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Abstract
Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas

production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile
acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied
to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In
all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick
response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic
loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate
was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that
the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk <
0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.
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Introduction

Anaerobic digestion is the biological wastewater treat-
ment by varieties of microorganisms to degrade the organic
substances to methane and carbon dioxide without aeration
(Cakmakci, 2007; Punal et al., 2001; Steyer et al., 1999).
Anaerobic hybrid sludge bed-fixed film reactor, sludge
bed combined with nylon fiber fitted inside the reactor,
is one of the high rate anaerobic reactors and widely
used in agro-industries (Chaiprasert et al., 2003). The
anaerobic process is sensitive to the changing environ-
mental conditions inside the reactor, hence the control
in the stability of the system is an important factor for
reactor performance. Influent organic loading rate (OLR)
and hydraulic flow rate can be used to indicate the stress
imposed in the microbial population. If there are improper
OLR or feed composition into the reactor, it will affect the
stability of the anaerobic digestion process by increasing
volatile fatty acids (VFAs) accumulation leading to a pH
drop and resulted in a decrease in performance of COD
removal efficiency and methane production, which may
easily make the process fail at the end (Aygun et al.,
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2008; Sanchez et al., 2005; Ahring et al., 1995). It requires
several weeks to several months to recover the system
depended on how serious the problem is. To control this
problem, various common variables of anaerobic process
including pH, alkalinity (Alk), total volatile acids (TVA),
COD removal efficiency and biogas production and its
composition should be routinely analyzed and monitored
to ensure the stability and performance of the system. It
is therefore a great challenge to have an anaerobic control
system to make this process more reliable and usable for
wastewater treatment and biogas production.

The developments of the control system for the anaer-
obic digestion system are important to keep the process
stabile and to maintain high reactor performance. Many
control systems have been developed to control these
variables in the anaerobic digestion system, but most
of them are too complex and some are expensive. In
recent years, the interest in neural networks or fuzzy
logic controls has been developed to predict the process
variables and control in various systems. Neural network
and fuzzy logic control systems have found a wide range
of the control application to provide a rapid response to
avoid process deterioration and failure. Neural network
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is a useful tool for modeling the complicated nonlinear
and multivariable processes such as chemical engineering
process, bioprocess, aerobic wastewater treatment process
(Koprinkova-Hristova and Patarinska, 2008; Hong et al.,
2007; Zeng et al., 2007; Wiltowski et al., 2005; Hamed et
al., 2004; Palau et al., 1996). Especially as there are several
of application studies of the neural network in anaerobic
digestion system (Bestamin et al., 2007; Rangasamy et al.,
2007; Strik et al., 2005; Holubar et al., 2002; Horiuchi et
al., 2001; Guwy et al., 1997; Wilcox et al., 1995). Theory
of fuzzy logic was introduced in 1965 (Takeshi, 1992). The
advantage of fuzzy logic is that it does not require complex
mathematical equations. Fuzzy logic systems have been
applied in many of bioprocess and chemical engineering
process (Huang et al., 2009; Maidi et al., 2008; Karakuzu
et al., 2006; Traore et al., 2005; Sousa and Almeida, 2001).
Generally, it is a new method and has advanced the control
of the anaerobic digestion system (Perendeci et al., 2008;
Carlos et al., 2007; Punal et al., 2003; Polit et al., 2002;
Estaben et al., 1997). Either several neural network models
or fuzzy logic control systems are used as a complementary
tool in the design and development of intelligent systems
in various types of anaerobic suspended biomass reactors
or anaerobic attached biofilm reactors except in anaerobic
hybrid sludge bed-fixed film reactor (AHR).

