gas constant. Substituting μ_i from Eq.(5) into Eq.(4), replacing c, w_u and w_e by c_0 -q, q_m -q and q, respectively, to denote the activity of relevant components:

$$dG = (\mu_{\text{We}}^{\theta} \mu_{q_e}^{\theta} \mu_{\text{Ge}}^{\theta} - \mu_{\text{Wu}}^{\theta})dq + RT[2\ln(q_e) - \ln(c_0 - q_e) - \ln(q_m - q_e)]dq \quad (6)$$

At equilibrium changes in G with respect to q will be zero,

$$dG/dq = \mu_{Wc}^{\theta} + \mu_{q_c}^{\theta} - \mu_{Cc}^{\theta} - \mu_{Wu}^{\theta} + RT \ln(q_c^2/(c_c(q_m - q_c))) = 0$$
(7)

where the subscript "e" denotes the equilibrium state. For given adsorbate and adsorbent, the standard chemical potential terms are constants. Thus

$$k = \exp((\mu_{wc}^{\theta} + \mu_{q_c}^{\theta} - \mu_{ce}^{\theta} - \mu_{wu}^{\theta})/(RT))$$

$$= c_c (q_m - q_c)/q_c^2 = (c_c w_u)/(q_c w_c) = c_c (1 - \theta)/(q_c \theta)$$
 (8)

which shows the importance of the adsorbent ratios θ and 1- θ in maintaining the balance between q_c and c_e . Since the ratio θ is dimensionless, Eq.(8) based on R (1) provides theoretical support for the observed results that q_c corresponds to a unique c_c .

Eq.(7) can be expressed as

$$dG/dq = \mu_{Wc} + \mu_{qe} - \mu_{Ce} - \mu_{Wu} = \sum \mu_{i} = 0$$
 or

$$\mu_{c_e} + \mu_{W_0} = \mu_{q_e} + \mu_{W_c} \tag{9}$$

Eq. (9) states that the equilibrium condition for

ion adsorption reaction is "the sum of μ_{e_e} and μ_{W_u} equal to that of μ_{q_e} and μ_{W_c} ", which means that unless μ_{Wu} equals μ_{Wc} , the chemical potential of the adsorbate in liquid phase μ_{C_e} is not equal to that in solid phase μ_{q_e} . This explains both the observed adsorbent effect and the inconstancy of the traditionally defined equilibrium coefficient. It is known that μ_i^A equal to μ_i^B the equilibrium condition for diffusion of component i from point A to point B in the same solvent. For ion adsorption, the equilibrium condition should be different since there is one more element involved in the adsorption reaction, namely, the charged surface of the adsorbent, which determines the adsorption potential. It is logical that since the adsorption is a reaction between the adsorbate and the adsorbent, the chemical potential of both the adsorbate

equilibrium. The basic idea of R(1) is the presence of four essential components in the adsorption system, c_e , q_e , w_u and w_c . The core part of R(1) is the assumption that these four components are of equal importance in maintaining the equilibrium state. The concentrations (or activities) of the four components are all state variables that determine the equilibrium state of the system, and a change in any of them will lead to changes in the other three, bringing the system to a new equilibrium state.

and the adsorbent of the system should be equalized at

There is no essential difference between Eq. (8) and the Langmuir equation except for that in the

Langmuir equation, the desorption rate is assumed to be $J_d = k_2 \theta$, while in Eq. (8) it is

$$J_{\rm d} = k_2 q_{\rm e} \theta$$

It can be argued that if the adsorption rate is related to both the adsorbate concentration in liquid phase and the fraction of the uncovered adsorption sites, the desorption rate should also be related to the adsorbate concentration in solid phase rather than uniquely depending on the amount of the covered adsorption sites. Thus at equilibrium,

$$k_1 c_e(1-\theta) = k_2 q_e \theta$$

$$k = k_2 / k_1 = c_e(1-\theta) / (q_e \theta)$$
(10)

Eq.(10) can be rewritten as

$$y = (c_e(q_m - q_e))^{1/2} = k^{1/2}q_e$$
 (11)

which shows that y is linearly related to q_e .

