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Abstract

The present study describes the use of two commercially available lignins, namely, alkali and organosolv lignin, for the removal of
2,4-dinitroanisole (DNAN), a chemical widely used by the military and the dye industry, from water. Sorption of DNAN on both
lignins reached equilibrium within 10 hr and followed pseudo second-order kinetics with sorption being faster with alkali than with
organosolv lignin, i.e. k; 10.3 and 0.3 g/(mg-hr), respectively. In a separate study we investigated sorption of DNAN between 10 and
40°C and found that the removal of DNAN by organosolv lignin increased from 0.8 to 7.5 mg/g but reduced slightly from 8.5 to 7.6
mg/g in the case of alkali lignin. Sorption isotherms for either alkali or organosolv lignin best fitted Freundlich equation with enthalpy
of formation, AH® equaled to 14 or 80 kJ/mol. To help understand DNAN sorption mechanisms we characterized the two lignins by
elemental analysis, BET nitrogen adsorption-desorption and 3'P NMR. Variations in elemental compositions between the two lignins
indicated that alkali lignin should have more sites (O- and S-containing functionalities) for H-bonding. The BET surface area and
calculated total pore volume of alkali lignin were almost 10 times greater than that of organosolv lignin suggesting that alkali lignin
should provide more sites for sorption. 3'P NMR showed that organosolv lignin contains more phenolic ~OH groups than alkali lignin,
i.e., 70% and 45%, respectively. The variations in the type of OH groups between the two lignins might have affected the strength of

H-bonding between DNAN and the type of lignin used.

Key words: sorption; DNAN; lignin; kinetics; isotherms.
DOI: 10.1016/S1001-0742(11)60863-2

Introduction

2,4-Dinitroanisole (DNAN) is a versatile chemical widely
used in many industrial and military applications includ-
ing manufacturing of dyes (Chudgar et al., 2003) and
munitions formulations. Currently, DNAN because of its
insensitive properties is being considered to replace TNT
(2,4,6-trinitrotoluene) in the production of munitions for-
mulations (Platten et al., 2010). Wide manufacturing and
usage of DNAN may lead to wide environmental contami-
nation of soil and water. Reportedly DNAN is known to be
toxic (Dodd and McDougal, 2001) thus necessitating its
removal from affected environments.

Apart from using activated carbon (GAC) to remove
DNAN from water (Boddu et al., 2009); little information
is available on the removal of the chemical from water.
Recently, there has been considerable interest in using
renewable natural products such as lignin for the develop-
ment of sustainable and cost-effective materials for water
treatment (Suteu et al., 2010). Lignin (Fig. 1) is the second
most abundant organic biopolymer after cellulose with
annual production exceeding 70 million tons per year from
wastes coming from the pulp and paper and fuel production

* Corresponding author. E-mail: jalal.hawari @nrc.ca

industries (Satheesh et al., 2009). In addition, lignin is a
highly functionalized polymer possessing several impor-
tant functional groups including ether linkages, aliphatic
and aromatic hydroxyl groups making the polymer a model
matrix for sorption (Dizhbite et al., 1999; Suteu et al.,
2010).

Lignin has been used as sorbent for the removal of
pyrene, phenanthrene and naphthalene (Wang et al., 2007),
Brilliant Red dye (Suteu et al., 2010), Cu(Il) (Merdy
et al., 2002; Sciban and Klasnja, 2004; Mohan et al.,
2006), Cd(I) (Demirbas, 2004; Basso et al., 2004), and
Pb(1l) (Lalvani et al., 1997, Srivastava et al., 1994) from
contaminated waters. The main objective of the present
work was to explore the effectiveness of two structurally
different lignins, alkali and organosolv lignins, to remove
DNAN from artificially contaminated water. The kinetic
and sorption equilibria were studied to gain insight into
the sorption mechanism of DNAN on lignin. In addition,
lignins were characterized by elemental analysis. BET

nitrogen adsorption-desorption and 3'P NMR to help un-
derstanding the variation in sorption capadity between the
two lignins.
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Fig.1 Chemical structure of a part of lignin polymer (Suteu et al., 2010).

