

Available online at www.sciencedirect.com

Journal of Environmental Sciences 2010, 22(9) 1447-1454

JOURNAL OF ENVIRONMENTAL SCIENCES CN 11-2629/X

www.jesc.ac.cn

Iron-doped Mn-Ce/TiO₂ catalyst for low temperature selective catalytic reduction of NO with NH₃

Boxiong Shen*, Ting Liu, Ning Zhao, Xiaoyan Yang, Lidan Deng

College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China. E-mail: shenboxiong 0722 @ sina.com

Received 25 November 2009; revised 03 February 2010; accepted 09 March 2010

Abstract

The catalysts of iron-doped Mn-Ce/TiO₂ (Fe-Mn-Ce/TiO₂) prepared by sol-gel method were investigated for low temperature selective catalytic reduction (SCR) of NO with NH₃. It was found that the NO conversion over Fe-Mn-Ce/TiO₂ was obviously improved after iron doping compared with that over Mn-Ce/ TiO_2 . Fe-Mn-Ce/ TiO_2 with the molar ratio of Fe/Ti = 0.1 exhibited the highest activity. The results showed that 96.8% NO conversion was obtained over Fe(0.1)-Mn-Ce/TiO₂ at 180°C at a space velocity of 50,000 hr⁻¹. Fe-Mn-Ce/TiO₂ exhibited much higher resistance to H₂O and SO₂ than that of Mn-Ce/TiO₂. The properties of the catalysts were characterized using X-ray diffraction (XRD), N₂ adsorption, temperature programmed desorption (NH₃-TPD and NOx-TPD), and Xray photoelectron spectroscopy (XPS) techniques. BET, NH₃-TPD and NOx-TPD results showed that the specific surface area and NH₃ and NOx adsorption capacity of the catalysts increased with iron doping. It was known from XPS analysis that iron valence state on the surface of the catalysts were in Fe³⁺ state. The doping of iron enhanced the dispersion and oxidation state of Mn and Ce on the surface of the catalysts. The oxygen concentrations on the surface of the catalysts were found to increase after iron doping. Fe-Mn-Ce/TiO₂ represented a promising catalyst for low temperature SCR of NO with NH₃ in the presence of H₂O and SO₂.

Key words: low-temperature SCR; Fe-Mn-Ce/TiO₂; H₂O; SO₂

DOI: 10.1016/S1001-0742(09)60274-6

Introduction

Low temperature selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonia (NH₃) is a promising technique to remove NOx in flue gases from stationary sources. The low temperature SCR unit can be located downstream of the particulate control device and desulfurizer without heating, which results in systems of low energy consumption and retrofitting easily into the boiler system. However, there is still residual SO₂ remaining after desulfurizer. The deactivation of the low temperature SCR catalysts by SO₂ in the flue gases limits the utilization of these catalysts under practical conditions. So the catalyst deactivation by residue SO₂ should be considering.

Manganese oxides contained various types of labile oxygen which were believed to play an important role in the SCR catalytic circle (Park et al., 2001). Ceria (CeO₂) has been studied extensively due to its property as an oxygen reservoir, which stores and releases oxygen via the redox shift between Ce4+ and Ce3+ (Xu et al., 2008). Due to its redox properties, CeO₂ could enhance the oxidation of NO to NO2, which were favorable to the low-temperature SCR of NO with NH₃.

Mn-Ce mixed-oxide catalysts have also been studied as

low temperature SCR catalysts. Qi et al. (2004) developed MnO_x-CeO₂ mixed oxides with superior activity for lowtemperature SCR of NO with NH₃ in the absence of SO₂, but small concentrations of SO₂ poisoned the catalysts obviously. Supported Mn-Ce mixed-oxide catalysts, such as MnO_x-CeO₂/AC/C (Tang et al., 2007) and Mn-Ce/TiO₂ (Wu et al., 2008, 2009) have also exhibited high activity for low-temperature SCR of NO with NH₃. However, the activity of the catalysts decreased gradually along with the reaction in the presence of SO₂. Recently, Fe-based catalysts, such as Fe-TiO₂-PILC (Long and Yang, 1999), Fe_xTiO_v (Liu et al., 2008) and $Fe_xMn_{1-x}TiO_v$ (Liu et al., 2009) have been reported to be highly active and resistant to H₂O/SO₂ for SCR of NO with NH₃ in the medium temperature range. For Mn/TiO₂ catalysts, the addition of iron oxides was found to increase the NO conversion and resistance to H₂O/SO₂ for low temperature SCR of NO with NH₃ (Qi and Yang, 2003).

In our recent study, the catalyst of iron doped Mn-Ce/TiO₂ (Fe-Mn-Ce/TiO₂) seemed to be more active and more resistant to SO₂ than that of Mn-Ce/TiO₂. Therefore, Fe-Mn-Ce/TiO₂ was studied to remove NO with NH₃ at low temperature. The effects of H₂O and residue SO₂ in flue gases on the activity of the catalysts for lowtemperature SCR of NO with NH₃ were also investigated.

