

Available online at www.sciencedirect.com



JOURNAL OF ENVIRONMENTAL SCIENCES <u>ISSN 1001-0742</u> CN 11-2629/X www.jesc.ac.cn

Journal of Environmental Sciences 20(2008) 189-194

# Minimizing N<sub>2</sub>O fluxes from full-scale municipal solid waste landfill with properly selected cover soil

ZHANG Houhu<sup>1</sup>, HE Pinjing<sup>1,\*</sup>, SHAO Liming<sup>1</sup>, QU Xian<sup>1</sup>, LEE Duujong<sup>2</sup>

1. State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China. E-mail: solidwaste@mail.tongji.edu.cn 2. Chemical Engineering Department, "National" Taiwan University, Taipei 10617, Taiwan, China

Received 9 April 2007; revised 21 May 2007; accepted 31 May 2007

#### Abstract

Municipal solid waste landfills emit nitrous oxide (N<sub>2</sub>O) gas. Assuming that the soil cover is the primary N<sub>2</sub>O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N<sub>2</sub>O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with *Nerium indicum* or *Festuca arundinacea* Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N<sub>2</sub>O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N<sub>2</sub>O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N<sub>2</sub>O flux.

Key words: municipal solid waste landfill; N<sub>2</sub>O flux; cover soil; leachate; nitrification/denitrification; environmental factors

# Introduction

Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas with high ozone depletion potential (Chen *et al.*, 2000; Baggs *et al.*, 2002). Atmospheric N<sub>2</sub>O has 310 times the radiative force per molecule relative to CO<sub>2</sub>, partly because of its long atmospheric lifetime of 127 years (Kiese and Butterbach-Bahl, 2002). Soil produce N<sub>2</sub>O via microbial nitrification and denitrification processes (Holtan-Hartwig *et al.*, 2002). Fluxes of N<sub>2</sub>O from different ecosystems, such as tilled fields, pastures, wetlands and forests were documented (Ghosh *et al.*, 2003; Cheng *et al.*, 2004; Maljanen *et al.*, 2005).

Municipal solid waste (MSW) landfills have massive amounts of substrates containing nitrogen, which are potential sources of N<sub>2</sub>O (He *et al.*, 2000; Hui *et al.*, 2003). Rinne *et al.* (2005) indicated that N<sub>2</sub>O fluxes from the Ammalssuo landfill were higher than those from northern European agricultural soils and boreal forests by 1–2 orders of magnitude. A field survey of the Guangzhou Likang landfill implied that N<sub>2</sub>O from leachate-contaminated soil was at minimum 2–5 times higher than that from the Illinois landfill (Lee *et al.*, 2002). The highest N<sub>2</sub>O fluxes recorded were in the Sweden Hőgbytorp landfill, 2–3 orders of magnitude higher than those at all other landfills measured (Bőrjesson and Svensson, 1997). The high N<sub>2</sub>O fluxes from these landfills resulted from high organic matter concentrations in fertile cover soil or introduced by leachate or sewage sludge (Bőrjesson and Svensson, 1997; Inubsushi *et al.*, 2000; Hui *et al.*, 2003).

The bioreactor landfill approach is characterized by leachate recirculation or liquid injection in MSW landfills (Berge *et al.*, 2006; Khire and Mukherjee, 2007). Vegetation added to soil increases  $N_2O$  emissions (Arnold *et al.*, 2005; Dick *et al.*, 2006); whereas leachate is commonly applied to vegetated or landscaped cover at landfills (Tyrrel *et al.*, 2002; Duggan, 2005). Emissions from bioreactor landfill or from vegetated cover soil with leachate irrigation have not been reported.

If cover soil is responsible for most N<sub>2</sub>O emissions from MSW landfills, as in other ecosystems, selecting a proper soil should minimize the amount of this greenhouse gas emitted regardless of landfill age or leachate recirculation. To test this hypothesis, this study conducted a four-year project at the Hangzhou Tianziling landfill in Hangzhou City of China, utilizing selected sandy soils with low nitrogen content and fine texture as the final cover. The N<sub>2</sub>O emission rates from the cover soils at the sanitary landfill site were measured. This study was also applied to a full-scale bioreactor landfill site that received the same MSW as the sanitary landfill. This study proved that properly selected cover soils exhibited low potential for N<sub>2</sub>O emissions even when leachate was recycled to landfilled waste body by the bioreactor landfill or applied to irrigate the vegetated cover soil for volume reduction.

