2012 Volume 24 Number 4 **JOURNAL OF** # ENVIRONMENTAL SCIENCES ### **CONTENTS** | Aquatic environment | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | Comparison of conventional and inverted A ² /O processes: Phosphorus release and uptake behaviors | | | Rong Qi, Tao Yu, Zheng Li, Dong Li, Takashi Mino, Tadashi Shoji, Kochi Fujie, Min Yang · · · · · · · · · · · · · · · · · · · | 571 | | Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: Implications for sources and historical changes | | | Feng Ye, Xiaoping Huang, Dawen Zhang, Lei Tian, Yanyi Zeng | 579 | | Removal of arsenate and arsenite from aqueous solution by waste cast iron Nag-Choul Choi, Song-Bae Kim, Soon-Oh Kim, Jae-Won Lee, Jun-Boum Park | 590 | | Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water | 389 | | Huiyu Dong, Zhimin Qiang, Tinggang Li, Hui Jin, Weidong Chen | 596 | | A 60-year sedimentary record of natural and anthropogenic impacts on Lake Chenghai, China | 370 | | Fengyu Zan, Shouliang Huo, Beidou Xi, Jingtian Zhang, Haiqing Liao, Yue Wang, Kevin M. Yeager······ | 602 | | Preparation and application of amino functionalized mesoporous nanofiber membrane via electrospinning for adsorption of Cr ³⁺ from aqueous solution Ahmed A. Taha, Junlian Qiao, Fengting Li, Bingru Zhang | | | Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite | 010 | | Noureddine Hamdi, Ezzeddine Srasra · · · · · · · · · · · · · · · · · · · | 617 | | Atmospheric environment | | | Impacts of continuously regenerating trap and particle oxidation catalyst on the NO ₂ and particulate matter emissions emitted from diesel engine | | | Zhihua Liu, Yunshan Ge, Jianwei Tan, Chao He, Asad Naeem Shah, Yan Ding, Linxiao Yu, Wei Zhao | 624 | | Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China | | | Leifu Chen, Shaolin Peng, Jingang Liu, Qianqian Hou | 632 | | Synthesis, characterization and experimental investigation of Cu-BTC as CO ₂ adsorbent from flue gas | | | Jiangkun Xie, Naiqiang Yan, Zan Qu, Shijian Yang ····· | 640 | | Aerosol effects on ozone concentrations in Beijing: A model sensitivity study | | | Jun Xu, Yuanhang Zhang, Shaoqing Zheng, Youjiang He · · · · · · · · · · · · · · · · · · | 645 | | Measurement of air exchange rates in different indoor environments using continuous CO ₂ sensors | | | Yan You, Can Niu, Jian Zhou, Yating Liu, Zhipeng Bai, Jiefeng Zhang, Fei He, Nan Zhang ····· | 657 | | Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China | | | Xinyuan Feng, Shigong Wang···· | 665 | | Terrestrial environment | | | Sorption of chlorophenols onto fruit cuticles and potato periderm | | | Yungui Li, Yingqing Deng, Baoliang Chen | 675 | | Effects of urea and (NH ₄) ₂ SO ₄ on nitrification and acidification of Ultisols from Southern China | ć0 2 | | Deli Tong, Renkou Xu | 682 | | Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China Yanchun Wang, Min Qiao, Yunxia Liu, Yongguan Zhu | 600 | | PCDD/Fs in soil around a hospital waste incinerator: comparison after three years of operation | 090 | | Xiaodong Li, Mi Yan, Jie Yang, Tong Chen, Shengyong Lu, Jianhua Yan | 699 | | Dissolved organic sulfur in streams draining forested catchments in southern China | 0,,, | | Zhanyi Wang, Xiaoshan Zhang, Zhangwei Wang, Yi Zhang, Bingwen Li, Rolf Vogt ····· | 704 | | Environmental biology | | | Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation | | | Fan Lü, Pinjing He, Min Guo, Na Yang, Liming Shao····· | 711 | | Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality | | | Yaobin Zhang, Yiwen Liu, Yanwen Jing, Zhiqiang Zhao, Xie Quan····· | 720 | | Identification of naphthalene metabolism by white rot fungus Armillaria sp. F022 | | | Tony Hadibarata, Abdull Rahim Mohd Yusoff, Azmi Aris, Risky Ayu Kristanti······ | 728 | | Environmental health and toxicology | | | Inhibition of ROS elevation and damage to mitochondrial function prevents lead-induced neurotoxic effects on structures and functions | | | of AFD neurons in Caenorhabditis elegans | | | Qiuli Wu, Peidang Liu, Yinxia Li, Min Du, Xiaojuan Xing, Dayong Wang | 733 | | Environmental catalysis and materials | | | Photodegradation of Norfloxacin in aqueous solution containing algae | | | Junwei Zhang, Dafang Fu, Jilong Wu····· | 743 | | Synthesis of TiO ₂ nanoparticles in different thermal conditions and modeling its photocatalytic activity with artificial neural network | | | Fatemeh Ghanbary, Nasser Modirshahla, Morteza Khosravi, Mohammad Ali Behnajady · · · · · · · · · · · · · · · · · · · | 750 | | Preparation of $Fe_xCe_{1-x}O_y$ solid solution and its application in Pd-only three-way catalysts | | | Jianqiang Wang, Meiqing Shen, Jun Wang, Mingshan Cui, Jidong Gao, Jie Ma, Shuangxi Liu | 757 | | Dechlorination of chlorophenols by zero valent iron impregnated silica | | | Praveena Juliya Dorathi, Palanivelu Kandasamy | 765 | | Photocatalytic degradation of perfluorooctanoic acid with β-Ga ₂ O ₃ in anoxic aqueous solution Baoxiu Zhao, Mou Lv, Li Zhou · · · · · · · · · · · · · · · · · · · | 77.4 | | Baoxiu Znao, Mou LV, Li Znou ····· | / /4 | | Serial parameter: CN 11-2629/X*1989*m*210*en*P*27*2012-4 | | Journal of Environmental Sciences 2012, 24(4) 757-764 JOURNAL OF ENVIRONMENTAL SCIENCES ISSN 1001-0742 CN 11-2629/X www.jesc.ac.cn ## Preparation of $Fe_xCe_{1-x}O_y$ solid solution and its application in Pd-only three-way catalysts Jianqiang Wang^{1,2}, Meiqing Shen^{1,3,*}, Jun