^{*} Corresponding author. E-mail: shenboxiong0722@sina.com

1 Materials and methods

1.1 Catalyst preparation

The preparation of Mn-Ce/TiO₂ was carried out by sol-gel method. All chemicals were obtained from Tianjin Guangfu Fine Chemical Research Institute (China). Butyl titanate was used as the precursor of titanium dioxide, manganese nitrate (Mn(NO₃)₂) and cerium nitrate (Ce(NO₃)₃) as the sources of manganese oxides and cerium oxides, respectively. A certain amount of butyl titanate (0.1 mol, analytical grade) and absolute alcohol (0.4 mol, analytical grade) were mixed under vigorous stirring at room temperature to obtain solution A, and acetic acid (0.3 mol, analytical grade) and absolute alcohol (0.4 mol, analytical grade) were dissolved in deionized water (0.4 mol) to obtain solution B. Subsequently, the solution B was dropped into the solution A under vigorous stirring to obtain transparent sol. A proper amount of $Mn(NO_3)_2$ and $Ce(NO_3)_3$ were added during this process. The molar ratios of Mn/Ti and Ce/Ti were 0.2:1 and 0.3:1, respectively. The transparent sol was kept at room temperature for several days, and then transformed to gel. Then the gel was dried at 80°C for 24 hr to remove organic solution and then calcined in muffle furnace at 500°C for 6 hr to obtain the catalysts of Mn-Ce/TiO₂. Following the same procedure, iron doped Mn-Ce/TiO₂ catalysts were prepared using ferric nitrate (Fe(NO₃)₃, analytical grade) as precursor. Fe(NO₃)₃ was added together with $Mn(NO_3)_2$ and $Ce(NO_3)_3$ during the catalyst preparation. The resulted catalysts were denoted as Fe(x)-Mn-Ce/TiO₂, where x represented the molar ratio of Fe/Ti, e.g., Fe(0.1)- $Mn-Ce/TiO_2$.

1.2 Catalytic activity test

The SCR activity of the catalysts for NO removal with NH₃ was carried out in a fixed-bed flow reactor. Six gas streams, 0.06 vol% NO, 0.06 vol% NH₃, 3 vol% O₂, 3 vol% H₂O (when used), 0.01 vol% SO₂ (when used) and pure N₂ in balance were used to simulate the flue gas. The catalytic activities for NO conversion to NO2 were also measured. The reactant gas consisted of 0.06 vol% NO, 3 vol% O2, and pure N2 in balance. In all the runs, the total gas flow rate was maintained at 300 mL/min over 0.5 g catalyst (60-80 mesh) corresponding to a gas hourly space velocity (GHSV) of 50,000 hr⁻¹. The feed gases were mixed and preheated in a chamber before entering the reactor. The water vapor was generated by passing N₂ through a heated gas-wash bottle containing deionized water (80°C). During the measurements, the concentrations of NO and NO2 at the inlet and outlet of the reactor were monitored by Flue Gas Analyzer (KM900/KM9106, Kane International Ltd., United Kingdom) equipped with NO, NO₂ and SO₂ sensor.

1.3 Catalyst characterization

A NOVA 2000 automated gas sorption system (Quantachrome Instruments, USA) was used to measure the physical properties of the catalysts at liquid N_2 temperature

(–196°C). The specific surface area, pore volume and pore size distribution of the catalysts were determined by BET and BJH methods. The powder X-ray diffraction (XRD) measurement was used to analyze the crystal structure of the catalysts with Rigaku D/Max 2500 system using Cu K_{α} radiation (40 kV, 100 mA) (Rigaku Corporation, Japan). The surface atomic state of the catalysts was determined by X-ray photoelectron spectroscopy (XPS) using Kratos Axis Ultra DLD spectrometer equipped with a monochromated Al K_{α} radiation (1486.6 eV) (Shimadzu Corporation, Japan). The binding energy calibration was checked by the line position of C1s as an internal reference (284.6 eV). The normal operating pressure in the analysis chamber was controlled to 10^{-9} Pa during the measurement.

The temperature programmed desorption (NH₃-TPD and NOx-TPD) was performed on tp-5080 automated chemisorption analyzer using 0.1 g catalysts. The experiment started with a pretreatment in pure N₂ at 500°C for 1 hr. Subsequently, the catalyst was cooled down to room temperature in pure N₂ and then saturated for 30 min with a stream of pure NH₃ (or 20 vol% NO + 3 vol% O₂/N₂) (total flow rate = 1 mL/min (STP)). After saturation, the catalysts were flushed in a pure N₂ flow for 30 min at 100°C. Finally, the TPD of NH₃ (or NOx) was carried out in pure N₂ at a heating rate of 5°C/min from 5°C/min from 100 to 400°C. The NH₃ (or NOx) desorption were measured quantitatively by a thermal conductivity detector (TCD).

2 Results and discussion

2.1 TiO₂ supported different metallic oxides

2.1.1 Activity of TiO₂ supported metallic oxides

In order to compare the activities of TiO₂ supported various metallic oxides, different catalysts such as $Fe(0.1)-Mn-Ce/TiO_2$, $Fe(0.1)-Mn/TiO_2$, $Fe(0.1)-Ce/TiO_2$, and Fe(0.1)/TiO₂ were also prepared by sol-gel method as Mn-Ce/TiO₂. In all samples, the ratios of Mn/Ti and Ce/Ti were 0.2:1 and 0.3:1, respectively. Figure 1 shows the NO conversion for the SCR of NO with NH3 over the catalysts of TiO₂ supported various metallic oxides at 80–260°C. It can be seen from Fig. 1 that the NO conversion over all the catalysts increased with increasing temperature. Among the catalysts, Fe(0.1)/TiO₂ showed the lowest activity and only 30% NO conversion was obtained when the temperature reached 260°C. For TiO₂ supported Mn-Ce, Fe-Mn and Fe-Ce catalysts, Mn-Ce/TiO₂ exhibited higher NO conversion than that over Fe(0.1)-Mn/TiO₂ and Fe(0.1)-Ce/TiO₂ catalysts. It should be noted that the catalytic activity of Mn-Ce/TiO2 was improved greatly after the iron doping, and the highest NO conversion was obtained over Fe(0.1)-Mn-Ce/TiO₂ especially within the low temperature range of 80–200°C. NO conversion (96.8%) was obtained over this catalyst at 180°C at a space velocity of 50,000 hr⁻¹. Based on the results from Fig. 15, it could be concluded that iron doping was favorable to improve the activity of Mn-Ce/TiO₂ for low-temperature