<sup>\*</sup> Corresponding author. E-mail: solidwaste@mail.tongji.edu.cn.

# 1 Materials and methods

## 1.1 Study site

The test landfill is an MSW landfill at a valley in northern Hangzhou City. The MSW lists compositions were loaded at 2000 t/d to the sanitary landfill site at the test landfill (Table 1). The sanitary landfill was equipped with bottom liner using compacted clay, also with leachate collection pipes and active landfill gas (LFG) collection system (the flow rate was about 20,000 m<sup>3</sup>/d). The designed elevation of the landfill was from 48 to 180 m (based on Yellow Sea level, hereafter likewise). The landfilling operation was carried out by multi-lift method; from 1999 to 2006 the operation lifts were between 115–177.5 m elevation, with 12.5 m for each lift (Fig.1a). The slope face of each lift is 500–600 m width with typical

 Table 1
 Compositions of MSW produced in Hangzhou City

| Compositions              | Year            |                 |                 |  |  |
|---------------------------|-----------------|-----------------|-----------------|--|--|
|                           | 1999-2001       | 2002-2004       | 2005-2006       |  |  |
| Food waste (%, w/w)       | 52.0±0.99       | 60.1±8.11       | 59.3±15.5       |  |  |
| Papers (%, w/w)           | 12.6±0.24       | 9.97±1.49       | $7.50 \pm 3.86$ |  |  |
| Texture (%, w/w)          | 1.21±0.37       | $1.84 \pm 0.80$ | $2.19 \pm 1.85$ |  |  |
| Bamboo/woods (%, w/w)     | $1.53 \pm 1.09$ | $2.55 \pm 1.71$ | $4.16 \pm 4.07$ |  |  |
| Plastics (%, w/w)         | 12.6±2.29       | $14.3 \pm 1.44$ | 21.9±11.6       |  |  |
| Metals (%, w/w)           | $0.84 \pm 0.06$ | $1.12 \pm 0.34$ | $0.77 \pm 0.21$ |  |  |
| Glass (%, w/w)            | 0.87±0.31       | $1.96 \pm 0.38$ | $1.05 \pm 0.52$ |  |  |
| Stone and others (%, w/w) | $18.4{\pm}1.98$ | $8.35 \pm 5.04$ | $3.09 \pm 0.80$ |  |  |

Sample number n = 3.

slope 3:1. The lifts in the range 115-165 m elevations have been covered finally with 0.5–1.0 m the selected soil and sparse vegetation on the cover surfaces. At present, the waste is being filled at the lift 165-177.5 m.

The amount of landfilled food waste increased and accounted for approximately 60% of the total landfilled MSW since 1999, resulting in a high potential for conversion of nitrogen-containing organic matters to N<sub>2</sub>O. The tested cover surface where N<sub>2</sub>O sampling points were set is located at the slope face of lifts 115–177.5 m at the landfill (Fig.1a). This study selected a cover soil as the final cover (Table 2). The organic content in these cover soils was typically low.

The bioreactor landfill was located adjacent to the sanitary landfill site in a canyon at the 58–85 m elevation. The bioreactor landfill was constructed with bottom liners using high density polyethylene (HDPE) membrane and compacted clay, leachate collection pipes, LFG collection wells and leachate recirculation system.

In 2004–2005, approximately 121,000 t of MSW was landfilled in the bioreactor landfill with leachate recirculated back to the MSW layer at 10–35 m<sup>3</sup>/d. The final cover of the bioreactor landfill was completed in January 2006, with top soils (0.6–0.8 m) same as those in the sanitary landfill. N<sub>2</sub>O sampling points were set on Platform 58 m and Platform 85 m, as well as the slope face between them (Fig.1b). The area of the bioreactor landfill occupied approximately 20000 m<sup>2</sup>. During the sampling period, the landfill gas (50%–60% v/v of CH<sub>4</sub>) was extracted by pump at a rate of approximately 500 m<sup>3</sup>/d.

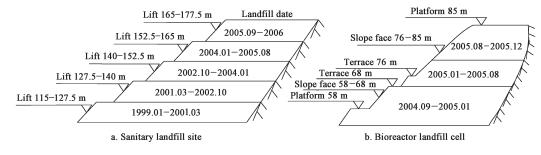



Fig. 1 Diagrammatic sketch of the sampling sites.