The linear correlation plot of Eq. (3) for the Langmuir-type model and that of Eq. (11) for the new model are compared in Fig.4, using the combined data sets obtained at five adsorbate and four adsorbent concentration levels. It is seen from the figures that for both zinc and cadmium ions the new model fits the combined data much better than the Langmuir-type model. Values of q_m and k in Eq. (8) were estimated, respectively, as 4.65 and 1.07 for Zn^{2+} and 7.35 and 1.22 for Cd^{2+} . As already shown in Figs.1 and 2, most predicted values by Eq. (8) are very close to the measured values for both Zn^{2+} and Cd^{2+} , with relative deviations around 5%.

2.5 pH effect

Ion adsorptions in the aqueous solution can be affected by many factors. The sample pH and the ionic strength, for example, are essential as ion adsorption is

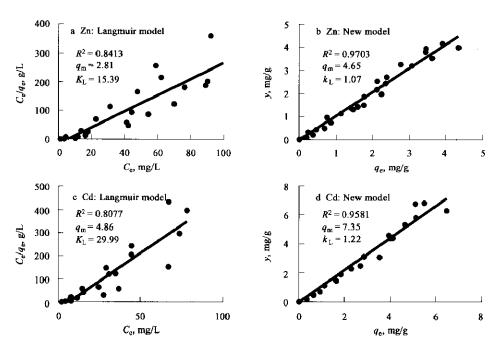


Fig.4 Linear correlation curves for the Langmuir-type model Eq.(3) and the new model Eq.(11) For symbols definitions see Appendix, $y = ((C_e/W_0)(q_{m}q_0))^{1/2}$ defined by Eq.(11)

governed by electrostatic factors (Greathouse and Cygan, 2005; Hao et al., 2003). The common way to control sample pH and ionic strength is to introduce a buffer system by adding acids, bases and salts. In order to test the basic relationship between the adsorption components, however, the experiment was designed to exclude other substances (particularly other types of ions) from the system, as their presence might change the composition and thus the energy state of the system, causing unexpected ion interactions as well as adsorption site competition.

Data in Table 4 show that, when the sample pH was not controlled, the adsorption of Zn^{2+} and Cd^{2+} on vermiculite caused small changes in equilibrium pH with a trend towards deceasing pH with increasing initial adsorbate concentration. The slight change in pH, however, did not result in significant influence on the adsorption of both ion types and the relative deviations between the measured and predicted q_e values were low at all C_0 levels (Table 4).

A series of tests of the pH effect on Zn2+ and Cd2+

adsorption were conducted by adding different amounts of sulfuric acid (H2SO4) to the adsorption system, and some results are presented as examples in Table 5. It is seen from the table that the adsorption density of Zn2+ and Cd2+ remains nearly unchanged when the adjusted initial solution pH is higher than 4, but decreases quickly as the pH drops down from 4 to 2.2. The observed negative effect of the acid addition indicates that the cation adsorption significantly affected if high amounts of H+ ions are present in the sample solution. It is also noticed that in the sample without addition of the acid the equilibrium pH is slightly lower than its initial pH while in the sample with addition of the acid the equilibrium pH value is higher than its initial value (Table 5). This infers that the effect of pH on Zn2+ and Cd2+ adsorption is very likely a result of competition between the cations (Zn2+, Cd2+, H+) for available adsorption sites. Mechanisms and influences of the change in pH and ionic strength within different ranges will be topics of further studies.

Table 4 Equilibrium solution pH in samples without adjustment of pH

Initial ion co	Initial ion concentration, mg/L		100	200	300	400	500
Zn ²⁺	рН	6.58	6.5	6.42	6.31	6,21	6.22
	Measured $q_{\rm e}$, mg/g	0.46	0.86	1.42	1.76	2.12	2.34
	Predicted q _e , mg/g	0.45	0.82	1.40	1.82	2.15	2.41
	Relative deviation	-0.009	-0.042	-0.012	0.034	0.017	0.029
Cd ²⁺	рH	6.69	6.57	6.48	6.35	6.24	6.13
	Measured q_p mg/g	0.33	0.64	1.13	1.61	2.05	2.30
	Predicted $q_{\rm e}$ mg/g	0.32	0.62	1.14	1.59	1.98	2.33
	Relative deviation	-0.030	-0.034	0.008	-0.011	-0.034	0.010