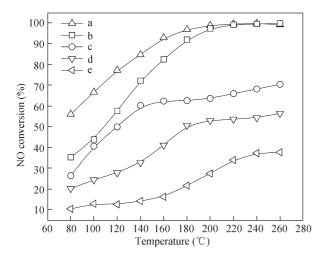


Fig. 1 NO conversion over TiO_2 supported metallic oxides at different temperatures. (a) Fe(0.1)-Mn-Ce/ TiO_2 ; (b) Mn-Ce/ TiO_2 ; (c) Fe(0.1)-Mn/ TiO_2 ; (d) Fe(0.1)-Ce/ TiO_2 ; (e) Fe(0.1)/ TiO_2 . Reaction conditions: 0.06 vol% NO, 0.06 vol% NH₃, 3 vol% O₂, balance N₂, GHSV 50,000 hr⁻¹, total flow rate 300 mL/min.

SCR of NO with NH₃.

2.1.2 XRD analysis of TiO₂ supported metallic oxides

Figure 2 shows XRD patterns of TiO₂ supported metallic oxides. For Fe(0.1)-Mn/TiO₂ and Fe(0.1)-Ce/TiO₂, the reflections provided typical diffraction peaks as attributive indicator of TiO₂ anatase phase $(2\theta = 25.2^{\circ}, 38.0^{\circ}, 48.1^{\circ},$ 54.5° , 62.8° , 70.3° , 75.3°) and TiO_2 rutile phase ($2\theta =$ 27.4° , 36.0° , 41.2°). It meant that TiO_2 in the catalysts existed in the form of anatase and rutile, and anatase was the dominating structure. For Mn-Ce/TiO₂, only strong peaks as indicator of TiO2 anatase phase were observed in the XRD pattern. It was known that TiO₂ anatase phase as the support of SCR catalyst was more active than TiO₂ rutile phase (Forzatti, 2000; Jiang et al., 2009). In above TiO₂ supported Mn-Ce, Fe-Mn and Fe-Ce catalysts, none of XRD patterns gave intense peaks for crystalline promoters (Mn-Ce, Fe-Mn and Fe-Ce), which indicated the high dispersion or poorly crystalline state of promoter atoms.

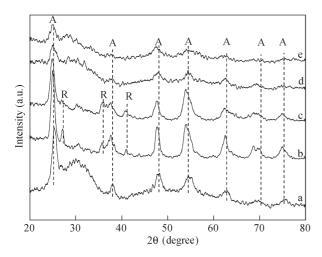


Fig. 2 XRD patterns of TiO_2 supported metallic oxides. Line a: Mn-Ce/ TiO_2 ; line b: Fe(0.1)-Mn/ TiO_2 ; line c: Fe(0.1)-Ce/ TiO_2 ; line d: Fe(0.1)-Mn-Ce/ TiO_2 ; line e: Fe/TiO_2 . A: anatase; R: rutile.

For Fe(0.1)-Mn-Ce/TiO₂, the intensity of all of peaks corresponded to TiO₂ anatase phase decreased compared with that on Mn-Ce/TiO₂ XRD curve, indicating that iron doping inhibited the appearance of TiO₂ anatase phase in the XRD pattern. And no intense peaks for Mn, Ce and Fe were observed in the XRD pattern of Fe(0.1)-Mn-Ce/TiO₂.

2.2 Fe-Mn-Ce/TiO₂ catalysts

2.2.1 Activity of Fe-Mn-Ce/TiO2 catalysts

According to the results from Fig. 1, iron doping had positive effect on the activity of the catalysts. In this work, it was interesting to clarify the effects of iron loadings on the activity of Fe-Mn-Ce/TiO $_2$ for low-temperature SCR of NO with NH $_3$. In Fig. 3, it could be seen that increasing the molar ratio of Fe/Ti from 0 to 0.1 enhanced the NO conversion in the temperature range of 80–260°C. For Fe(0.1)-Mn-Ce/TiO $_2$, 56.1% NO conversion was obtained at 80°C and nearly 100% NO conversion in a wide temperature range (200–260°C). Further increase of the molar ratio of Fe/Ti from 0.1 to 0.2 lowered the activity of the catalysts. Figure 3 shows that the SCR activity increased following the sequence: Mn-Ce/TiO $_2$ < Fe(0.15)-Mn-Ce/TiO $_2$ < Fe(0.15)-Mn-Ce/TiO $_2$ < Fe(0.11)-Mn-Ce/TiO $_2$ < Fe(0.15)-Mn-Ce/TiO $_2$ < Fe(0.11)-Mn-Ce/TiO $_2$ < Fe(0.15)-Mn-Ce/TiO $_2$ < Fe(0.11)-Mn-Ce/TiO $_2$

2.2.2 XRD analysis of Fe-Mn-Ce/TiO₂ catalysts

The XRD patterns of Fe-Mn-Ce/TiO₂ with different iron loadings are shown in Fig. 4. At low loadings (the molar ratio of Fe/Ti < 0.15), the XRD patterns showed the presence of TiO₂ anatase phase, while no visible phases of Fe, Mn and Ce were observed in the XRD patterns. The intensities of peaks due to TiO₂ anatase phase decreased with the increasing of the molar ratio of Fe/Ti. As the molar ratio of Fe/Ti further increased from 0.15 to 0.2, all XRD peaks for TiO₂ anatase phase disappeared. It indicated that TiO₂ as support was covered with iron which inhibited the appearance of TiO₂ anatase phase in the XRD patterns. Peña et al. (2004) has also reported the observations that no XRD phases were observed for Fe/TiO₂, which was due to the high iron loading on the surface of TiO₂.