 Table 2
 Physico-chemical properties of cover soils in Hangzhou Tianziling landfill

| Te                  | est site           | Soil texture    | Soil temp.<br>(°C) | рН             | Water<br>cont. (%) | Organic<br>carbon (%) | Total<br>nitrogen (%) | Vegetation     |
|---------------------|--------------------|-----------------|--------------------|----------------|--------------------|-----------------------|-----------------------|----------------|
| Sanitary landfill   | Lift 165–177.5 m   | Sandy clay      | 33.2               | 6.7±1.3        | 22.9±11.7          | 2.50±1.97             | 0.231±0.206           | Nil            |
|                     | Lift 152.5-165 m   | Sandy clay      | 27.9               | $7.5 \pm 0.56$ | $13.4 \pm 1.62$    | $1.55 \pm 0.15$       | $0.116 \pm 0.020$     | Nil            |
|                     | Lift 140-152.5 m   | Sandy clay      | 32.2               | 4.5±0.36       | 15.7±1.27          | $0.37 \pm 0.08$       | $0.075 \pm 0.081$     | Sparsity       |
|                     | Lift 127.5-140 m   | Sandy clay      | 37.2               | 7.5±0.31       | $13.9 \pm 5.88$    | 1.31±0.48             | $0.111 \pm 0.054$     | Sparsity       |
| Planted soil        |                    |                 |                    | $4.6 \pm 0.06$ | 13.0±0.43          | 0.61±0.16             | $0.059 \pm 0.014$     | Nil            |
|                     | Lift 115-127.5 m   | Sandy clay      | 29.0               | $7.5 \pm 0.01$ | $22.6 \pm 4.72$    | $0.52 \pm 0.03$       | $0.039 \pm 0.010$     | F. arundinacea |
|                     |                    |                 |                    | $6.2 \pm 2.2$  | $18.9 \pm 2.61$    | $0.60 \pm 0.14$       | $0.054 \pm 0.025$     | N. indicum     |
| Bioreactor landfill | Platform 85 m      | Fine sandy soil | 30.2               | $4.9 \pm 0.01$ | 11.5±0.68          | $0.33 \pm 0.00$       | $0.037 \pm 0.001$     | Sparsity       |
|                     | Slope face 76-85 m | Fine sandy soil | 29.3               | 4.8±0.26       | 12.1±1.34          | $0.33 \pm 0.12$       | $0.044 \pm 0.013$     | Sparsity       |
|                     | Terrace 76 m       | Fine sandy soil | 29.1               | 4.7±0.16       | $14.0 \pm 1.95$    | $0.25 \pm 0.04$       | $0.033 \pm 0.013$     | Sparsity       |
|                     | Terrace 68 m       | Fine sandy soil | 28.8               | 6.1±1.7        | 9.9±1.6            | $0.34 \pm 0.12$       | $0.038 \pm 0.008$     | Sparsity @     |
|                     | Slope face 58-68 m | Fine sandy soil | 29.5               | 5.1±0.22       | 12.2±1.36          | $0.28 \pm 0.01$       | $0.043 \pm 0.005$     | Sparsity ()    |
|                     | Platform 58 m      | Fine sandy soil | 30.1               | 5.7±1.7        | $15.8 \pm 4.49$    | 0.34±0.11             | $0.030 \pm 0.025$     | Sparsity       |

Sample number *n*=3; Nil: without vegetation.

To assess the emission potential of  $N_2O$  from the wellvegetated cover soil with leachate irrigation, the cover soil on the slope face of Lift 115–127.5 m was vegetated in three equally sized sites (20 m × 50 m) using *Nerium indicum, Festuca arundinacea* Schreb and non-vegetable soil remained as control, respectively. An HDPE membrane underneath the cover soil prevents contact with leachate from landfilled MSW. Leachate collected from the sanitary landfill site was irrigated on these sites through subsurface pipe net for two years for comparison of N<sub>2</sub>O emission potentials (Table 2) with those without irrigation.