1 Experimental

1.1 Materials

Both alkali and organosolv lignins were purchased from
Sigma-Aldrich (Oakville, Canada) and used as received.
2,4-Dinitroanisole (DNAN) was obtained from Defense
Research and Development Canada. DNAN stock solution
(200 mg/L) was prepared in deionized water and working
solutions (25-200 mg/L) were prepared by appropriate
dilution.

1.2 Characterization of lignins

Elemental analysis was determined using Fisons instru-
ments EAS1108. BET (Brunauer-Emmett-Teller) surface
analysis was performed on a TRISTAR II 3020 surface
analyzer (Micromeritics Analytical Services, USA) us-
ing the multipoint method. Lignins (5 g) were degassed
at 120°C for 12 hr and nitrogen adsorption-desorption
isotherms determined at 77 K. Total pore volume was
evaluated from the amount of nitrogen adsorbed at P/P
= 0.99 (P is applied pressure, Py is system initial pres-
sure). >'P NMR analyses were carried out using a Bruker
500 MHz spectrometer after derivatizing lignin with a
phosphotylating agent as reported previously (Akim et al.,
2001; Granata and Argyropoulos, 1995). 3'P NMR allows
the differentiation and quantification of various types of
—OHs coming from the aliphatic, phenolic and carboxylic
OH groups on lignin (Crestini et al., 2010).

1.3 Sorption experiments

Sorption kinetics were conducted in 20 mL borosilicate
vials containing 10 mL of DNAN aqueous solution (50
mg/L) and 10 mg of either alkali and organosolv lignin.

The initial pH for alkali and organosolv lignins aqueous
suspensions were 6.9 and 5.7, respectively. The tubes
were stirred (250 r/min) at room temperature for 24 hr.
At different time intervals, aliquots were filtered through
a Millex-HV 0.45-um syringe and analyzed for DNAN
using HPLC equipped with C18 column (25 cm X 4.6
mm; 5 wm particles size) (Supelco, Oakville, Canada)
and a UV detector (298 nm). The mobile phase consisted
of methanol/water mixture (50%, V/V) at a flow rate of
1.0 mL/min for 15 min. All sorption experiments were
conducted in triplicate. The amount of DNAN sorbed at
time ¢, Q; (mg/g), was calculated using Eq. (1):

0= (G- Cox (1)

where, C; (mg/L) is the initial DNAN concentration, C;
(mg/L) is the DNAN concentration in the aqueous phase
at time ¢, V (L) is the solution volume, and m (g) is the
mass of the sorbent.

After sorption of DNAN onto either lignin was complete
(aqueous concentrations stabilize), sequential desorption
of DNAN from lignin was carried out using deionized
water as has been described by Sheremata et al., 1999.
Briefly, samples were centrifuged (3700 xg) for 20 min
and the supernatant was decanted. Then, 10 mL of deion-
ized water were added to the remaining solid, sonicated
at 20°C for 20 hr and filtered through a Millex-HV 0.45-
um syringe filter prior to HPLC analysis. This process

was repeated until no DNAN is detected [ FheTenmaimimg
lignin was then extracted with acetonitrilg for subsequent
analysis by HPLC to mass balance the fatg of DNAN.
Sorption isotherms were obtained by ddtermining sorp-
tion of DNAN at a temperature range [[0—40°C in (20
mL borosilicate vials each containing 10| mL of DNAN
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(25-200 mg/L) and 10 mg of the respective lignin. After
reaching equilibrium (24 hr), the solutions were filtered
through a Millex-HV 0.45-um syringe filter and analyzed
for DNAN by HPLC. The amount of DNAN adsorbed at
equilibrium, Q., was calculated using Eq. (2):

\%
Qe = (Ci = Co) X — )
m

where, C; (mg/L) is the initial DNAN concentration, C,
(mg/L) is the DNAN concentration at equilibrium, V (L) is
the solution volume, and m (g) is the mass of the sorbent.