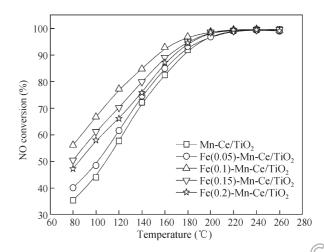
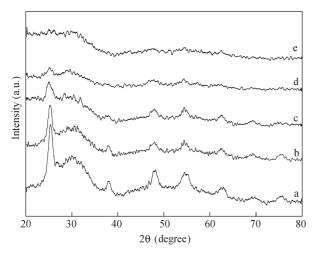
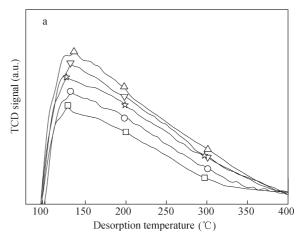



Fig. 3 NO conversion over Fe-Mn-Ce/TiO $_2$ catalysts with different Fe loadings. Reaction conditions: 0.06 vol% NO, 0.06 vol% NH $_3$, 3 vol% O $_2$, balance N $_2$, GHSV 50,000 hr $^{-1}$, total flow rate 300 mL/min.

Fig. 4 XRD patterns of Fe-Mn-Ce/TiO₂ catalysts with different Fe loadings. Line a: Mn-Ce/TiO₂; line b: Fe(0.05)-Mn-Ce/TiO₂; line c: Fe(0.1)-Mn-Ce/TiO₂; line d: Fe(0.15)-Mn-Ce/TiO₂; line e: Fe(0.2)-Mn-Ce/TiO₂.


2.2.3 $N_2\,$ adsorption and TPD analysis for Fe-Mn-Ce/TiO $_2$ catalysts

Brunauer-Emmett-Teller (BET) specific surface area, pore volume and pore diameter of the catalysts with different iron loadings are summarized in Table 1. For Mn-Ce/TiO2, the specific surface area was determined to be 87.46 m²/g, and pore volume was 0.23 mL/g. After doping with iron, the specific surface area and pore volume of the catalysts increased while pore diameter decreased slightly. Therefore, the effect of iron doping could help to increase the specific surface area of the catalysts compared with that of Mn-Ce/TiO₂. However, as the molar ratio of Fe/Ti increased from 0.1 to 0.2, the specific surface area of iron doped catalysts did not increase further with the addition of iron. From Fig. 3 and Table 1, it could be seen that the variation in specific surface area of iron doped catalysts was in good agreement with the catalytic activity. Fe(0.1)-Mn-Ce/TiO₂ with the largest specific surface area in all the samples showed the best SCR activity.

Temperature programmed desorption experiments of NH₃ and NOx have been carried out to investigate the adsorption of NH₃ and NOx on the catalysts. Figure 5a shows the results of the NH₃-TPD runs performed over Mn-Ce/TiO₂ and Fe-Mn-Ce/TiO₂ catalysts. In all the cases the spectra showed similar features, with a broad shape in a wide temperature range (100–400°C). This clearly indicated the presence of several NH₃ adsorbed species with different thermal stability on the surface of the catalysts. After iron doping, NH₃ adsorption capacity of the catalysts

 Table 1
 Physical properties of the catalysts with different Fe loadings

Sample	Specific surface area (m ² /g)	Pore volume (mL/g)	Pore diameter (nm)
Fe(0)-Mn-Ce/TiO ₂	87.46	0.2294	10.49
Fe(0.05)-Mn-Ce/TiO ₂	95.28	0.2612	10.96
Fe(0.1)-Mn-Ce/TiO ₂	121.6	0.2726	8.969
Fe(0.15)-Mn-Ce/TiO ₂	116.8	0.2730	9.631
Fe(0.2)-Mn-Ce/TiO ₂	103.4	0.2949	10.10

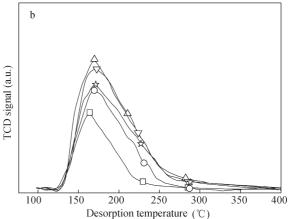


Fig. 5 TPD spectra of NH_3 (a) and NOx (b) over the catalysts.

increased greatly compared with that of Mn-Ce/TiO₂. The improvement in NH₃ adsorption capacity is believed to be beneficial to SCR reaction (Choi et al., 1996). NOx-TPD results over Mn-Ce/TiO₂ and Fe-Mn-Ce/TiO₂ catalysts are shown in Fig. 5b. All the catalysts exhibited one obvious NOx desorption peak centered at about 170°C. Similar with NH₃-TPD results, NOx adsorption capacity of Fe-Mn-Ce/TiO₂ catalysts also increased compared with Mn-Ce/TiO₂. Moreover, the NH₃ and NOx adsorption capacity of Fe-Mn-Ce/TiO₂ catalysts with different iron loadings changed in the same trend with its specific surface area as shown in Table 1. Therefore, it is feasible to believe that iron doped catalysts with large specific surface area and high NH₃ and NOx adsorption capacity exhibited high activity for low temperature SCR of NO with NH₃.