## **1.2 Analytical methods**

Sampling of N<sub>2</sub>O gas from the cover soil was performed during August 2006 under humidity of 70%-73% and temperature of 32.2-34.0°C. Homemade acrylic chambers (40 cm  $\times$  40 cm  $\times$  40 cm) were equipped with fans directly mounted on the cover soil sites at a chamber-tochamber distance of 10 m. The N<sub>2</sub>O gas emitted from the cover soil was accumulated in the headspace of collection chambers. Four gas samples were collected from each collection chamber in 60-ml plastic syringes at 10-15 min intervals on the sampling day (Towprayoon et al., 2005). The N<sub>2</sub>O content was immediately analyzed using a gas chromatography (GC-122, Jingke Instrument Co., Shanghai, China) with a glass column packed with Porapak Q (80/100 mesh) and an electron capture detector. Oven and detector temperatures were 55 and 330°C, respectively. The N<sub>2</sub>O concentration in the sample gas was calculated by comparing the peaks for the sample gas and standard gas that appeared after 3.5 min. Before sample analysis, standard N<sub>2</sub>O gas was diluted of 5 ppmv span to calibrate GC by the 99.99% purity gas procured from Shanghai Jiliang Standard Reference Gas Co. Ltd., China.

Soil samples at a depth of 0–10 cm were collected in triplicate at the sites next to the N<sub>2</sub>O sampling sites. The pH of the soil suspension (soil:water = 1:2.5, w/v) was determined using a glass electrode. Soil water content (SWC) was measured by drying at 105°C for 24 h. Organic matter (OM) content in each soil sample was determined as a loss of ignition (550°C, 2 h). The NH<sub>3</sub>+-N, NO<sub>3</sub><sup>-</sup>-N, and NO<sub>2</sub><sup>-</sup>-N contents were extracted by shaking 10 g soil samples with 50 ml of 2 mol/L KCl for 1 h before filtering and analyzing using standard methods (State Environmental Protection Administration of China, 1997). Total nitrogen (TN) content was determined using the Kjedahl method (Lu, 2000). The soil organic carbon (SOC) was measured using the potassium dichromate-volumetric method (Lu, 2000).

## **1.3** N<sub>2</sub>O emission rate

The rates of  $N_2O$  emissions from cover soil samples were estimated by the following equation (Towprayoon *et al.*, 2005):

$$f = (V/A)(\Delta C/\Delta t) \tag{1}$$

where, f is the N<sub>2</sub>O flux ( $\mu$ gN/(m<sup>2</sup>·h)); V is the chamber headspace (m<sup>3</sup>); A is the cross-sectional area of the chamber (m<sup>2</sup>);  $\Delta C$  is the concentration difference between time zero and time t ( $\mu$ g/m<sup>3</sup>);  $\Delta t$  is the time interval between samplings (h).

## 1.4 Statistical analysis

Statistical analyses utilized SPSS 12.0 (SPSS, Inc. 2003. Chicago, Illinois, USA). The dependence of  $N_2O$  fluxes on a single factor was analyzed by bivariate correlation analysis.

## **2 Results**

Table 3 lists the N<sub>2</sub>O fluxes of soil samples collected from different lifts at the sanitary landfill site. The N<sub>2</sub>O fluxes decreased substantially with increasing landfill age. The fluxes from young MSW layers (landfill age of 1 week or 1 year) were roughly 6 and 2 times greater than those from uncovered layers and from old layers (age of 2.5 years or 4 years), respectively. The observed N<sub>2</sub>O fluxes from just-landfilled MSW (1 week) were 9.1–172 ( $\mu$ gN/(m<sup>2</sup>·h) with a peak coefficient of variation (179%). The negative flux suggested that the soil adsorbed some N<sub>2</sub>O from the atmosphere (Wang *et al.*, 2005). Nevertheless, this value is quite low.

Table 4 lists the N<sub>2</sub>O fluxes from Platforms or Slope faces in the bioreactor landfill site. The average N<sub>2</sub>O fluxes from the bioreactor landfill site (5.57  $\mu$ gN/(m<sup>2</sup>·h)) were only 31% of that from the sanitary landfill site (18.1  $\mu$ gN/(m<sup>2</sup>·h)). A large data variation existed amongst the collected samples. For example, the N<sub>2</sub>O fluxes from Terrace 76 and 68 m were only 5%–7% of that from Lift 152.5–165 m (18.6  $\mu$ gN/(m<sup>2</sup>·h)) of the same landfill age (one year).

In bioreactor landfill site, the leachate was recycled back inside the MSW layers. However, the  $N_2O$  emission rates detected from the bioreactor landfill site were lower than those from the sanitary landfill site (Table 3).