2 Results and discussion

2.1 Sorption Kinetics

Sorption of DNAN (50 mg/L) onto organosolv and alkali
lignins (10 g/L) showed a biphasic process (Fig. 2), a rapid
initial sorption phase followed by a much slower one. For
alkali lignin, the percentage of DNAN removal increased
sharply during the first 60 min during which more than
75% of the chemical sorbed then sorption increased slowly
until system reached equilibrium (24 hr). For organosolv
lignin the removal of DNAN reached only 40% in the first
3 hr before attaining equilibrium (24 hr). The 24 hr was
considered sufficient for the significant removal of DNAN
and was therefore used for all subsequent experiments.

Desorption by deionized water led to only 10% recovery
of DNAN, but when acetonitrile was used, 100% of DNAN
was recovered from both lignins, indicating that DNAN did
not undergo irreversible chemisorption or degradation.

Data from DNAN sorption were fitted to a pseudo
second-order model (Ho and McKay, 1999):

t 1 1
—_— = > + —t
Qt kZQe Qe

where, k, is the rate constant for the pseudo second-
order kinetic equation and Q. and Q; are the amounts of
DNAN sorbed onto lignins at equilibrium and at time ¢,
respectively.

A plot of ¢/ Q; against ¢ (Fig. 3) gives a straight line with
a slope at 1/Q. and an intercept of l/szg. The sorption
capacity Qe, rate constant k, and correlation coefficient,

3
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Fig. 2 Time courses for DNAN sorption (50 mg/L) onto lignins (10 g/L).

r?, are presented in Table 1. k, for alkali lignin was

33 times higher than that of organosolv lignin, i.e. 10.3
and 0.3 g/(mg-hr), respectively. Rate constants obtained
in this study exceeded those obtained for the sorption
of DNAN onto GAC (0.07x1073-1.62x10~* g/(mg-hr))
(Boddu et al., 2009). More rapid sorption on lignins might
be attributed to the presence of several functional groups,
e.g. —OH and —COOQOH, in lignin that are absent in the case
of GAC.

Table 1 Pseudo second-order kinetic parameters for DNAN sorption
(50 mg/L) to lignins (10 g/L)

Lignin k (g/(mg'hr)) Qe (mg/g) r
Alkali 10.3 4.19 0.999
Organosolv 0.3 2.67 0.997

2.2 Sorption isotherms

Figure 4 shows the sorption isotherms of DNAN onto both
alkali and organosolv lignins at a temperature range (10, 25
and 40°C) frequently encountered in natural environments.
Sorption of DNAN decreased with temperature in the
case of alkali lignin (exothermic sorption) (Fig. 4a) but
increased in the case of organosolv lignin (endothermic
sorption) (Fig. 4b). Also the effect of temperature on
DNAN uptake was more pronounced in the case of organo-
solv lignin. For instance, by increasing temperature from
10 to 40°C, the amount of DNAN (initial concentration 100
mg/L) sorbed by organosolv lignin increased from 0.8, to
7.5 mg/g but decreased from 8.5 to 7.6 mg/g in the case of
alkali lignin.

Sorption data were fitted to both the linear equation
(Eq. (4)) and the logarithmic form of Freundlich equation
(Eq. 5)):

Qe = KdCe (4)
1

logQ. = logK; + —logCe, (®)]
n

where, Q. (mg/g) is the amount of DNAN sorbed per
gram of the sorbent, C. (mg/L) is the concentration of
DNAN in water at equilibrium, Ky (L/g) is the distribution
coefficient, Ky (mg'~!/"g~1L1/") is the Freundlich constant
that gives a measure of the sorbent capacity and 1/n gives