In the present study, the integration of the neural
network model and fuzzy logic control system, namely
a neural-fuzzy control system for an anaerobic reactor
is firstly developed. An adaptive intelligent system of a
neural-fuzzy control system is established for the AHR.
AHR used in this study was developed by the combination
of suspended and attached growth biomass in the reactor
(Chaiprasert et al., 2003). The neural network models
were based on the backpropagation algorithm to predict
important process stability variables such as pH, Alk and
TVA. A neural network shows a valuable property in a
trained neural network providing a correct matching in the
form of output data for a set of previous unseen input data.
Computing frameworks based on the fuzzy set theory and
fuzzy if-then rules in the fuzzy logic system to control

Fig. 1 Schematic layout of anaerobic hybrid reactor (AHR).

influent feed flow rate in the laboratory-scale AHR. This
study is expected to obtain a neural-fuzzy control system as
the prediction model and controlling system for the AHR
to keep process stabile with high reactor performance in
wastewater treatment and biogas production. The approach
used in this study will make AHR more reliable, usable and
give quicker process response.

1 Materials and methods

1.1 Anaerobic hybrid reactor

A 12.32-L laboratory-scale AHR in Fig. 1 was made of
acrylic. The inner diameter and height of the reactor was 14
and 80 cm, respectively with a working volume of 10.78 L.
The supporting media used in the packed zone of an AHR
was nylon fiber with a density of 23.41 kg/m3 and placed in
the upper half of the reactor for microbial attachment. The
bottom half of reactor contained suspended biomass called
the sludge zone. The composition of synthetic wastewater
was followed by Li and Noike (1992) using glucose as the
representative of organic carbon source. The preparation
of basal medium components including vitamin solution
prepared in unit of mg/L and mineral solution was also
explained by Romsaiyud et al. (2009).

1.2 Operating conditions of anaerobic hybrid reactor

During the operation of an AHR, the influent synthetic
wastewater was continuously fed up flow into the AHR
by a peristaltic pump with glucose concentrations in the
range of 3–12 g/L. The reactor operated under the ambient
temperature (30–35°C). The suitable daily influent feed
flow rate for the experiments of the initial phase operation
(Phase I) and the recovery phase operation (Phase III) was
adjusted everyday following the value that was computed
by the neural-fuzzy control system. In addition, phase
II (overload operation) was carried out by two folds of
the computed influent feed flow rate together with OLR.
Experimental data was mainly collected effluent during the
operating period for analysis of reactor stability and perfor-
mance in wastewater treatment and biogas production.

1.3 Analytical procedure

To achieve process stability and performance, process
variables such as pH, Alk, TVA, COD removal, biogas
composition and biogas production rate were analyzed
daily. TVA and Alk were determined by titration method
of 2310 B and 2320 B-Standard methods (APHA, 1995),
respectively. The COD concentration was analyzed accord-
ing to a closed reflux by the colorimetric method of 5220
D-Standard methods (APHA, 1995). Biogas production
was measured by a gas counter that uses the concept
of water replacement. The composition of biogas was
analyzed by gas chromatography equipped with thermal
conductivity detector (GC-TCD, Shimadzu GC-9A, Japan)
and Porapak-N 80/100 column.

1.4 Development of neural-fuzzy control system

The controlling of the AHR using the neural-fuzzy
control system is presented in Fig. 2, which consisted of
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two parts, the neural network model (from appendix A)
and the fuzzy logic control system (from appendix B). The
neural network model was used to predict the pH, Alk
and TVA at present day time t and then the fuzzy logic
control system use this predicted value as input variables
to calculate the daily influent feed flow rate of the AHR.

2 Results and discussion

The neural-fuzzy control system was developed by
applying the neural network model design in type of a
four-layer feedforward consisting of 1 input layer, 2 hidden
layers and 1 output layer based on the backpropagation
algorithm for predicting the variables pH, Alk and TVA
at time t (present day) and fuzzy logic control system
using these predicted variables for calculating the influent
feed flow rate into the AHR. The daily computed influent
flow rate from the control system was used to feed into
laboratory scale of the AHR every day. To test the control
system and its response for wastewater treatment and
biogas production in the AHR, three phases of experiments
were carried out. The patterns of influent feed flow rate
corresponded to an OLR in phase I–III are shown in Fig. 3.
The initial phase (Phase I) was the start-up period of
the reactor with the influent flow rate fed in the range
of 1.79–3.05 L/day by following the computation of the
neural-fuzzy control system for 30-day operation. To check