Notes: Adsorbent conc. was 100 g/L for Zn2+; 150 g/L for Cd2+

Table 5 Adsorption of Zn^{2*} and Cd^{2*} on vermiculite at different pH levels

	Zn ²⁺		Cd ²⁻				
Initial pH	Equili- brium pH	Adsorp- tion, mg/g	Initial pH	Equili- brium pH	Adsorp- tion, mg/g		
6.66*	6.54	0.470	6.83*	6.70	0.481		
5.21	6.51	0.465	5.70	6.58	0.477		
3.56	6.41	0.436	4.50	6.60	0.474		
3.20	6.12	0.413	3.84	6.40	0.470		
2.87	5.71	0.316	2.73	5.87	0.402		
2.24	3.73	0.070	2.22	3.50	0.108		

Notes: The initial pH of the solution was adjusted by addition of sulfuric acid, initial adsorbate concentration C_0 =50 mg/L, adsorbent concentration W_0 = 100 g/L, temperature: 30°C; * values in the first row are obtained from the samples without addition of acid

3 Conclusions

The results obtained from the present study suggest that:

- (1) The equilibrium adsorption density $q_{\rm e}$ will not correspond to a unique equilibrium concentration of the adsorbate in liquid phase $C_{\rm e}$ unless the adsorbent concentration W_0 of the system is given. The observed phenomenon that for a given adsorption system, the adsorbate/adsorbent ratios, $q_{\rm e}$, $c_{\rm e}$ and c_0 are related with unique values is in agreement with the theory of thermodynamics.
- (2) The equilibrium state of a liquid/solid adsorption system with an even distribution of adsorbate and adsorbent should be in principle determined by four mutually related concentration components, c_e , q_e , w_u , and w_c . The equilibrium condition defined by the chemical potentials of the components is " $\sum \mu_i = 0$ ".
- (3) The model proposed in this paper can be used for describing ion adsorption in aqueous solutions for the selected adsorbates and adsorbent in the tested range.

Acknowledgments: The authors thank the Department of Education, Hunan Province, the Bureau of Environmental Protection, Hunan Province

and the Bureau of Science and Technology, Zhuzhou City for supporting the present study.

Appendix

- The following symbols are frequently used in the text:
- C₀: the initial adsorbate concentration in liquid phase (mg/L);
- C: the adsorbate concentration in liquid phase (mg/L);
- C_e: the equilibrium adsorbate concentration in liquid phase (mg/L):
- Q: the adsorbate quantity in solid phase per unit system volume (mg/L);
- Q_{ϵ} : the equilibrium adsorbate quantity in solid phase per unit system volume (mg/L), $Q_{\epsilon} = C_0 C_{\epsilon}$;
- W_0 : the adsorbent concentration of the system (g/L);
- q_m : the adsorption capacity (ratio of maxium adsorption quantity to adsorbent quantity) (mg/g);
- Q_m : the ratio of maxium adsorption quantity to system volume (mg/L), $Q_m = W_0 q_m$;
- q: the adsorption density (ratio of adsorption quantity to adsorbent quantity) (mg/g);
- q_e : the equilibrium adsorption density (ratio of equilibrium adsorption quantity to adsorbent quantity) (mg/g), $q_e = Q/W_0$ = $(C_0 C_e)/W_0$;
- c: the ratio of C to W_0 (mg/g);
- c_e : the ratio of C_e to W_0 (mg/g);
- c_0 : the ratio of C_0 to W_0 , (mg/g), $c_0 = (C_c + Q_c)/W_0 = c_c + q_c$ w_0 : the ratio of the total number of the available adsorption sites to W_0 (mg/g), defined as $w_0 = W_0 q_m/W_0 = q_m$:
- w_c : the ratio of the number of the covered adsorption sites to W_0 (mg/g), defined at equilibrium as $w_c = q_c$;
- w_0 : the ratio of the number of the uncovered adsorption sites to W_0 (mg/g), defined at equilibrium as $w_0 = q_m q_s$;
- θ : the ratio of adsorption density to adsorption capacity, $\theta = q_0/q_{\rm m} = Q_0/Q_{\rm min}$
- δ: the ratio of adsorption quantity to initial adsorbate concentration, δ=q,/c₀=Q,/C₀.