Wang¹, Mingshan Cui¹, Jidong Gao², Jie Ma ², Shuangxi Liu² Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China. E-mail: jianqiangwang@tju. edu.cn China Automotive Technology & Research Center, Tianjin 300162, China State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China Received 22 April 2011; revised 19 July 2011; accepted 10 August 2011 #### Abstract FeO_x-CeO₂ mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1–20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) and Hydrogen temperature-programmed reduction (H₂-TPR) techniques. The dynamic oxygen storage capacity (DOSC) was investigated by mass spectrometry with CO/O₂ transient pulses. The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO₂ was 5 mol% based on Fe/(Ce+Fe). The lattice parameters experienced a decrease followed by an increase due to the influence of the maximum solubility limit of iron oxides in the CeO₂. TPR analysis revealed that Fe introduction into ceria strongly modified the textual and structural properties, which influenced the oxygen handling properties. DOSC results revealed that Ce-based materials containing Fe oxides with multiple valences contribute to the majority of DOSC. The kinetic analysis indicated that the calculated apparent kinetic parameters obey the compensation effect. The three-way catalytic performance for Pd-only catalysts based on the Fe doping support exhibited the redundant iron species separated out of the CeO₂ and interacted with the ceria and Pd species on the surface, which seriously influenced the catalytic properties, especially after hydrothermal aging treatment. Key words: FeO_x-CeO₂; solubility limit; dynamic oxygen storage/release capacity; three-way catalytic performance **DOI**: 10.1016/S1001-0742(11)60816-4 #### Introduction Environmental problems associated with air pollution are now deteriorating our entire earth and represent some of the most formidable challenges facing global society in the future. Furthermore, the rarity of noble metal catalysts presents serious hurdles to the implementation of clean energy technologies on a global scale. Environmental and economic considerations have led engineers and scientists to anticipate the need to develop a clean, renewable and sustainable technology As outstanding oxygen storage materials (OSMs), ceria-based materials have been widely used in the three-way catalysts (TWCs). The reason for extensive use of ceria as an active ingredient in the TWCs is emerge from its reversible oxygen storage and release capacity (OSC) in response to fluctuating oxygen concentration, ensuring the targeted air/fuel ratios and emission control (Trovarelli, 1996). This unique property of ceria has been triggered off many salient applications of industrial significance. Although ceria has been studied extensively, under * Corresponding author. E-mail: mqshen@tju.edu.cn elevated conditions ceria becomes inefficient with time and many innate properties will be affected. Hence, much effort has been made to synthesize ceria-based mixed oxides for better thermal durability and improved OSC performance. Modification of ceria is a key issue in the development of efficient catalyst formulations for treatment of auto exhaust processes and other applications. The doped ceria enhances the surface area and can sustain toward sintering during the high temperature long-term anneal due to the cooperative nature of the cations of the mixed oxides (Shen et al., 2009; Wang et al., 2011). Further, the combination of different cations in the oxide matrix can produce materials with novel structural and electronic properties which may lead to high catalytic activity. The Fe doped ceria-based materials have been widely used in catalysis, adsorption and sensors (Bao et al., 2008; Li et al., 2001; Pérez-Alonso et al., 2005; Liang et al., 2009; Wang et al., 2011). Substitution of transition metal like Fe in CeO₂ fluorite structure shows superior catalytic activity and brings down the cost of the catalyst considerably. However, aliovalent ions doped samples are thermally less stable and prone to phase segregation. According to Noronha et al. (2003), precious metal particles were covered by aggregated transitions. sition metal species after redox ageing, and this is going to decrease the catalytic activity severely. In order to make good utilization of transition metal but not to poison the precious metals, it is very necessary that the base metal ions be fixed and retain immobile, especially after thermal treatment. The improvement of the catalytic activity and resistance to high temperature of these alternative systems would be desirable to use them as co-catalysts and, therefore, reduce the amount of expensive precious metals in conventional catalytic devices. Further, it is desirable to determine the effect of dopants on the lattice parameters and their solubility limits in the cubic fluorite structure phase. The present contribution focuses on the $Fe_xCe_{1-x}O_y$ solubility limits by XRD Rietveld refinement analysis. The oxygen storage/release capacity of $Fe_xCe_{1-x}O_y$ samples was investigated. The relationship between solid solution and its activity for dynamic OSC (DOSC) and the threeway catalytic (TWC) performance was proposed. #### 1 Experimental #### 1.1 Sample preparation Fe doping ceria mixed oxides (Fe_xCe_{1-x}O_y, x = 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2) were synthesized by citric acid sol-gel method. The nitrates of Ce (Zibo Rongruida, China), and Fe (Tianjin Guangfu, China) were used as starting materials. Citric acid was added as complex agent, and glycol was used as additive. After continuous stirring for 2 hr, the mixed solution was treated at the temperature of 80°C overnight to form the sponge yellow gel. Then, the gel was dried at 100°C for 3 hr and milled before calcination. The dried gel was calcined at 300°C for 30 min and then at 500°C for 5 hr. The CeO₂ prepared with the same method were reference samples. The Pd loading was achieved by impregnating $Fe_{0.05}Ce_{0.95}O_{y}$ and $Fe_{0.1}Ce_{0.9}O_{y}$ with $Pd(NO_{3})_{2}$ aqueous solutions with 0.5 wt.