2.2.4 XPS analysis of Fe-Mn-Ce/TiO2 catalysts

Table 2 shows the atomic concentrations on the surface of the catalysts determined by XPS. From Table 2, the concentrations of Mn, Ce and Ti on the surface of the catalysts decreased while the concentration of Fe increased with the addition of iron. In all samples, the molar ratios of Mn/Ti and Ce/Ti in the bulk were 0.2 and 0.3, respectively, while the ratios of Mn/Ti and Ce/Ti on the surface of the catalysts increased greatly according to the XPS results, which indicated that Mn and Ce were easy to disperse on the surface of the catalysts. Fe also had high dispersion on the surface of iron doped catalysts. The ratio of Fe/Ti

Table 2	Atomic concentrations ((%)	on the surface of the cataly	ests determined by XPS
Table 2	Atomic concentrations (10	on the surface of the cataly	sis determined by Ari S

Samples	Ti	Mn	Mn/Ti	Ce	Ce/Ti	Fe	Fe/Ti	O_t		
								O_t	O_{α}	O_{β}
Mn-Ce/TiO ₂	18.64	5.67	0.30	8.0	0.43	0.00	0.00	67.66	25.03	42.63
Fe(0.1)-Mn-Ce/TiO ₂	15.56	5.29	0.34	7.16	0.46	3.53	0.23	68.46	33.78	34.68
Fe(0.2)-Mn-Ce/TiO ₂	13.12	4.33	0.33	6.13	0.47	6.24	0.48	70.18	32.98	37.2

 O_t is oxygen concentration, which is composed of lattice oxygen (denoted as O_{β}) and chemisorbed oxygen (denoted as O_{α}).

on the surface of Fe(0.1)-Mn-Ce/TiO₂ was 0.23, which was twice as much as that in the bulk. For Fe(0.2)-Mn-Ce/TiO₂, the surface Fe/Ti ratio reached 0.48 which was much higher than that in the bulk (Fe/Ti = 0.2). Due to the high surface Fe/Ti ratio, Fe would deposit on the surface of TiO2, which might lead to the disappearance of TiO2 anatase phase in the XRD patterns as shown in Fig. 4. It is also interesting to find that the ratios of Mn/Ti and Ce/Ti on the surface of iron doped catalysts increased compared with that of Mn-Ce/TiO₂. Therefore, it could be concluded that iron doped catalysts enhanced the dispersion of Mn and Ce on the surface of the catalysts. The oxygen concentrations (denoted as O_t) on the surface of the catalysts were found to increase after the doping of iron. O_t was composed of lattice oxygen (denoted as O_{β}) and chemisorbed oxygen (denoted as O_{α}). Lattice oxygen on the surface of Fe-Mn-Ce/TiO2 catalysts was found to decrease while chemisorbed oxygen was found to increase compared with that of Mn-Ce/ TiO_2 .

Figure 6a shows the Mn2p spectra of the catalysts investigated. For the catalysts of Fe-Mn-Ce/TiO₂ and Mn-Ce/TiO₂, two peaks at 641.7 and 653.3 eV corresponded to Mn2p_{3/2}-Mn2p_{1/2} doublet, which had been reported to be characteristic of a mixed-valence manganese system (Mn³⁺ and Mn⁴⁺) (Wu et al., 2008; Zhang et al., 2007). Additionally, a shake-up satellite with the binding energy of about 646 eV was also observed in the Mn2p spectra. Previous reports had also found the formation of the shake-up satellite, which could be attributed to the presence of Mn²⁺ species on the surface of the catalysts (Castro et al., 1989; Beyreuther et al., 2006). For iron doped catalysts, there was no energetic shift of the Mn2p spectra after the iron doping, but the concentration of Mn²⁺ decreased compared with that of Mn-Ce/TiO₂. The ratio of (Mn³⁺+

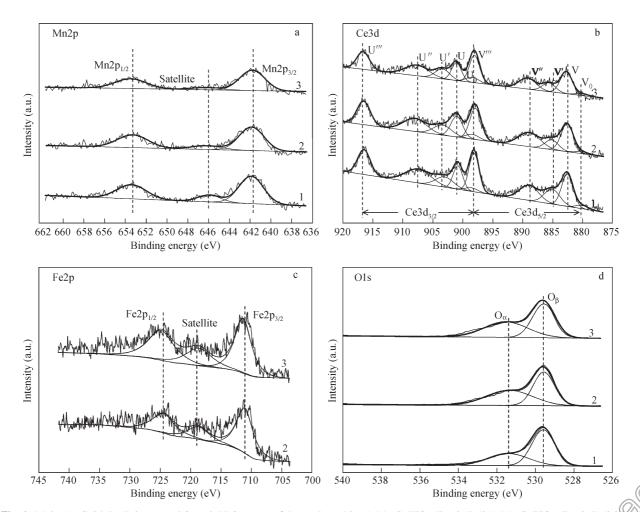
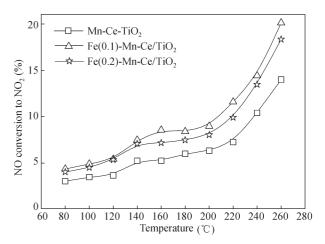
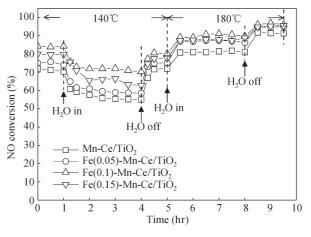


Fig. 6 Mn2p (a), Ce3d (b), Fe2p (c), and O1s (d) XPS spectra of the catalysts. Line 1: Mn-Ce/TiO₂; line 2: Fe(0.1)-Mn-Ce/TiO₂; line 3: Fe(0.2)-Mn-Ce/TiO₂.