References:

- Al-Asheh S, Banat F, Masad A, 2003. Physical and chemical activation of pyrolyzed oil shale residue for the adsorption of phenol from aqueous solutions[J]. Environmental Geology, 44: 333—342.
- Benoit G, 1995. The influence of size distribution on the particles concentration effect and trace metal partitioning in rivers [J]. Geochim Cosmochim Acta, 59(13): 2677—2687.
- Cordeiro C N, da Rocha M S, Faleiros A C et al., 2005. Analysis of application of Langmuir isotherm to heterogeneous systems: High-pressure conditions [J]. Journal of Colloid and Interface Science, 286(2): 459—461.
- Cox L, Hermosin M C, Celis R, 1997. Sorption of two polar herbicides in soils and soil clay suspensions[J]. Wat Res, 31: 1309—1316.
- Cseh R, Benz R, 1998. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone[J]. Biophysical Journal, 74: 1399—1408.
- Curl R L, Keioleian G A, 1984. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents [J]. Environ Sci Technol, 18: 916—922.
- Greathouse J A, Cygan R T, 2005. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite

- surface[J]. Physical Chemistry Chemical Physics, 7: 3580—3586. Grolimund D, Borkovec M, Federer P et al., 1995. Measurement of
- Grolimund D, Borkovec M, Federer P et al., 1995. Measurement of sorption isotherms with flow-through reactors [J]. Environ Sci Technol, 29: 2317—2321.
- Hao X, Spieker W A, Regalbuto J R, 2003. A further simplification of the revised physical adsorption (RPA) model [J]. J Colloid Interface Sci, 267: 259—264.
- Higgo J J W, Reos L V C, 1986. Adsorption of actinides by inarine sediments: effect of the sediment/sea water ratio on the measured distribution ratio[J]. Environ Sci Technol, 20: 483—490.
- Langmuir I, 1918. The adsorption of gases on plane surfaces of glass, mica, and platinum[J]. J Am Chem Soc, 40: 1361—1403.
- Mura-Galelli M J, Voegel J C, Behr S et al., 1991. Adsorption/ desorption of human serum albumin on hydroxyapatite: A criticale analysis of the Langmuir model [J]. Pro Natl Acad Sci USA Biochemistry, 88: 5557—5561.
- Nagayasu T, Imamura K, Nakanishi K, 2005. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium [J]. J Colloid Interface Sci, 286: 462— 470
- Nyffeler U P, Li Y, Santschi P H, 1984. A kinetic approach to describe traceelement distribution between particles and solution in natural aquatic systems [J]. Geochim Cosmochim Acta, 48: 1513—1522.
- O'Connor D J, Connolly J P, 1980. The effect of concentration of adsorbing solids on the partition coefficient [J]. Wat Res, 14: 1517—1523.
- Özacar M, Sengil I A, 2004. Equilibrium data and process design for adsorption of disperse dyes onto Alunite [J]. Environmental Geology, 45: 762—768.
- Pan G, Liss P S, 1998a. Metastable-equilibrium adsorption theory: I. Theoretical[J]. J Colloid Interface Sci, 201: 71-76.
- Pan G, Liss P S, 1998b. Metastable-equilibrium adsorption theory: II. Experimental[J]. J Colloid Interface Sci, 201: 77—85.
- Pan G, Liss P S, Krom M D, 1999. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A, 151: 127— 133.
- Pan G, Krom M D, Herut B, 2002. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east mediterranean seawater[J]. Environ Sci Technol, 36: 3519—3524.
- Qin Y, Pan G, Zhang M et al., 2004. Adsorption of zinc on manganite (7-MnOOH): particle concentration effect and adsorption reversibility[J]. Journal of Environmental Sciences, 16(4): 627—630.
- Sahu B B, Parida K, Mishra H K, 2000. Cation exchange and sorption properties of TIN (IV) phosphate [J]. Journal of Colloid and Interface Science, 225(2): 511-519.
- Sanudo Wilhelmy S A, Rivera Duarte I, Flegal A R, 1996. Distribution of colloidal trace metals in the San Francisco Bay estuary [J]. Geochim Cosmochim Acta, 60(24): 4933—4944.
- Singh K, Mohan S, 2004. Adsorption behavior of selected monosaccharides onto an alumina interface[J]. J Colloid Interface Sci, 270: 21—28.
- Voice T C, Rice C P, Weber W J, 1983. Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems[J]. Environ Sci Technol, 17: 513—518.
- Voice T C, Weber W J, 1985. Sorbent concentration effects in liquid/solid partitioning[J]. J Environ Sci Technol, 19: 789—796.

(Received for review February 20, 2006. Accepted August 7, 2006)