The  $N_2O$  emission fluxes from leachate-irrigated soils (Table 5) were higher than those from sanitary landfill site (Table 3). The  $N_2O$  emission rates from vegetated

 Table 3
 N2O fluxes from sanitary landfill site

| Site                      | Landfill age          | N <sub>2</sub> O flux (µ <sub>2</sub> | CV (%)   |      |
|---------------------------|-----------------------|---------------------------------------|----------|------|
|                           |                       | Mean ± SD                             | Range    |      |
| Lift 165–177.5 m (center) | Fresh MSW (uncovered) | 8.0±3.4                               | 6.2–13.1 | 42.3 |
| Lift 165–177.5 m (rim)    | 1 week                | 47.1±84.3                             | -9.1-172 | 179  |
| Lift 152.5–165 m          | 1 year                | $18.6 \pm 8.8$                        | 7.8–29.3 | 47.2 |
| Lift 140–152.5 m          | 2.5 years             | 8.1±5.2                               | 0-14.9   | 64.0 |
| Lift 127.5–140 m          | 4 years               | 8.6±8.5                               | 0-22.5   | 99.1 |

Sample number *n*=4. CV: coefficient of variation.

Table 4 N<sub>2</sub>O fluxes from bioreactor landfill site with leachate recirculation

| Site               | Landfill age | N2O flux (µ     | CV (%)    |      |
|--------------------|--------------|-----------------|-----------|------|
|                    | (year)       | Mean ± SD       | Range     |      |
| Platform 85 m      | 0.8          | 1.7±2.0         | 0.47-4.0  | 114  |
| Slope face 76–85 m | 0.8          | 7.7±9.4         | 1.81-18.6 | 122  |
| Terrace 76 m       | 1            | $0.89 \pm 0.24$ | 0.57-1.65 | 27.0 |
| Terrace 68 m       | 1            | $1.4 \pm 0.96$  | 0.49–2.4  | 68.1 |
| Slope face 58–68 m | 1.5          | $1.2 \pm 0.89$  | 0.57-2.2  | 77.4 |
| Platform 58 m      | 1.5          | 20.6±14.0       | 9.7-36.4  | 60.0 |

Sample number n=3.

Table 5N2O fluxes from planted soils (Lift 115–127.5 m) with<br/>leachate irrigation

| Site                        | $N_2O$ flux ( $\mu$ | CV (%)    |      |
|-----------------------------|---------------------|-----------|------|
|                             | Mean ± SD           | Range     |      |
| Unplanted soil              | 39.7±40.5           | 11.0-68.3 | 103  |
| F. arundinacea planted soil | 117±129             | 27.3-297  | 110  |
| N. indicum planted soil     | 64.0±21.0           | 49.2-78.8 | 32.8 |

Sample number n=3.

soil were higher than those without vegetation (Table 5), an experimental finding coincident with observations of other vegetation systems (Kiese and Butterbach-Bahl, 2002; Arnold *et al.*, 2005). Vegetation on soils further enhanced N<sub>2</sub>O flux, with that from *F. arundinacea* planted soils being higher than that from *N. indicum* planted soils (Table 5).

# **3 Discussion**

#### 3.1 Role of cover soils

Although there were large fluctuations in data, certain correlations were still evident in collected emission data (Tables 3, 4 and 5). The N<sub>2</sub>O emission rate declined as landfill age increased, suggesting that nutrient limitation occurred in the cover soil for N<sub>2</sub>O production. The N<sub>2</sub>O emission rates from cover soil at the bioreactor landfill site were lower than those measured at the sanitary landfill site. This observation correlates with lower soil organic carbon content in the cover soil applied at the bioreactor landfill (0.25%–0.34%) than that at the sanitary landfill site (0.37%–2.50%). Vegetation on soil further enhanced the N<sub>2</sub>O flux, with *F. arundinacea* generating more N<sub>2</sub>O than *N. indicum*. The interactions between plants and soil determined N<sub>2</sub>O flux.