 $\rm Mn^{4+})/Mn^{2+}$ was 6.89 for Mn-Ce/TiO₂, and it increased to 8.54 and 11.67 for Fe(0.1)-Mn-Ce/TiO₂ and Fe(0.2)-Mn-Ce/TiO₂, respectively. Therefore, it could be seen that iron doped catalysts enhanced the oxidation state of Mn on the surface of the catalysts.


The typical examples of observed Ce3d spectra are presented in Fig. 6b. According to previous reports (Patsalas and Logothetidis, 2003; Chang et al., 2006), XPS peaks denoted as V (882.5 eV), V" (888.8 eV), and V"" (898.4 eV) and U (901.0 eV), U" (907.5 eV), and U"" (916.7 eV) were assigned to Ce^{4+} species while U_0 (898.8 eV), U' (903.5 eV), V_0 (880.3 eV), and V' (884.9 eV) were attributed to Ce³⁺ species. According to this theory, tetravalent Ce4+ and trivalent Ce3+ were considered to coexist on the surface of the catalysts in our studies. The ratio of Ce⁴⁺/Ce³⁺ was calculated from the XPS spectra, inspired by an XPS investigation of Chang et al. (2006). The results showed that the ratio of Ce⁴⁺/Ce³⁺ was about 3.78, 4.60 and 3.97 for Mn-Ce/TiO₂, Fe(0.1)-Mn-Ce/TiO₂, and Fe(0.2)-Mn-Ce/TiO2, respectively. From the results, we could learn that Ce⁴⁺ oxidation state was predominant, and Ce³⁺ was weak compared with Ce⁴⁺. It should be noted that the ratio of Ce⁴⁺/Ce³⁺ increased after the doping of iron. Therefore, iron doped catalysts of Fe-Mn-Ce/TiO₂ had higher oxidation state of Ce than that of Mn-Ce/TiO₂. Moreover, Fe(0.1)-Mn-Ce/TiO₂ with the highest ratio of Ce⁴⁺/Ce³⁺ showed the best SCR activity, which indicated that there might be some relations between the activity and the ratio of Ce^{4+}/Ce^{3+} on the surface of the catalysts.

Fe2p spectra from the catalysts investigated contained Fe2p_{3/2} and Fe2p_{1/2} doublet with maximum intensities at 711.1 and 724.5 eV (Fig. 6c). It has been reported that Fe₂O₃ oxides are characterized by Fe2p_{3/2} binding energies in the range of 711.0–711.2 eV (Roosendaal et al., 1999; Doscostes et al., 2000). And the formation of weak shake-up satellite offset from the basic photoelectron lines of Fe2p_{3/2} by 8 eV towards higher binding energies indicated the predominant formation of Fe³⁺ ions (Bukhtiyarova et al., 2009). These data would help us to identify the spectra from our samples. The weak shake-up satellite peak at about 719 eV observed in the Fe2p spectra for iron doped catalysts indicated that all iron ions on the surface of the catalysts were exclusively in Fe³⁺ state.


The XPS spectra for O1s (Fig. 6d) showed that the O1s spectra gave two distinct peaks. The peak at 529.6-530.0 eV corresponded to lattice oxygen (denoted as O_β) while the one at 531.3–531.7 eV corresponded to chemisorbed oxygen (denoted as O_{α}) (Kang et al., 2007). The concentration of $O_{\boldsymbol{\beta}}$ from metal oxides decreased after the doping of iron. The ratio of total metal (Fe, Mn, Ce and Ti) to O_{β} was 0.76 for Mn-Ce/TiO₂, and it increased to 0.91 and 0.81 for Fe(0.1)-Mn-Ce/TiO₂ and Fe(0.2)-Mn-Ce/TiO₂, respectively. The reason for this change might be due to the dispersion of iron on the surface of the catalysts while Fe³⁺ needing less lattice oxygen compared with that of Mn⁴⁺ and Ce⁴⁺. The surface chemisorbed oxygen has been reported to be helpful in the oxidation of NO to NO₂ (Wu et al., 2008), which are favorable to the reduction of NO in the SCR process. From Fig. 6d and Table 2, O_{α} concentration on the surface of the catalysts increased greatly after the doping of iron. Figure 7 shows the activity of Mn-Ce/TiO₂ and Fe-Mn-Ce/TiO₂ catalysts for the oxidation of NO to NO₂ at 80–260°C. The NO conversion to NO₂ over Fe(0.1)-Mn-Ce/TiO₂ and Fe(0.2)-Mn-Ce/TiO₂ showed an obvious enhancement compared with Mn-Ce/TiO₂. Fe(0.1)-Mn-Ce/TiO₂ with the highest O_{α} concentration on the surface of the catalysts showed the best SCR activity at low temperature. Therefore, increasing chemisorbed oxygen concentration on the surface of the catalysts might have positive effect on the SCR reaction, which was consistent with the results from the SCR activity tests.

2.2.5 Activity of Fe-Mn-Ce/TiO $_2$ in the presence of H_2O and SO_2

Because the low temperature SCR catalyst is usually deactivated mainly by water vapor (H_2O) and residue SO_2 in the flue gases, it is necessary to investigate the resistance of the catalysts to H_2O and SO_2 at low temperature. Figure 8 compares the NO conversion over Fe-Mn-Ce/TiO₂ and

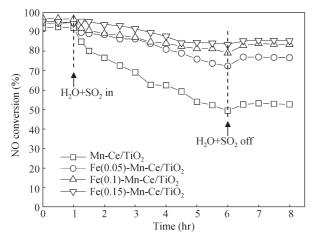

Fig. 7 Oxidation of NO to NO $_2$ over Mn-Ce/TiO $_2$ and Fe-Mn-Ce/TiO $_2$ catalysts. Reaction conditions: 0.06 vol% NO, 3 vol% O $_2$, balance N $_2$, GHSV 50,000 hr $^{-1}$, total flow rate 300 mL/min.