Fig. 2 Schematic of the controlling of anaerobic hybrid reactor using
neural-fuzzy control system.

the response of the control system, the second phase (Phase
II) was done by overload feeding shock with two folds of
the computing influent flow rate together with two folds
OLR. The influent feeding flow rate and OLR were in
the range of 2.23–6.75 L/day and 1.86–5.64 g/(L·day) for
10-day operation, respectively. The last phase (Phase III)
was the recovery phase with the influent flow rate fed
at the range of 2.08–3.22 L/day by following the com-
putation of the control system for 26-day operation. The
efficiency of the neural-fuzzy control system explained in
terms of performance and stability during the experiment.
The determination of the AHR performance and stability
was evaluated by the change of pH, Alk, TVA, biogas
production, biogas composition and COD removal in the
reactor.

2.1 Process response and control of AHR in the initial
phase I operation

In phase I in Fig. 3, the influent glucose concentrations
of 3–7 g/L were fed at a flow rate of 1.79–3.05 L/day to
the AHR. The initial OLR was 0.56 g/(L·day) and step
increased to 1.98 g/(L·day) at 3.53–6.02 days of hydraulic
retention time (HRT).

The typical factors should be monitored to evaluate
the controlling and process response in terms of stability
and performance. The pH, Alk and TVA were used for
investigating the stability of the anaerobic system and these
factors are related variables which were analyzed everyday
during the experiment as input data set for controlling the
AHR by neural-fuzzy control system. Removal of COD
and biogas production during operation were determined
to evaluate the reactor performance. The results shown in
phase I in Fig. 4a, pH values were varied in range of 6.68–
6.94 during the operation period of 30 days and system pH
was suitable for methanogens to obtain maximal biogas
yield in anaerobic digestion system. Liu et al. (2008)
described the optimum pH to obtain the maximum biogas
yield in the anaerobic digestion is in range of 6.50–7.50.
The pH in the system was quite stable and could be
maintained at 6.80 during the operation in phase I. It was
related to Alk and TVA values in the reactor at the same

Fig. 3 Pattern of feed flow rate and organic loading rate (OLR) in phase
I–III during the operation period.
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Fig. 4 Profile of pH, Alk and TVA in system (a), COD removal, biogas
and methane production (b), and methane and carbon dioxide content in
biogas (c) during operation period of phase I, II and III.

time. Less accumulation of volatile fatty acids (< 600 mg/L
as acetic acid) and high Alk (> 1500 mg/L as CaCO3) were
found in the system. The alkalinity or buffer capacity level
from 1000–5000 mg/L as CaCO3 will be able to maintain
a stable pH in the anaerobic digester (Wilcox et al., 1995;
Graef and Andrews, 1974). For the stable process (reactor
stability), Switzenbaum et al. (1990) reported that the ratio
of TVA (as acetic acid) to Alk (as calcium carbonate)
should have the ratio in the range of 0.1–0.35. The control
feeding flow rate by neural-fuzzy system, the TVA to Alk
ratio inside the reactor could be maintained at a value of

less than 0.4, indicating the reactor having a high buffer
capacity reflected to high process stability. In this phase
for OLR 0.5–2.0 g/(L·day) and 5.5–6.0 days HRT, it was
sufficient food and contact time for methanogenesis within
the suitable environmental condition at pH 6.7–6.9, TVA
of 320–650 mg/L as acetic acid, Alk of 1530–1990 mg/L
as CaCO3 and TVA/Alk of 0.21–0.33.