This study clearly demonstrated that with the selected infertile soils-which have low nitrogen content and/or soil organic matter-as final cover, the N<sub>2</sub>O emission rates from the full-scale sanitary landfill site, from the fullscale bioreactor landfill site and from the tested vegetated sites were all substantially lower than those reported at the Guangzhou Likang landfill, the Finnish Ammalssuo landfill, and Sweden's Hagby, Hőkhuvud and Hőgbytorp landfills. The MSW compositions at the Hangzhou Tianziling and the Guangzhou Likang landfills are typically considerably higher in organic nitrogen content than that in Finland or Sweden (Bőrjesson and Svensson, 1997; Lee et al., 2002). However, the soil organic carbon and organic matter contents at the Guangzhou Likang landfill and the Finnish Ammalssuo landfill were 3.2%-14.4% and 20%-40%, respectively, resulting in high N<sub>2</sub>O emissions (Table 6). The organic matter in the cover soil at the Sweden Hőgbytrop landfill was at a level similar to that in this study; however, wastewater sludge at the Sweden Hőgbytrop landfill was applied as the cover soil to yield high emission potential of N<sub>2</sub>O. At the Guangzhou Likang landfill, the untreated leachate was flooded over the cover soil, thereby producing a high N2O flux. All these observations demonstrated that cover soil controls N2O emissions from landfill sites.

Hence, the very low  $N_2O$  emission rates at the Hangzhou Tianziling landfill should not be attributed to a certain level of denitrification reactions occurring inside MSW layers; that is, the characteristics of cover soil controlled the emission flux.

## 3.2 Factors controlling N<sub>2</sub>O flux

All experimental observations identified the minor influence of landfilled MSW and leachate recirculation, suggesting that cover soil has a significant influence on N<sub>2</sub>O emissions from landfills. The soil parameters analyzed were water content (%), organic matter (%), pH, NH<sub>4</sub><sup>+</sup>-N (mg/kg), NO<sub>3</sub><sup>-</sup>-N (mg/kg), NO<sub>2</sub><sup>-</sup>-N (mg/kg), total nitrogen (%), SOC (%) and C/N ratio.

Table 7 summarizes the *r*-values for bivariate correlation analyses. For all data from sanitary landfill site

| Site                                     | Sampling period       | $N_2O$ flux (µgN/(m <sup>2</sup> ·h)) |      | Reference                    |  |
|------------------------------------------|-----------------------|---------------------------------------|------|------------------------------|--|
|                                          |                       | Range                                 | Mean |                              |  |
| Guangzhou Likang landfill                | JunAug., 2000         | 618–797                               | _    | Lee et al., 2002             |  |
| Finland Amma1ssuo landfill               | Aug., 2003            | 1350-1930                             | _    | Rinne et al., 2005           |  |
| Swenden Hagby landfill                   | Aug., 1993            | 0-575                                 | 44   | Bőrjesson and Svensson, 1997 |  |
| Swenden Hőkhuvud landfill                | May-Jul., 1992        | -1.7-163                              | 40   | Bőrjesson and Svensson, 1997 |  |
| Swenden Hőgbytorp landfill (mixed cover) | Nov., 1991–Jul., 1992 | 0-1070                                | 139  | Bőrjesson and Svensson, 1997 |  |
| Swenden Hőgbytorp landfill (pure sludge) | Feb., 1993-Nov., 1994 | -10.9-35700                           | 1800 | Bőrjesson and Svensson, 1997 |  |
| Hangzhou Tianziling landfill             | JulAug., 2006         | -9.1-172                              | 11.8 | This study                   |  |

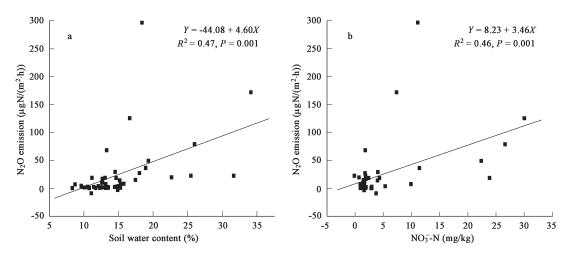



Fig. 2 Linear correlation between total  $N_2O$  fluxes and soil water content (a) and  $NO_3^--N$  content (b) for all test sites.