Fig. 8 Effect of H₂O on NO conversion over Mn-Ce/TiO₂ and Fe-Mn-Ce/TiO₂ catalysts. Reaction conditions: 0.06 vol% NO, 0.06 vol% NH₃, 3 vol% O₂, 3 vol% H₂O (when used), balance N₂, GHSV 50,000 hr total flow rate 300 mL/min.

Mn-Ce/TiO₂ at 140 and 180°C in the presence of 3 vol% H₂O. Before the addition of H₂O, the SCR reaction has been stabilized for 1 hr at 140°C. When 3 vol% H₂O was added into the flue gases, the NO conversion at 140°C over Fe(0.1)-Mn-Ce/TiO₂ decreased from 81.2% to 70%. After 3 hr SCR reaction in the presence of 3 vol% H₂O, H₂O was removed from the flue gases and the NO conversion almost recovered. After another 1 hr of steady reaction at 140°C (the NO conversion almost stabilized at 81%), the SCR temperature increased to 180°C and 3 vol% H₂O was fed once again. It was found that the NO conversion almost kept a steady level of 90% within 3 hr. When the supply of H₂O was ended, the NO conversion restored to 96%, almost near 96.5% conversion at 180°C in the absence of H₂O. Similar effects of H₂O on the NO conversion were observed over Mn-Ce/TiO₂ catalysts. The results clearly indicated that H₂O exhibited a reversible, inhibiting effect on the activity of the catalysts at different temperatures. The reasons should be that the presence of gas phase water in the flue gases inhibited the reactant adsorption over the catalyst surface and the reduced adsorption of reactant caused the reversible effect on the activity of the catalysts. From Fig. 8, it can also be seen that H₂O exhibited much more severe effect on NO conversion of Mn-Ce/TiO₂ than that of Fe-Mn-Ce/TiO₂. NO conversion over Mn-Ce/TiO₂ decreased from 70% to 56% at 140°C in the presence of H₂O and increased from 81% to 92% at 180°C after cutting off of the H₂O supply. The SCR activity in the presence of H₂O increased following the sequence: Mn-Ce/TiO₂ < Fe(0.05)-Mn-Ce/TiO₂ < Fe(0.15)-Mn-Ce/TiO₂ < Fe(0.1)-Mn-Ce/TiO₂.

The synergistic effect of H_2O and SO_2 on the NO conversion over Fe-Mn-Ce/TiO₂ catalysts is shown in Fig. 9 and compared with that over Mn-Ce/TiO₂ at 180°C. As shown in Fig. 9, when 3 vol% H_2O and 0.01 vol% SO_2 were added into the flue gases, the NO conversion over Mn-Ce/TiO₂ decreased from the initial 91.8% to 49.5% in 5 hr. The deactivation of Mn-Ce/TiO₂ by H_2O and SO_2

Fig. 9 Effect of H_2O and SO_2 on NO conversion over Mn-Ce/TiO₂ and Fe-Mn-Ce/TiO₂ catalysts. Reaction conditions: 0.06 vol% NO, 0.06 vol% NH₃, 3 vol% O₂, 3 vol% H₂O (when used), 0.01 vol% SO₂ (when used), balance N₂, GHSV 50,000 hr⁻¹, total flow rate 300 mL/min.

at low temperature was consistent with the observations over other SCR catalysts in previous literatures (Wu et al., 2009; Casapu et al., 2009). At low temperature, SO₂ could be adsorbed by metal oxides in the catalysts and produced metal sulphates. On the other hand, some ammonium sulfates (such as NH₄HSO₄ and (NH₄)₂SO₄) would be formed by the reaction between SO₂ and the reactants (NH₃ and O₂). The formed metal sulphates and ammonium sulfates would occupy active sites on the surface of catalysts and gradually deactivated the catalysts along with the reaction. Compared with the deactivation of Mn-Ce/TiO₂ by H₂O and SO₂, the deactivation of the catalysts was reduced after the doping of iron. Moreover, it was found that the resistance of iron doped catalysts to H2O and SO2 was enhanced with the increasing of iron loadings. Fe(0.15)-Mn-Ce/TiO₂ showed higher resistance to H₂O and SO₂ than 0.05 and 0.1 of iron doped catalysts, and still provided 83.8% NO conversion in further 5 hr. The promotion effect on resistance to H₂O and SO₂ has also been reported for MnO_x-CeO₂ (Qi et al., 2004) catalysts. It was indicated that the addition of iron oxide significantly decreased the rate of formation of sulfate, thus inhibited deactivation (Qi and Yang, 2003). It could also be seen from Fig. 9 that the NO conversion over all samples recovered slightly after H₂O and SO₂ were turned off. This might be due to the recovery from the reversible inhibition by water vapor as shown in Fig. 8.

3 Conclusions

Iron doped catalysts of Fe-Mn-Ce/TiO₂ exhibited high activity for low temperature SCR of NO with NH₃ at $80\text{--}260^{\circ}\text{C}$. The iron doping enhanced the resistance of Fe-Mn-Ce/TiO₂ to H₂O and SO₂ greatly. Among the iron doped catalysts, Fe(0.1)-Mn-Ce/TiO₂ showed the highest SCR activity in the absence of H₂O and SO₂, and Fe(0.15)-Mn-Ce/TiO₂ exhibited the best resistance to H₂O and SO₂. The inhibiting effect of H₂O on the activity of the catalysts at 140 and 180°C was reversible, but the deactivation by SO₂ hardly recovered.