COD removal and biogas production are the important
parameters in the anaerobic system that can indicate the
performance of the system. The results of biogas and
methane production, COD removal and biogas composi-
tion during the 30 days control operation of the AHR by
neural-fuzzy control system are presented in phase I in Fig.
4b and Fig. 4c, respectively. The result of the COD removal
was high in the range of 82%–91% and resulted in biogas
production and its composition. High methane content in
biogas was found at 62%–67%. The biogas production
increased following the increasing OLR from 0.5 to 1.98
g/(L·day). The biogas and methane production values were
increased from 1.84 to 8.92 L/day and 1.19 to 5.88 L/day,
respectively. Biogas and methane yields were high at 0.43–
0.49 and 0.27–0.32 m3/kg COD removed, respectively.

The neural-fuzzy control system application in the initial
phase I was able to control an AHR in high stability and
performance in wastewater treatment and biogas produc-
tion with pH close to 7, TVA/Alk < 0.4, COD removal >
80%, biogas yield 0.45 m3/kg COD removed and methane
yield 0.30 m3/kg COD removed.

2.2 Overload shock and process response in phase II
operation

In phase II in Fig. 3, during day 31–40, overload shock
was carried out by setting the experiment using the double
influent feed flow rate from the computational control sys-
tem at 4.15–6.75 L/day with 9 g/L of glucose concentration
corresponded to double OLR at 3.46–5.64 g/(L·day) and
HRT at 1.60–2.60 days. This incident occurred in short
time. During five days of continuous shock loading, the
control system responded to the decreasing influent feed
flow rate down to optimize process into good stability and
performance every time of the intended shock loading. The
process response after shock loading is shown in phase II
in Fig. 4a and phase II in Fig. 4b.

The AHR response for pH, TVA and Alk during shock
loading in a short time for 5 days is shown in phase II in
Fig. 4a. TVA after shock loading was increased from 550
to 1300 mg/L as acetic acid, whereas Alk was not shift
much (2000–2200 mg/L as CaCO3) leading to system pH
was slightly dropped from 6.94 to 6.68. The ratio of TVA to
Alk was increased from 0.26 to 0.56. This ratio of TVA/Alk
was slightly more than 0.4, it represented that the AHR
initiated to process upset.

The process responses of performance in terms of COD
removal and biogas production are shown in phase II in
Fig. 4b. The response of COD removal after shock loading
decreased from 89% to 81% while the yields of biogas and
methane were slightly decreased from 0.46 to 0.39 m3/kg
COD removed and 0.30 to 0.25 m3/kg COD removed,
respectively. It was affected by the short HRT (< 3 days),
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which not enough contacting time for methanogens to
convert acetic acid to methane (Chaiprasert et al., 2003).
The methane content in biogas (phase II in Fig. 4c) was
slightly decreased from 66% to 62%. When increasing
OLR it was found that the biogas and methane production
were increased from 7.76 to 19.11 L/day and from 4.98 to
12.44 L/day, respectively but yields of biogas and methane
were tended to decrease. It was the warning sign that the
system was initiated upset from the short shock loading.

In order to check the response of the neural-fuzzy
control system, the system was disturbed by increasing
the feed flow rate more than the normal feed flow rate.
The process was responded by slight decreasing in pH,
COD removal and biogas and methane yields. It was a
sign to show that the process stability and performance
will get upset and failure in the future if the system was
longer overload operation. The developed neural-fuzzy
control system had a rapid response and was sensitive to
the intended overload. After shock loading the AHR in the
short time, the obtained data set with affected to the process
stability such as pH, TVA and Alk were input data to the
control system. Then, the next day for the influent feeding
according to the calculated feed flow rate by this control
system was responded and controlled the system to feed
influent in lower flow rate.

2.3 Control of AHR in the process recovery phase III
operation

During day 41–67, in phase III in Fig. 3 was operated
with the influent feed flow rate to the AHR followed
by the computational value from the neural-fuzzy control
system. This phase III was called the recovery phase and
operated for 26 days to determine the process stability
and performance. The calculated influent flow rate from
the control system at the first day of phase III (day 41)
was computed to reduce at 2.57 L/day from overload 6.75
L/day of phase II. The calculated influent feed flow rate
in phase III for 26-day operation was in the range of
2.08–3.22 L/day. The concentration of feed glucose was
12 g/L. The reactor was operated at 2.32–3.58 g/(L·day)
OLR and 3.35–5.18 days HRT. Process responses in term
of stability and performance in wastewater treatment and
biogas production are shown in phase III in Fig. 4a and
phase III in Fig. 4b, respectively.