% Pd loading. The solid products were separated, dried at 100°C for 2 hr, and then calcined at 500°C for 3 hr. These as-prepared samples were called fresh samples, and were designated as Pd/Fe_{0.05}Ce_{0.95}O_v and Pd/ Fe_{0.1}Ce_{0.9}O_v. Aged samples were obtained by hydrothermally aging the as-prepared catalysts at 1050°C or 10 hr in a 10% steam-air condition, which were designated as Pd/Fe_{0.05}Ce_{0.95}O_va and Pd/Fe_{0.1}Ce_{0.9}O_va respectively. #### 1.2 Characterization The structure of the mixed oxides was identified by Xray diffraction (XRD) on an X'Pert Pro diffractometer (The Netherlands) using Fe-filtered Co $K\alpha$ radiation and a power of $45 \text{ kV} \times 30 \text{ mA}$. The intensity data were collected at 25°C over a 2 θ range of 20°-90° with a 0.03° step size. The X-ray diffraction analyses were carried out at room temperature on a Rigaku D/max 2500 v/pc diffractometer (Japan) with Cu- $K\alpha$ radiation a power of 40 kV \times 2 mA. The intensities of the XRD patterns were obtained in the 2θ range between 20° and 90° with a step of 0.02° and a measuring time of 2.0 sec each point. The MAUD (material analysis using diffraction) software was applied to refine the crystalline structures of the solids with the Rietveld method. H₂-TPR experiments were performed using a Micromeritics AutoChem 2910 (America). The catalyst was first purged under N₂ (30 mL/min) at 200°C for 1 hr and then cooled to room temperature. The sample was then exposed to a flow of 5% H₂/Ar (30 mL/min) while the temperature was ramped from room temperature to 900°C at a rate of 10°C/min. #### 1.3 Reaction test Two types of OSC measurements were conducted, including dynamic CO-He pulses and transient CO-O2 pulses (Wang et al., 2011). Concentrations of CO, O₂, CO₂, Ar, and He in the outlet gas were monitored on-line by Hiden HPR20 (England) quadrupole mass spectrometer. Twenty-five milligram sample diluted with 40 mg quartz sand was placed in the heat transfer reactor (10 mm diameter) at a height of 1.5 mm, with additional 4 mm redistributing layers of quartz wool on the two sides of catalysts bed. Flow rate of every pulse is 300 mL/min. Dead volume of the system was 3.5 mL. Errors induced by residence time and possible CO+O₂ turbulent mixing involved catalytic combustion can be limited to 2% during OSC quantifications. Before both of the testing modes, samples were pre-oxidized under O₂(2%)/Ar(1%)/He atmosphere, and then purged under He until no ³²O₂ signal detected. The two experimental modes are described as the follows: (1) transient oxygen release measurements at 500°C were conducted under consecutive CO (5 sec)-He (40 sec) conditions. CO(4%)/Ar(1%)/He and He were alternately pulsed for 10 times in sequence. (2) dynamic CO-O₂ pulses (DOSC) measurements were operated from 200 to 500°C with the interval of 100°C. At each testing temperature, O_2 (2%)/Ar(1%)/He and O_2 (2%)/Ar(1%)/He were pulsed alternately in sequence at the frequency of 0.1 Hz. The simulated plug flows repeated for more than five cycles to guarantee the reproducibility of collected response curves. The three-way catalytic activity experiment were tested in the fixed-bed reactor at a stoichiometric A/F ratio of $\lambda = 1$ with the simulated exhaust gas containing: CO 2%, NO 0.1%, C_3H_8 0.1%, CO₂ 12%, O₂ 1.5% and N₂ (balance). The space velocity was 50,000 hr⁻¹. Four hundred milligrams of a catalyst diluted by quartz sand to 1.8 mL was placed at the bottom of quartz reactor. A standard test consisted of increasing the temperature from room temperature to 700°C at 10°C/min. Concentrations of CO, CO₂, NO, and C₃H₈ were quantified by an IR detector (America). #### 2 Results and discussion #### 2.1 Characterization Figure 1 illustrates the powder XRD patterns of the as prepared samples of $Fe_xCe_{1-x}O_y$ at different depositions. **Fig. 1** XRD pattern of $Fe_xCe_{1-x}O_y$. contents. The diffraction peaks were indexed to (111), (200), (220), (311), (222) and (400) planes, matching well those of the face-centered cubic fluorite structure of CeO_2 (JCPDS No. 43-1002). It can be seen that no FeO_x phases (FeO or Fe_2O_3) can be identified for all samples. This demonstrates that iron oxide exists as highly dispersed or amorphous surface species or the iron amount is low. From Fig. 1, it is seen that all diffraction peaks were broadened, which indicated the fine nature of the small particles, in agreement with previous results (Xue et al., 2007). The lattice parameters of the as-prepared $Fe_xCe_{1-x}O_y$ samples were calculated by Rietveld refinement analysis. The Rietveld's method has given a reasonable fit of the diffraction