20
18} o Alkali
16+ 0O Organosolv

1Q,

0 10 20 30 40 30 60

Time (hr)
Fig.3 Pseudo second-order kinetic model fitting for DNAN sorption
(50 mg/L) onto lignins (10 g/L). Q; is the amounts of[DNAN sorbed onto
lignins at time ¢.
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Fig. 4 Experimental and theoretical sorption isotherms of DNAN onto
alkali lignin (a) and organosolv lignin (b). The standard deviations were
within 5% of the corresponding values. Q. is the amounts of DNAN
sorbed onto lignins at equilibrium, and Ce is the concentration of DNAN
in water at equilibrium.

a measure of the intensity of sorption. Ky and 1/n are
represented by the intercept and the slope of the isotherm,
respectively.

Sorption parameters are presented in Table 2. For both
lignins, Freundlich and linear isotherms fit experimental
data with 7> higher with Freundlich isotherm than with
linear one; i.e. Freundlich > were 0.998 and 0.995 and
linear % were 0.980 and 0.942, for alkali and organosolv
lignins at 298 K, respectively. The value of 1/n was much
lower for organosolv lignin showing more non-linearity
as compared to alkali lignin. Successful fitting of the
experimental data with Freundlich model was attributed
to the heterogeneity of lignin surface and the presence of
different binding sites having different binding affinities

(Liu and Huang, 2000).

Because the value of Ky could not be used to compare
different isotherms (Balakrishnan et al., 2004), instead we
used Ky values to compare sorption affinity of DNAN on
both lignins and to calculate sorption thermodynamic pa-
rameters. We found that K, for alkali lignin was almost 55
and 10 times higher than organosolv lignin at 10 and 25°C,
respectively, but they were comparable at 40°C (Table 2).

At the end of the sorption experiment we found that
alkali and organosolv lignins were able to remove 55 and
18 mg DNAN/g lignin, respectively, as compared to 181
mg DNAN/g of activated carbon (Boddu et al., 2009). In
a more recent study Zhang et al. (2011) reported the use
of a modified lignin to adsorb TNT and found a maximum
removal of 55.7 mg/g TNT at pH 7.

Table 2 summarizes the thermodynamic parameters ob-
tained by plotting logKy as function of 1/7 using Van’t
Hoff equation (logKy = ASY/R — AH°/RT), where Ky
(L/g) is the distribution coefficient constant and 7 (K) is
the sorption temperature. Enthalpy of sorption (AH®) of
DNAN on alkali lignin was negative (—14.2 kJ/mol), i.e.
endothermic but was positive (80.2 kJ/mol) in the case
of organosolv lignin, i.e., exothermic. Sorption energy,
AHC, might also indicate the type of binding mechanism
involved. AH® for alkali and organosolv lignins were 14.2
and 80.2 kJ/mol, respectively, indicating stronger sorption
in the case of organoslv lignin. In support of this He et al.
(2004) reported that a AH® range of 14.2 to 80.2 kJ/mol
is indicative of H-bonding predominance during sorption.
DNAN through its -NO, functional groups and lignin
through its —OH functionalities create ideal conditions
for H-bonding. *'P-NMR spectroscopy of various —OH
functional groups in lignin after sorption (Table 3) clearly
indicates the reduction on the content of all types of —-OH
groups in both lignins.

Other mechanisms besides H-bonding such as 7—r inter-
actions between the aromatic rings in lignin and DNAN,
dipole-dipole interactions should not be ignored.

Entropy of sorption of DNAN onto alkali lignin was
negative (AS 0 = _56.4 J/(mol-K)) indicating a decrease in
the randomness at the sorbent-sorbate interface while the
positive value of AS in the case of organosolv lignin (AS°
= 244.1 J/(mol-K) indicating the contrary.