The result in process response of stability (phase III in
Fig. 4a) showed TVA was decreased in the range of 650–
950 mg/L as acetic acid compared to phase II while Alk
was in the same latitude (2000–2500 mg/L as CaCO3). The
ratio of TVA/Alk was less than 0.4 (0.30–0.39) and pH was
reflected to 6.73–6.90. The less TVA accumulation at high
buffer capacity (Alk) and higher pH can maintain process
stability was occurred after the AHR was followed by the
control of the neural-fuzzy system.

Phase III in Fig. 4b describes the AHR performance
in the COD removal, biogas and methane production and
phase III in Fig. 4c shows the biogas composition during
the control of the AHR by neural-fuzzy control system.
The results indicate that the COD removal efficiency still
exceeds more than 85% during the operating time. Biogas

and methane production were in range of 9.89–13.39 L/day
and 6.43–8.86 L/day, respectively. Methane content in
biogas was found in 63%–67%. The biogas and methane
yields were in the range of 0.40–0.47 and 0.26–0.31 m3/kg
COD removed, respectively.

The high stability and performance of the AHR when
controlled by the neural-fuzzy control system show similar
results from the experimental study of Chaiprasert et al.
(2003) using cassava starch wastewater. The neural-fuzzy
control system application in the recovery phase III was
able to control an AHR back to the high stability and per-
formance in wastewater treatment and biogas production
with pH close to 7, TVA/Alk < 0.4, COD removal > 85%,
biogas yield 0.45 m3/kg COD removed and methane yield
0.30 m3/kg COD removed.

3 Conclusions

The neural-fuzzy control system was designed under
the concept of the combination of the neural network
model and fuzzy logic control system. The developed
neural-fuzzy control system was used with the available
operational input variables (pH, TVA and Alk) for control-
ling the influent feed flow rate into the AHR under different
system situations in three phases of the initial operational
phase, overload influent feeding phase and the recovery
operational phase. The process response and control of
the AHR in wastewater treatment and biogas production
under the controlling of feed flow rate by the neural-
fuzzy control system, the experimental results showed
the reactor succeeds in keeping the stability and high
reactor performance. The controlling results by the neural-
fuzzy control system during the operating AHR were
evaluated by changing pH, Alk, TVA, biogas production,
biogas composition and COD removal efficiency. COD
removal efficiency can be achieved more than 80%, and
high methane yield and good process stability were found
during this experiment. The neural-fuzzy control system
in this study is expected to have a great application for
controlling these process variables of the AHR.
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Appendix

A. Neural network model design

This study was carried out to develop the neural network
model to predict the variables pH, Alk and TVA at present
day time t in the AHR. All of the neural network models
in this study were developed by using Matlab program
in MATLAB 6.1 (The Mathworks Inc., USA). These
structures of neural network model for predicting pH, Alk
and TVA at present day time t were designed in four-layer
style feedforward neural network that consists of 1 input
layer, 2 hidden layers, and 1 output layer. The input and
output parameters of the neural network model were shown
in Table A1.

Table A1 Input and output parameters of pH, Alk and TVA predicted
model

pH predicted model Alk and TVA predicted model

Inputa Inputa

I1 pHt−1 I11 pHt−1
I2 pHt−2 I12 pHt−2
I3 Alkt−1 I13 pHt−3
I4 Alkt−2 I14 Alkt−1
I5 TVAt−1 I15 Alkt−2
I6 TVAt−1 I16 Alkt−3

I17 TVAt−1
I18 TVAt−2
I19 TVAt−3

Outputb Outputb

O1 pHt O11 Alkt , TVAt

a t-3: value at last 3 days; t-2: value at last 2 days; t-1: value at last 1 day
or yesterday; b t: value at present day.