profiles ($R_{\rm wp}$ < 12%). Rietveld refinement analysis indicated that the XRD pattern could be indexed satisfactorily to the fluorite structure with a space group Fm3m. The values of the lattice parameters and oxygen ion vacancies for all the samples are listed in Table 1. Oxygen ion vacancies increased with Fe content (Fig. 2) indicating that Fe ions are possibly substituted for Ce⁴⁺ in the fluorite lattice. A similar observation was also noted by Murugan et al. (2005) and Bera et al. (2002) for their Mn/CeO₂ and Cu/CeO₂ samples. The relationship between the lattice parameter and the content of dopant iron is shown in Fig. 3. With increasing Fe content, the lattice parameter for the fluorite solid solutions decreases linearly up to 5.3978(13) Å for x < 0.05, confirming that some Fe^{n+} ions are incorporated in the ceria lattice forming homogeneous $Fe_xCe_{1-x}O_y$ solid solutions (x: 0.01–0.05). It is reasonable that iron ions have been incorporated into the CeO₂ lattice to form solid solutions by considering the radius of Fe ions ($r_{\text{Fe}}^{2+} = 0.074 \text{ nm}$; $r_{\text{Fe}}^{3+} = 0.064 \text{ nm}$) is smaller than that of Ce⁴⁺ (0.101 nm). It is noteworthy that the lattice parameter for Fe_{0.07}Ce_{0.93}O_v is significantly increased, suggesting that the iron ions segregate gradually from $Fe_xCe_{1-x}O_y$ solid solutions with further increase of Fe content. So we can conclude that the solution limit of FeO_x in ceria is 5%. #### 2.2 H₂-TPR H₂-TPR profiles of Fe doped samples (Fe_{0.05}Ce_{0.95}O_v and Fe_{0.1}Ce_{0.9}O_v) and reference samples (CeO₂) are presented in Fig. 4. The H₂-TPR results demonstrate that Fe doping improved the oxygen buffering capability, which considered the key for the superior DOSC performance. For Fe₂O₃, there are two reduction peaks centered at 430 and 726°C, corresponding to the reduction of Fe₂O₃ to Fe₃O₄ and of FeO to partial Fe⁰, respectively (Liu and He, 2010; Liu et al., 2010). For CeO₂, the H₂ consumption peaks are observed at 511 and 801°C, respectively, which are attributed to the release of the surface oxygen and the bulk oxygen of ceria (Fan et al., 2008). Synergistic interaction between Ce and Fe in the mixed solid solution gives rise to low temperature reduction. The H₂-TPR analysis reveals that the reduction peaks shift to lower temperatures when Fe is doped. As illustrated in Fig. 5, three reduction peaks at 428° C (peak α), 683° C (peak β) and 817° C (peak γ) can be observed for Fe_{0.05}Ce_{0.95}O_v sample, and the peaks are 382, 642 and 801°C for Fe_{0.1}Ce_{0.9}O_{ν} sample. The α and β peaks can be ascribed to the step-wise reduction of iron oxide and the reduction of surface/subsurface oxygen species of ceria (Zhang et al., 2010). When Fe is incorporated into the CeO₂ lattice to substitute Ce⁴⁺ cations, a solid solution can formed. The charge unbalance and lattice distortion take place within the structure of CeO₂, and thus lead to the generation of oxygen vacancies, which can bond less stable oxygen species. These weaker (active) adsorbates are reduced by H₂ at lower temperatures. It suggests that there is a certain synergistic interaction between Fe-O and Ce-O. The oxygen species being able to be reduced in such a range of temperatures are believed to make major contributions to DOSC and DOSR performances. The mutual promotion effect of ceria and Fe species is believed to be essential for the higher DOSC and DOCR of the Fe-doped samples. The γ peak represents the release of the bulk oxygen of ceria. To derive the effect of substituting transition metal ions in ceria lattice on its oxygen storage/release property, the total oxygen storage capacity (TOSC) was estimated by the integrated amount of H₂ consumed during the H₂-TPR test. The results are listed in Table 2 along with ceria consumed 0.88 mmol/g. TOSC is related to the contents and the reducibility of the ceria components in certain materials. Although the ceria content is lowered in the Fe doped samples, the TOSC was improved due to the contribution of Fe dopants and its synergistic effect with Ce. It noteworthy that the amount of oxygen released at **Table 1** Texture characterizations for $Fe_xCe_{1-x}O_y$ samples | Sample | BET (m^2/g) | ET (m^2/g) Lattice parameter (\mathring{A}) Oxygen vacancy (9) | | R_{wp} (%) | Theoretic lattice parameter (| | |------------------------------------------------------|---------------|----------------------------------------------------------------------|------|-----------------------|-------------------------------|--| | Fe _{0.01} Ce _{0.99} O _v | 33.7 | 5.4092 (10) | 5.6 | 10.65 | 5.4104 | | | Fe _{0.03} Ce _{0.97} O _v | 49.0 | 5.4090 (11) | 9.6 | 8.46 | 5.4052 | | | $Fe_{0.05}Ce_{0.95}O_{v}$ | 42.3 | 5.3978 (13) | 12.8 | 8.84 | 5.4000 | | | Fe _{0.07} Ce _{0.93} O _y | 34.4 | 5.4047 (18) | 17.0 | 10.20 | 5.3948 | | Fig. 3 Dependence of the lattice parameter with [Fe]/([Fe]+[Ce]). (a) lattice parameters based on XRD Rietveld refinement; (b) theoretic lattice parameters based on Vegard's law (Kim, 1989); (c) oxygen vacancy with [Fe]/([Fe]+[Ce]). Fig. 4 H_2 -TPR profiles of CeO_2 , $Fe_{0.05}Ce_{0.95}O_y$, $Fe_{0.1}Ce_{0.9}O_y$ and Fe_2O_3 samples. Table 2 Oxygen releasing amount in different temperature ranges by H_2 -TPR | Sample | Content | Content of oxygen releasing (mmol/g) | | | | | |------------------------------------------------------|---------|--------------------------------------|------|--|--|--| | | < 600°C | > 600°C | TOSC | | | | | Fe _{0.05} Ce _{0.95} O _y | 0.59 | 0.65 | 1.24 | | | | | $Fe_{0.1}Ce_{0.9}O_y$ | 0.71 | 0.82 | 1.53 | | | | | CeO ₂ | 0.27 | 0.61 | 0.88 | | | | low temperatures for samples by iron doping was much higher than that of CeO₂, indicating the favored oxygen releasing kinetics at low temperature for Fe doped samples. #### 2.3 Oxygen storage/release capacity #### 2.3.1 Total OSC with CO-He pulses To study the total amount of lattice oxygen available under anaerobic atmosphere, CO pulses with He intervals were used to monitor the oxygen migration behavior of the catalysts. Figure 5 depicts the OSC data in transient CO-He pulses. TOSC is calculated by adding up the OSCs during the ten consecutive CO pulses. The TOSC are increased with increasing Fe doping amount. Figure 5 shows that from the first to tenth CO pulse, OSC during each CO pulse does not linearly increase with the Fe doping amount. This would mean that redundant Fe doping would influence the oxygen handling properties. During initial CO pulses, CO oxidation occurs mostly by using the surface and near-surface oxygen of the catalysts. After the depletion of such a kind of oxygen species, the rest of the CO pulses are mostly oxidized by bulk oxygen in a two-step process, including the adsorption of CO on the catalyst' surface and its subsequent combination with bulk oxygen species. Bulk oxygen migration is the rate-determining step here, which can be considered as a function of the intrinsic structure of the material (Vidal et al., 2001). A direct relationship between lattice defects and OSC was discussed by Mamontov et al. (2000), and they suggest that oxygen defects are the sources of OSC in ceria-based material. Moreover, microstructure variation of ceria-based materials induced by doping with aliovalent oxides could improve lattice oxygen mobility (Fornasiero, et al., 1999). This is the primary reason that ceria-based Fig. 5 OSC performance of different samples with alternate pulses of CO(4%)/Ar(1%)/He and pure He at 500°C. oxide doping by aliovalent ions are being used in TWC as the improved generations of promoters or support oxides. In the CeO_2 fluorite structure, cations are in eightfold coordination with their nearest neighbors and each anion is surrounded tetrahedrally by four cations. The $Fe_xCe_{1-x}O_y$ solid solution of the fluorite-type oxides is obtained by the substitution of Fe cations for Ce cations. Doping the fluorite oxide with aliovalent cations, whose valency is smaller than that of the host cation, creates oxygen vacancies to achieve electronically neutrality in the substituted fluorite lattice. The presence of oxygen vacancy is the key factor for bulk oxygen mobility. The structural distortion induced by dopant ions substitution result in enhanced DOSC performance compared to pure ceria. #### 2.3.2 Dynamic OSC with CO and O₂ pulses The DOSC measurement simulates the oscillations of exhaust composition between lean and rich conditions, and evaluates the oxygen storage/release capability of the catalytic materials in setting off the frequent lean-rich oscillations. CO oxidation and O2 consumption are taken as the model reactions under rich and lean conditions respectively and the results are shown in Fig. 6. It is obvious that the DOSC of Fe doped samples are higher than those of corresponding CeO₂. It suggests that the oxygen vacancies and the lattice distortion are produced by Fe doped for charge compensation and radius effect, which is the essential reason for OSC promotion (Li et al., 2009). According to Lambrou and Efstathiou (2006), iron significantly favored the formation of superoxide (O_2^-) species on CeO₂ to weaken the bond strength of O₂ with the ceria surface, which is involved in the oxygen transport and storage on CeO2. Further, transition metal oxide can store/release oxygen under redox conditions, which are contributed to the superior OSC performance. In addition, Wang and Gorte (2003) suggested that the ion oxide may lower the barrier for oxygen transfer based on the different enthalpy change: going from CeO₂ to Ce₂O₃ 760 kJ/mol of O₂, while 460 kJ/mol of O₂ for Fe₂O₃ to Fe₃O₄. So we can concluded that Fe doped may promote formation of Ce³⁺ ions due to the smaller size of iron cations that take part in removing the strain associated with the increase of ionic size accompanying the $Ce^{4+} \longrightarrow Ce^{3+}$ transition. Generally, DOSC can be enhanced with increasing reaction temperatures, because higher amount of lattice oxygen becomes available for the reactions and the oxygen spillover processes have been accelerated (Zhao et al., 2007). The bulk oxygen migration capability is promoted by the introduction of Fe, as indicated by the improved DOSC performances of $Fe_xCe_{1-x}O_y$ samples especially at high temperatures. It is noted that the DOSC does not linearly increase with the Fe doping amount. This would mean that the increasing presence of Fe at the surface modifies the interaction with oxygen. Probably, this is related to the intrinsic arrangement of the dopant-vacancy pair, which would make bulk diffusion more difficult with respect to optimum Fe doping samples. The dynamic oxygen storage rate (DOSR) defined as the amount of oxygen stored and released in the first second of every oscillation