 Table 7
 Bivariate correlation analysis between N<sub>2</sub>O flux and soil physico-chemical parameters

| Soil parameter              | N <sub>2</sub> O emission <i>r</i> -value |                   |                     |  |
|-----------------------------|-------------------------------------------|-------------------|---------------------|--|
|                             | All data                                  | Sanitary landfill | Bioreactor landfill |  |
| Water content (%)           | 0.474**                                   | 0.705**           | 0.705**             |  |
| Organic matter (%)          | 0.233                                     | 0.459*            | 0.324               |  |
| pH                          | -0.090                                    | 0.146             | -0.174              |  |
| NH4 <sup>+</sup> -N (mg/kg) | 0.261                                     | 0.764**           | 0.423               |  |
| $NO_3^{-}-N (mg/kg)$        | 0.461**                                   | 0.450*            | 0.693**             |  |
| $NO_2^{-}-N$ (mg/kg)        | -0.023                                    | 0.008             | nd                  |  |
| TN (%)                      | 0.229                                     | 0.683**           | -0.404              |  |
| SOC (%)                     | 0.267                                     | 0.737**           | -0.104              |  |
| C/N ratio                   | 0.095                                     | -0.042            | 0.706**             |  |

\* *p* < 0.05 (2-tailed); \*\* *p* < 0.01 (2-tailed). nd: not detected.

and bioreactor landfill site, the soil water and NO3--N contents correlated significantly with N<sub>2</sub>O emission rates (p < 0.01). However, water content correlated with the N<sub>2</sub>O flux better than NO<sub>3</sub><sup>-</sup>-N content. Fig.2 presents regression plots for soil water content and NO<sub>3</sub><sup>-</sup>-N content. Furthermore, N<sub>2</sub>O fluxes were significantly correlated with soil organic matter, soil organic carbon, NH4+-N and total nitrogen in sanitary landfill site as well, while N2O fluxes from bioreactor landfill site were only significantly correlated with soil C/N ratio (Table 7). Obviously, soil water content, soil organic carbon, nitrogen content and distribution of mineralized-N compounds were important controlling factors for N2O emission flux variations (Baggs et al., 2002; Maljanen et al., 2004). Nevertheless, there was no significant correlation between N<sub>2</sub>O fluxes and above-mentioned factors in bioreactor landfill site may attribute to the quite narrow ranges of both soil C and N concentrations, SOC: 0.25%-0.34%; TN: 0.030%-0.044% (Table 2).

The effects of moisture content in soil from grasslands or agricultural lands on N<sub>2</sub>O emission potential have been documented (Rudaz *et al.*, 1999; Weitz *et al.*, 2001; Wang *et al.*, 2005). The observation that N<sub>2</sub>O emission rates increased as NO<sub>3</sub><sup>-</sup>-N content increased demonstrated that the denitrification reaction in soil controlled the emission process; however, the conclusion will seek more evidence in the further studies. Thus, adequate moisture and nitrogen sources generated the noted N<sub>2</sub>O emissions when an appropriate anaerobic environment was established with cover soil.

## 4 Conclusions

The N<sub>2</sub>O fluxes from three test sites of Hangzhou Tianziling landfill can be minimized by utilizing selected sandy soils with low nitrogen content and fine texture as the final cover even when leachate was recycled to landfilled waste body by the bioreactor landfill or applied to irrigate the vegetated cover soil. Specifically, the N<sub>2</sub>O emission rate was dependent on moisture content and nitrate concentrations in the cover soils. Adequate moisture and nitrogen sources generated the noted N<sub>2</sub>O emissions when an appropriate anaerobic environment was established with cover soil.

#### Acknowledgements

This work was supported by the National Science and Technology Supporting Program of China (No. 2006BAJ04A06, 2006BAC06B05) and the National Natural Science Foundation of China (No. 50538080).

#### References

- Arnold K V, Nilsson M, Hőnell B, Weslien P, Klemedtsson L, 2005. Fluxes of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O from drained organic soils in deciduous forests. *Soil Biol Biochem*, 37: 1059– 1071.
- Baggs E M, Rees R M, Castle K, Scott A, Smith K A, Vinten A J A, 2002. Nitrous oxide release from soils receiving N-rich crop residues and paper mill sludge in eastern Scotland. Agr Ecosyst Environ, 90: 109–123.
- Berge N D, Reinhart D R, Dietz J, Townsend T, 2006. *In situ* ammonia removal in bioreactor landfill leachate. *Waste Manage*, 26: 334–343.
- Bőrjesson G, Svensson B H, 1997. Nitrous oxide emission from landfill cover soils in Sweden. *Tellus*, 49B: 357–363.
- Chen G X, Huang B, Xu H, Zhang Y, Huang G H, Yu K W, Hou A X, Du R, Han S J, VanCleemput O, 2000 Nitrous oxide emissions from terrestrial ecosystems in China. *Chemosphere: Glob Change Sci*, 2: 373–378.
- Cheng W G, Tsuruta H, Chen G X, Kazuyuki Y, 2004, N<sub>2</sub>O

and NO production in various Chinese agricultural soils by nitrification. *Soil Biol Biochem*, 36: 953–963.