The data were collected from the operational experiment
of the lab-scale AHR treated synthetic wastewater. It was
normalized between 0 and 1 before using to train and
test (or validate) the neural network model. The data was
normalized by Eq. (A1).

Xnorm =
Xn − Xmin

Xmax − Xmin
(A1)

where, Xn is the value of original variable; Xmin and Xmax
are the minimum and maximum values of the original
variable, respectively; Xnorm is the normalized variable. All
of the neural network models in this study used the sigmoid
function as a transfer function (f ) in each neural network
layers and the equation of the sigmoid function shown in
the following Eq. (A2).

f (x) =

(
1

1 + exp(−x)

)
(A2)

The neural network models to predict pH, Alk and TVA
at present day time t were trained by the backpropagation
algorithm. By training the pH predicted model with six
input nodes in the input layer as the historical informa-
tion of pHt−1, pHt−2, Alkt−1, Alkt−2, TVAt−1 and TVAt−2

and one output node in the output layer was pHt. The
number of data used to train the neural network model
for each input nodes was 250 data. This model obtained
the optimum numbers of hidden nodes in the first and
second hidden layers were 25 and 20 nodes, respectively
with high R2 value from linear regression (0.9128). For
the Alk predicted model, this model had nine input nodes
in the input layer as pHt−1, pHt−2, pHt−3, Alkt−1, Alkt−2,
Alkt−3, TVAt−1 and TVAt−2 and TVAt−3 and one output
node in the output layer was Alkt. The number of data
used to train the neural network model for each input
nodes was 250 data as the same of pH predicted neural
network model. The optimum numbers of hidden nodes in
the first and second hidden layers were 30 and 20 nodes,
respectively. The training result of Alk model presented the
R2 value of 0.8193. The TVA predicted model, there were
nine input nodes in the input layer as pHt−1, pHt−2, pHt−3,
Alkt−1, Alkt−2, Alkt−3, TVAt−1 and TVAt−2 and TVAt−3
same as the Alk predicted model and one output node
in the output layer was TVAt. The number of data for
each input nodes was 250 data likewise of pH and Alk

Fig. A1 Membership functions of pH, Alk, TVA and influent feed flow
rate.
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predicted neural network models. The optimum numbers
of hidden nodes in the first and second hidden layers
were 35 and 25 nodes, respectively. The highest R2 value
between the experimental and predicted results of TVA
model was 0.9198. More generally, a higher value of
R2 (R2 > 0.8) means that the model was satisfying and
capability predicted (Holubar et al., 2002).

B. Fuzzy logic control system design

The developed fuzzy logic control system based on
the theory of fuzzy logic for controlling the influent feed
flow rate of the AHR. The controlled variables of pH,
Alk and TVA were selected as the inputs and the influent
feed flow rate was the output of the fuzzy control system,
respectively. This study selected the type of membership
function as generalized bell (gbellmf). Five terms of
gbellmf membership function for the inputs and output
namely very low, low, medium, high and very high were
used. These gbellmf membership functions of pH, Alk,

TVA and influent feed flow rate are shown in Fig. A1,
respectively.

According to the 4 variables as pH, Alk, TVA and
influent feed flow rate associated with the 5 terms of
gbellmf membership function as very low, low, medium,
high and very high, the 625 rules of “if-then” rules were
described and the 125 rules were chosen for this fuzzy
controller, the 5 examples from 125 rules were represented
as follows:

(1) If pH, Alk, and TVA are very low, then flow rate is
very low;

(2) If pH, and Alk are low, and TVA is very low, then
flow rate is very low;

(3) If pH, and Alk are medium, and TVA is very low,
then flow rate is low;

(4) If pH is high, and Alk is low, and TVA is very low,
then flow rate is low;

(5) If pH is very high, and Alk is medium, and TVA is
very low, then flow rate is medium.
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