cycle and acted as a method to characterize oxygen storage material performance (Hori et al., 1999). DOSR can be calculated as: $$DOSR = \int_0^1 CO_2 \text{ signal} = Rate([CO_2/sec])$$ (1) where, $\int_0^1 CO_2$ signal is the integrated CO_2 peak area from 0 to 1 sec. The results of DOSR over all samples are summarized in Table 3. It is obvious that the DOSR of samples containing Fe are superior to those of corresponding CeO₂. The presence of Fe ions near Ce^{4+} site coordinated with O^{2-} make the transformation of $Ce^{4+} \longrightarrow Ce^{3+}$ easier than ceria, since low valance iron cations will disturb the charge equilibrium and distortion in ceria lattice resulting in the oxygen vacancies formation associated with Ce³⁺ sites (Fernández-García et al., 2002). Energy between Ce⁴⁺/Ce³⁺ couple is inferred to be altered by Fe disturbing. Role of oxygen vacancies and lattice distortion for DOSC promotion should not be excluded by Fe introducing. It should be noted that the DOSR are not linearly increased with the Fe doping content, in agreement with the DOSC results. It suggested that the surface Fe-enrichment is formed, when the iron dopants content are in excess of solubility limits, which can baffle the oxygen mobility. To better understand the effect of Fe doping for specific reaction procedures, kinetic parameters were investigated. Figure 7 shows the relationship between the $\ln k$ and 1/T (10^3). As the reaction rate constant of CO oxidation, k is calculated by dividing from DOSR. Fitting reaction rate data to the Arrhenius equation provides the pre-exponential factors ($\ln A$) and activation energies (E_a). As Fig. 6 Effect of Fe doping on the DOSC with alternate dynamic pulses of CO(4%)/Ar(1%)/He and $O_2(2\%)/Ar(1\%)/He$ under 0.1 Hz. **Table 3** DOSR for $Fe_xCe_{1-x}O_y$ samples | Catalyst | DOSR (μmol O/(g _{cat} ·sec)) | | | | | |------------------------------------------------------|---------------------------------------|-------|-------|-------|--| | | 300°C | 400°C | 500°C | 600°C | | | Fe _{0.05} Ce _{0.95} O _v | 9.0 | 12.9 | 16.9 | 23.7 | | | $Fe_{0.1}Ce_{0.9}O_v$ | 6.2 | 17.0 | 19.2 | 29.4 | | | $Fe_{0.15}Ce_{0.85}O_{v}$ | 17.4 | 20.8 | 33.4 | 38.3 | | | $Fe_{0.2}Ce_{0.8}O_{v}$ | 9.3 | 10.4 | 16.4 | 24.3 | | | CeO ₂ | 0 | 8.8 | 12.0 | 27.4 | | **Fig. 7** Arrhenius plot of $Fe_xCe_{1-x}O_y$ samples. **Table 4** Pre-exponential factor and apparent activation energy calculated for $Fe_xCe_{1-x}O_y$ samples | Catalyst | E _a (kJ/mol) | lnA | | | |------------------------------------------------------|-------------------------|---------------|--|--| | Fe _{0.05} Ce _{0.95} O _v | 13.1 ± 1.1 | 4.9 ± 0.2 | | | | $Fe_{0.1}Ce_{0.9}O_v$ | 20.4 ± 3.9 | 6.2 ± 0.7 | | | | Fe _{0.15} Ce _{0.85} O _v | 8.3 ± 3.2 | 4.6 ± 0.6 | | | | $Fe_{0.2}Ce_{0.8}O_{\nu}$ | 13.4 ± 3.3 | 4.9 ± 0.6 | | | | CeO ₂ | 27.3 ± 9.3 | 6.9 ± 1.5 | | | listed in Table 4, the order of E_a for different samples is inconsistent with the order of the overall CO oxidation activities. This contradiction is induced by the compensation effect (Bond et al., 2000). The linear correlations between $E_{\rm a}$ and lnk for different samples are illustrated in Fig. 8. According to the compensation effect, if the relations of the specific activation energies and the pre-exponential factors of a specific reactant for all the types of the catalysts can be fitted into a straight line, the specific reactant will be converted through the similar reaction pathways, replying on the same kind of active centers over different types of catalysts. This means that an increase of the frequency factor (consequent increase of the reaction rate) can be compensated with an increase of the activation energy. Therefore, the order of the overall reaction performances may not always be correlated positively with the absolute Fig. 8 Compensation effect for CO oxidation of different catalysts Fig. 9 Catalytic activities of CO, NOx and C₃H₈ of fresh (a) and aged (b) Pd-supported catalysts at simulated outlet exhaust. values of the apparent activation energies. Such an effect is mainly contributed by the heterogeneity of the surface with multiple active sites. The availability of these active sites not only changes with temperature, but undergoes further modifications induced by the evolutions of reactants and products in gas phases (Botas et al., 2001). As can be seen in Fig. 8, all the points can be fitted in a linear way with limited errors, suggesting the reactions over different types of catalysts investigated share the similar chemical mechanisms. In this work, because the strength of adsorption is weak or the surface coverage by adsorbates is low, the changes of E_a may be mainly caused by different adsorption enthalpies, which cannot reflect the overall catalytic activity (Bond et al., 2000; Botas et al., 2001). #### 2.4 Three-way catalytic performance Figure 9 shows the representative stoichiometric light-off behavior of CO, C_3H_8 , and NO conversions for all of the samples investigated. CO is oxidized at a much lower temperature than that of C_3H_8 . C_3H_8 and NO are converted almost in parallel, indicating the different catalytic process involved in the purification process of automobile exhaust. Temperatures for 50% (T_{50}) and 90% (T_{90}) of exhaust conversion used to evaluate the activity of different catalysts are listed in Table 5. The lower the