BET and NH₃-TPD results showed that iron doping could help to increase the specific surface area and NH₃ adsorption capacity of the catalysts. It was known from XPS analysis that iron valence state on the surface of the catalysts were in Fe³⁺ state. Iron doping enhanced the dispersion and oxidation state of Mn and Ce on the surface of the catalysts. The oxygen concentrations on the surface of the catalysts were found to increase after the doping of iron. Lattice oxygen on the surface of Fe-Mn-Ce/TiO₂ catalysts was found to decrease while chemisorbed oxygen was found to increase compared with that of Mn-Ce/TiO₂.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 90610018, 50976050), the New Century Excellent Talents in University (No. NCET-07-0457) and the National Key Technologies R&D Program of Tianjin (No. 09ZCKFSH01900).

References

- Beyreuther E, Grafström S, Eng L M, 2006. XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. *Physical Review B*, 73 (15): 155425.
- Bukhtiyarova M V, Ivanova A S, Plyasova L M, Litvak G S, Rogov V A, Kaichev V V et al., 2009. Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe)-substituted Sr(La) aluminates. *Applied Catalysis A: General*, 357(2): 193–205.
- Castro V D, Polzonetti G, 1989. XPS study of MnO oxidation. *Journal of Electron Spectroscopy and Related Phenomena*, 48(1): 117–123.
- Choi E Y, Nam I S, Kim Y G, 1996. TPD study of mordenitetype zeolites for selective catalytic reduction of NO by NH₃. *Journal of Catalysis*, 161(2): 597–604.
- Chang L H, Sasirekha N, Chen Y W, Wang W J, 2006. Preferential oxidation of CO in H₂ stream over Au/MnO₂-CeO₂ catalysts. *Industrial & Engineering Chemistry Research*, 45 (14): 4927–4935.
- Casapu M, Kröcher O, Elsener M, 2009. Screening of doped MnO_x-CeO₂ catalysts for low-temperature NO-SCR. *Applied Catalysis B: Environmental*, 88(3-4): 413–419.
- Doscostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M, 2000. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. *Applied Surface Science*, 165(4): 288–302.
- Forzatti P, 2000. Environmental catalysis for stationary applications. *Catalysis Today*, 62(1): 51–65.
- Jiang B Q, Liu Y, Wu Z B, 2009. Low temperature selective catalytic reduction of NO on MnO_x/TiO₂ prepared by different methods. *Journal of Hazardous Materials*, 162(2-3): 1249–1254.
- Kang M, Park E D, Kim J M, Yie J E, 2007. Manganese oxide catalysts for NOx reduction with NH₃ at low temperatures. *Applied Catalysis A: General*, 327(2): 261–269.
- Long R Q, Yang R T, 1999. Selective catalytic reduction of nitrogen oxides by ammonia over Fe³⁺-exchanged TiO₂-pillared clay catalysts. *Journal of Catalysis*, 186(2): 254–268.
- Liu F D, He H, Zhang C B, 2008. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH₃ in the medium temperature range. *Chemical Communications*, (17): 2043–2045.

- Liu F D, He H, Ding Y, Zhang C B, 2009. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH₃. Applied Catalysis B: Environmental, 93(1-2): 194– 204
- Park T S, Jeong S K, Hong S H, Hong S C, 2001. Selective catalytic reduction of nitrogen oxides with NH₃ over natural manganese ore at low temperature. *Industrial & Engineering Chemistry Research*, 40(21): 4491–4495.
- Patsalas P, Logothetidis S, 2003. Structure-dependent electronic properties of nanocrystalline cerium oxide films. *Physical Review B*, 68(3): 035104.
- Peña D A, Uphade B S, Smirniotis P G, 2004. TiO₂-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH₃: I. Evaluation and characterization of first row transition metals. *Journal of Catalysis*, 221(2): 421–431.
- Qi G S, Yang R T, 2003. Low-temperature selective catalytic reduction of NO with NH₃ over iron and manganese oxides supported on titania. *Applied Catalysis B: Environmental*, 44(3): 217–225.
- Qi G S, Yang R T, Chang R, 2004. MnO_x-CeO₂ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH₃ at low temperatures. *Applied Catalysis B: Environmental*, 51(2): 93–106.
- Roosendaal S J, van Asselen B, Elsenaar J W, Vredenberg A M, 1999. The oxidation state of Fe(100) after initial oxidation in O_2 . Surface Science, 442(3): 329–337.
- Tang X L, Hao J M, Yi H H, Li J H, 2007. Low-temperature SCR of NO with NH₃ over AC/C supported manganese-based monolithic catalysts. *Catalysis Today*, 126(3-4): 406–411.
- Wu Z B, Jin R B, Liu Y, Wang H Q, 2008. Ceria modified MnO_x/TiO_2 as a superior catalyst for NO reduction with NH₃ at low-temperature. *Catalysis Communications*, 9(13): 2217–2220.
- Wu Z B, Jin R B, Wang H Q, Liu Y, 2009. Effect of ceria doping on SO₂ resistance of Mn/TiO₂ for selective catalytic reduction of NO with NH₃ at low temperature. *Catalysis Communications*, 10(6): 935–939.
- Xu W Q, Yu Y B, Zhang C B, He H, 2008. Selective catalytic reduction of NO with NH₃ over a Ce/TiO₂ catalyst. *Catalysis Communications*, 9(6): 1453–1457.
- Zhang X, Ji L Y, Zhang S C, Yang W S, 2007. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. *Power Sources*, 173(2): 1017–1023.