2.3 Variation in sorption of DNAN by the two lignins

Elemental analyses (Table 4) showed that organosolv
lignin has slightly more carbon than alkali lignin, i.e.
66.2% and 61.5%, respectively, but less oxygen 27.6%

Table 2 Freundlich and linear constants and thermodynamic parameters for DNAN sorption onto lignins

Freundlich fitting

Linear fitting Thermodynamic parameters

T (K) Kg (mg!—1ng=1p l/m) 1/n r Kq (L/g) 2 AHY (kJ/mol) AS(J/(mol-K))
Alkali 283 0.79 0.84 0.998 0.52 0.965 -14.2 -56.4

298 0.63 0.90 0.998 0.44 0.980

313 0.34 0.90 0.999 0.28 0.993
Organosolv 283 0.05 0.61 0.997 0.01 0.752 80.2 244.1

298 0.13 0.73 0.995 0.04 0.942

313 0.39 0.87 0.988 0.24 0.917
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Table 3 3'P NMR quantification of different ~OH types in studied lignins before and after adsorption of DNAN

Lignin Aliphatic-OH (mmol/g) Phenolic-OH (mmol/g) Carboxylic-OH (mmol/g) Total-OH (mmol/g)
Alkali Before adsorption 3.88 3.48 0.22 7.58

After adsorption 1.37 2.14 0.22 3.73
Organosolv Before adsorption 2.20 5.73 0.42 8.35

After adsorption 0.88 2.24 0.16 3.27

Table 4 Elemental analysis and BET measurements of lignins
Elemental analysis
Nitrogen (%) Carbon (%) Hydrogen (%) Sulphur (%)  Oxygen (%) O/C

Alkali 0.9 61.5 5.8 2.4 29.4 0.48
Organosolv. 0.3 66.2 59 - 27.6 0.42

Nirtrogen adsorption-desorption measurements

BET surface area (x1072 m?/g)  Pore diameter (nm)

Total pore volume (x10™* cm?/g)

Alkali 30.1

10.4 8.1
Organosolv 3.2 3.8 0.7

and 29.4%, respectively. Alkali lignin was also found to
contain 2.4% sulfur that was absent in organosolv lignin.
Variations in elemental compositions between the two
lignins indicate that alkali lignin should have more sites
(O- and S-containing functionalities) for H-bonding. On
the other hand, the oxygen/carbon mass ratio, O/C, should
provide some insight into the polarity of lignin and hence
its sorption capacity (Wei and Seo, 2010). However, ele-
mental analysis of studied lignins showed little difference
in the O/C ratio i.e., 0.42 for organosolv and 0.48 for alkali
lignins (Table 4).

Table 4 also summarizes specific surface areas, pore
volumes and pore diameters of the two lignins obtained
by the BET method. The average pore diameters as de-
termined by BJH method were 10.4 and 3.8 nm for alkali
and organosolv, respectively. The BET surface area and
calculated total pore volume of alkali lignin were almost
10 times greater than that of organosolv lignin suggesting
that alkali lignin should provide more sites for sorption.

3P NMR data shown in Table 3 also indicated that
the total content of —OH groups in both organosolv and
alkali lignins was quite similar, i.e., 8.35 and 7.58 mmol/g,
respectively, but the type of —OH groups was quite dif-
ferent. For example, organosolv lignin contained more
phenolic-OH groups than alkali lignin, i.e. 69% and 46%,
respectively. The variations in the type of —OH groups
between the two lignins might have affected the strength
of H-bonding between DNAN and the type of lignin used.
For example, organosolv lignin with more phenolic-OH
than the alkali lignin provided stronger sorption sites (H-
bonding) which is in line with the observation of high
sorption energy AH° in the case of organosolv lignin
(Table 2).

3 Conclusions

In conclusion, organosolv and alkali lignins were suc-
cessfully used to remove DNAN from water with alkali

lignin acting as better sorbent exhibiting faster sorption
kinetics. Low cost of lignin and it’s rapid and efficient
removal of DNAN from water may constitute the bases
for the development of a cost-effective technology for the
treatment of industrial wastewaters.
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