T_{50} and T_{90} , the higher the activity of catalyst is. For fresh catalyst, as shown in Fig. 9a, the $Pd/Fe_{0.1}Ce_{0.9}O_y$ sample shows superior three-way activity to $Pd/Fe_{0.05}Ce_{0.95}O_y$. To verify the merit of solid solution **Table 5** Temperature required to reach 50% and 90% conversion of catalysts | Catalyst | | <i>T</i> ₅₀ (°C) | | | T ₉₀ (°C) | | | |---------------------------------------------------------|-------|-----------------------------|-----|-----|----------------------|-----|-----| | | | СО | HC | NO | CO | HC | NO | | Pd/Fe _{0.05} Ce _{0.95} O _y | Fresh | 193 | 391 | 480 | 212 | 464 | 528 | | | Aged | 348 | 535 | 568 | 374 | 621 | _ | | $Pd/Fe_{0.1}Ce_{0.9}O_{v}$ | Fresh | 185 | 333 | 383 | 209 | 569 | 502 | | | Aged | 353 | 561 | 612 | 370 | 635 | _ | [&]quot;-": denotes the conversion below 90% under investigated temperature range. in promoting the thermal resistance of catalysts, specific attention was paid to the three-way catalytic performance of aged samples. After hydrothermal aging, all samples showed lower activity for CO, NO_x, and HC conversion due to sintering of precious metal and agglomeration of supports. It is noted that the Pd/Fe_{0.1}Ce_{0.9}O_y sample does not present superiority with respect to Pd/Fe_{0.05}Ce_{0.95}O_y. It is considered that the redundant Feⁿ⁺ species on the surface interact with Pd, which seriously influenced the catalytic activity. It suggested that the solid solution behave superior thermal stability. #### 3 Conclusions Fe_xCe_{1-x}O_y with different Fe/Ce atomic ratio (1–20 mol%) were prepared by sol-gel method. The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO₂ was 5 mol%. The solid solutions behave superior thermal stability. The three-way catalytic activity results revealed that the redundant iron species separated out of the CeO₂ and interacted with the ceria species on the surface, which seriously influenced the three-way catalytic performance. DOSC results revealed Ce-based materials containing iron oxides with multiple valences contribute to the majority of DOSC. From kinetic analysis, the confirmation of compensation effect revealed that all catalysts share the same mechanism for the separated reactions we investigated. #### Acknowledgments The authors are grateful to the support the National High-Tech Research and Development Program of China (No. 2011AA03A405). #### References Bao H Z, Chen X, Fang J, Jiang Z Q, Huang W X, 2008. Structure-activity relation of Fe₂O₃-CeO₂ composite catalysts in CO oxidation. *Catalysis Letters*, 125(1-2): 160–167. - Bera P, Priolkar K R, Sarode P R, Hegde M S, Emura S, Kumashiro R et al., 2002. Structural investigation of combustion synthesized Cu/CeO₂ catalysts by EXAFS and other physical techniques: Formation of a $Ce_{1-x}Cu_xO_{2-\delta}$ solid solution. *Chemistry of Materials*, 14(8): 3591–3601. - Bond G C, Keane M A, Kral H, Lercher J A, 2000. Compensation phenomena in heterogeneous catalysis: General principles and a possible explanation. *Catalysis Reviews Science and Engineering*, 42(3): 323–383. - Botas J A, Gutiérrez-Ortiz M A, González-Marcos M P, González-Marcos J A, Blanchard G, González-Velasco J R, 2001. Kinetic considerations of three-way catalysis in automobile exhaust converters. Applied Catalysis B: Environmental, 32(4): 243–256. - Fan J, Weng D, Wu X D, Wu X D, Ran R, 2008. Modification of CeO₂-ZrO₂ mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity. *Journal of Catalysis*, 258(1): 177–186. - Fernández-García M, Martínez-Arias A, Guerrero-Ruiz A, Conesa J C, Soria J, 2002. Ce-Zr-Ca ternary mixed oxides: structural characteristics and oxygen handling properties. *Journal of Cataylsis*, 211(2): 326–334. - Fornasiero P, Fonda E, Di Monte R, Vlaic G, Kašpar J, Graziani M, 1999. Relationships between structural/textural properties and redox behavior in Ce_{0.6}Zr_{0.4}O₂ mixed oxides. *Journal of Catalysis*, 187(1): 177–185. - Hori C E, Brenner A, Simon Ng K Y S, Rahmoeller K M, Belton D, 1999. Studies of the oxygen release reaction in the platinum-ceria-zirconia system. *Catalysis Today*, 50(2): 299–308. - Kim D J, 1989. Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO_2 oxide ($M = Hf^{4+}$, Zr^{4+} , Ce^{4+} , Th^{4+} , U^{4+}) solid solutions. *Journal of the American Ceramic Society*, 72(8): 1415–1421. - Lambrou P S, Efstathiou A M, 2006. The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO₂-Al₂O₃ three-way catalyst. *Journal of Catalysis*, 240(2): 182–193. - Li G S, Smith R L Jr, Inomata H, 2001. Synthesis of nanoscale Ce_{1-x}Fe_xO₂ solid solutions via a low-temperature approach. *Journal of American Chemistry Society*, 123(44): 11091–1192. - Li H N, Zhang L, Dai H X, He H, 2009. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls. *Inorganic Chemistry*, 48(10): 4421–4434. - Liang C H, Ma Z Q, Lin H Y, Ding L, Qiu J S, Frandsen W et al., 2009. Template preparation of nanoscale Ce_xFe_{1-x}O₂ solid solutions and their catalytic properties for ethanol steam reforming. *Journal of Materials Chemistry*, 19(10): 1417– 1424. - Liu F D, He H, 2010. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NO_x with NH₃. Journal of Physical Chemistry, 114(40): 16929– 16936. - Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N et al., 2010. Selective catalytic reduction of NO with NH₃ over iron titanate catalyst: Catalytic performance and characterization. *Applied Catalysis B: Environmental*, 96(3-4): 408–420. - Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S, 2000. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. *Journal of Physical Chemistry B*, 104(47): 11110–11116. - Murugan B, Ramaswamy A V, Srinivas D, Gopinath C S, Ramaswamy V, 2005. Nature of manganese species in $Ce_{1-x}Mn_xO_{2-\delta}$ solid solutions synthesized by the solution combustion route. *Chemistry of Materials*, 17(15): 3983–3993. - Noronha F B, Durão M C, Batista M S, Appel L G, 2003. The role of Ni on the performance of automotive catalysts: evaluating the ethanol oxidation reaction. *Catalysis Today*, 85(1): 13–21. - Péerez-Alonso F J, Granados M L, Ojeda M, Terreros P, Rojas S, Herranz T et al., 2005. Chemical structures of coprecipitated Fe-Ce nixed oxides. *Chemistry of Materials*, 17(9): 2329–2339. - Shen M Q, Wang J Q, Shang J C, An Y, Wang J, Wang W L, 2009. Modification ceria-zirconia mixed oxides by doping Sr using the reversed microemulsion for improved Pdonly three-way catalytic performance. *Journal of Physical Chemistry*, 113 (4): 1543–1551. - Trovarelli A, 1996. Catalytic properties of ceria and CeO₂-containing materials. *Catalysis Reviews Science and Engineering*, 38(4): 439–520. - Vidal H, Kašpar J, Pijolat M, Colon G, Perrichon V, Fally F, 2001. Redox behavior of CeO₂-ZrO₂ mixed oxides: II. Influence of redox treatments on low surface area catalysts. *Applied Catalysis B: Environmental*, 30(1-2): 75–85. - Wang J Q, Shen M Q, Wang J, Gao J D, Ma J, Liu S X, 2011a. CeO₂-CoO_x mixed oxides: structural characteristics and dynamic storage/release capacity. *Catalysis Today*, 175(1): 65–71. - Wang J Q, Zhan B Y, Shen M Q, Wang J, Wang W L, Ma J et al., 2011b. Effects of Fe-doping of ceria-based materials on their microstructural and dynamic oxygen storage and release properties. *Journal of Sol-Gel Science and Technology*, 58(1): 258–269. - Wang X, Gorte R J, 2003. The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction. *Applied Catalysis A: General*, 247(1): 157–162. - Xue L, Zhang C B, He H, Teraoka Y, 2007. Catalytic decomposition of N₂O over CeO₂ promoted Co₃O₄ spinel catalyst. *Applied Catalysis B: Environmental*, 75(3-4): 167–174. - Zhang Z L, Han D, Wei S J, Zhang Y X, 2010. Determination of active site densities and mechanisms for soot combustion with O₂ on Fe-doped CeO₂ mixed oxides. *Journal of Catalysis*, 276(1): 16–23. - Zhao M W, Shen M Q, Wang J, 2007. Effect of surface area and bulk structure on oxygen storage capacity of Ce_{0.67}Zr_{0.33}O₂. *Journal of Catalysis*, 248(2): 258–267. #### JOURNAL OF ENVIRONMENTAL SCIENCES #### **Editors-in-chief** Hongxiao Tang **Associate Editors-in-chief** Nigel Bell Jiuhui Qu Shu Tao Po-Keung Wong Yahui Zhuang **Editorial board** R. M. Atlas Alan Baker Nigel Bell Tongbin Chen University of Louisville The University of Melbourne Imperial College London Chinese Academy of Sciences USA Australia United Kingdom China Maohong Fan Jingyun Fang Lam Kin-Che Pinjing He University of Wyoming Peking University The Chinese University of Tongji University Wyoming, USA China Hong Kong, China China Chihpin Huang Jan Japenga David Jenkins Guibin Jiang "National" Chiao Tung University Alterra Green World Research University of California Berkeley Chinese Academy of Sciences Taiwan, China The Netherlands USA China K. W. Kim Clark C. K. Liu Anton Moser Alex L. Murray Gwangju Institute of Science and University of Hawaii Technical University Graz University of York Technology, Korea USA Austria Canada Yi Qian Jiuhui Qu Sheikh Raisuddin Ian Singleton Tsinghua University Chinese Academy of Sciences Hamdard University University of Newcastle upon Tyne China China India United Kingdom Clinic Isinguon Hongxiao Tang Shu Tao Yasutake Teraoka Chunxia Wang Chinese Academy of Sciences Peking University Kyushu University Chinese Academy of Sciences China Ghina Japan China Rusong Wang Xuejun Wang Brian A. Whitton Po-Keung Wong Chinese Academy of Sciences Peking University University of Durham The Chinese University of China United Kingdom Hong Kong, China Min Yang Zhifeng Yang Hanqing Yu Zhongtang Yu Chinese Academy of Sciences Beijing Normal University University of Science and Ohio State University China China Technology of China USA Yongping Zeng Qixing Zhou Lizhong Zhu Yahui Zhuang China China China China **Editorial office** Qingcai Feng (Executive Editor) Zixuan Wang (Editor) Suqin Liu (Editor) Zhengang Mao (Editor) Christine J Watts (English Editor) Journal of Environmental Sciences (Established in 1989) Vol. 24 No. 4 2012 Supervised byChinese Academy of SciencesPublished byScience Press, Beijing, ChinaSponsored byResearch Center for Eco-EnvironmentalElsevier Limited, The Netherlands Sciences, Chinese Academy of Sciences Distributed by Edited by Editorial Office of Journal of Domestic Science Press, 16 Donghuangchenggen Environmental Sciences (JES) North Street, Beijing 100717, China P. O. Box 2871, Beijing 100085, China Local Post Offices through China Tel: 86-10-62920553; http://www.jesc.ac.cn Foreign Elsevier Limited Tel: 86-10-62920553; http://www.jesc.ac.cn Foreign Elsevier Limited E-mail: jesc@263.net, jesc@rcees.ac.cn http://www.elsevier.com/locate/jes Editor-in-chief Hongxiao Tang Printed by Beijing Beijin Printing House, 100083, China CN 11-2629/X Domestic postcode: 2-580 Domestic price per issue RMB ¥ 110.00 ISSN 1001-0742