- Dick J, Skiba U, Munro R, Deans D, 2006. Effect of N-fixing and non N-fixing trees and crops on NO and N<sub>2</sub>O emissions from Senegalese soils. *J Biogeogr*, 33: 416–423.
- Duggan J, 2005. The potential for landfill leachate treatment using willows in the UK-A critical review. *Resour Conserv Recy*, 45: 97–113.
- Ghosh S, Majumdar D, Jain M C, 2003. Methane and nitrous oxide emissions from an irrigated rice of North India. *Chemosphere*, 51: 181–195.
- He Y W, Inamori Y, Mizuochi M, Kong H N, Iwami N, Sun T, 2000. Measurements of N<sub>2</sub>O and CH<sub>4</sub> from the aerated composting of food waste. *Sci Total Environ*, 25: 65–74.
- Holtan-Hartwig L, Dorsch P, Bakken L R, 2002. Low temperature control of soil denitrifying communities: kinetics of N<sub>2</sub>O production and reduction. *Soil Biol Biochem*, 34: 1797– 1806.
- Hui C H, So M K, Lee C M, Chan G Y S, 2003. Nitrous oxide flux from landfill leachate–sawdust nitrogenous compost. *Chemosphere*, 52: 1547–1551.
- Inubsushi K, Goyal S, Sakamoto K, Wada Y, Yamakawa K, Arai T, 2000. Influence of application of sewage sludge compost on N<sub>2</sub>O production in soil. *Chemosphere: Glob Change Sci*, 2: 329–334.
- Khire M V, Mukherjee M, 2007. Leachate injection using vertical wells in bioreactor landfills. Waste Manage, 27(9): 1233– 1247.
- Kiese R, Butterbach-Bahl K, 2002. N<sub>2</sub>O and CO<sub>2</sub> emissions from three different tropic forest sites in the wet tropics of Queensland, Australia. *Soil Biol Biochem*, 34: 975–987.
- Lee C M, Lin X R, Lan C Y, Lo S C L, Chan G Y S, 2002. Evaluation of leachate recirculation on nitrous oxide

production in the Likang Landfill, China. *J Environ Qual*, 31: 1502–1508.

- Lu R K, 2000. Methods for Soil Agrochemistry Analysis. Beijing: China Agricultural Science and Technology Press.
- Maljanen M, Komulainen V M, Hytonen J, Martikainen P J, Laine J, 2004. Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil characteristics. *Soil Biol Biochem*, 36: 1801–1808.
- Rinne J, Pihlatie M, Lohila A, Thum T, Aurela M, Tuovinen J P, Laurila T, Vesala T, 2005. Nitrous oxide emissions from a municipal landfill. *Environ Sci Technol*, 39: 7790–7793.
- Rudaz A O, Walti E, Kyburz G, Lehman P, Fuhrer J, 1999. Temporal variation in N<sub>2</sub>O and N<sub>2</sub> fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature. Agr Ecosyst Environ, 73: 83– 91.
- State Environmental Protection Administration of China, 2002. Monitoring methods for water and wastewater. 4th ed. Beijing: China Environmental Science Press.
- Towprayoon S, Smakgahn K, Poonkaew S, 2005. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. *Chemosphere*, 59: 1547–1556.
- Tyrrel S F, Leeds-Harrison P B, Harrison K S, 2002. Removal of ammoniacal nitrogen from landfill leachate by irrigation onto vegetated treatment planes. *Water Res*, 36: 291–299.
- Wang Y S, Xue M, Zheng X H, Ji B M, Du R, Wang Y F, 2005. Effects of environmental factors on N<sub>2</sub>O emission from and CH<sub>4</sub> uptake by the typical grasslands in the Inner Mongolia. *Chemosphere*, 58: 205–215.
- Weitz A M, Linder E, Frolking S, Crill P M, Keller M, 2001. N<sub>2</sub>O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. *Soil Biol Biochem*, 33: 1077–1093.

ESC. DC. CS