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Abstract
Ambient coarse particles (diameter 1.8–10 µm), fine particles (diameter 0.1–1.8 µm), and ultrafine particles (diameter < 0.1 µm) in the
atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization
of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX).
Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were
quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed
by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles
and ultrafine particles in the summer air were 9.38 ± 2.18, 8.82 ± 3.52, and 2.02 ± 0.41 µg/m3, respectively. The mass percentage of
the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai
ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and
fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were
mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment
revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources.
Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

Key words: airborne size-resolved particles; chemical elements distribution; source apportionment

DOI: 10.1016/S1001-0742(11)60870-X

Introduction

Epidemiological studies have shown that increasing levels
of airborne particulate matter are associated not only
with exacerbations of respiratory diseases but also with
increased morbidity and mortality from cardiovascular
conditions (Dockery et al., 1993; Dockery and Pope, 1994;
Hetland et al., 2004; Künzli et al., 2000; Samet et al.,
2000; Stieb et al., 2002). According to their aerodynamic
diameter (d), airborne particulates can be divided into three
categories: (1) coarse particles (2.5 6 d 6 10 µm); (2) fine
particles (d < 2.5 µm); and (3) ultrafine particles (UFPs)
(d < 0.1 µm). A number of studies of Shanghai air quality
have focused on the physicochemical characterization of
coarse particles and fine particles (Lu et al., 2008; Fu et
al., 2008; Wang et al., 2006), but until now, relatively few
works have investigated the character of ultrafine particles
(Lu et al., 2011). However, surface area-to-mass ratios and

* Corresponding author. E-mail: seiyo@mail.saitama-u.ac.jp (Qingyue
Wang); senlinlv@shu.edu.cn (Senlin Lü)

deposition efficiency of UPFs in the alveoli are higher than
those of either coarse particles or fine particles (Duffin et
al., 2007), and the size and chemical composition of ambi-
ent particles are important determinants of their potential
impacts on human health. These findings have motivated
researchers to investigate the physicochemical characteri-
zation of ultrafine particles in the urban atmosphere. For
example, Wu et al. (2008) conducted a two-year study
of particle numbers and size distribution (3 nm–10 µm)
of airborne particulates in Beijing, China. They reported
annual average particle number concentrations in several
ways: the nucleation mode (3–20 nm), the Aitken mode
(20–100 nm), and the accumulation mode (0.1–1 µm),
giving values of 9000, 15900, and 7800 cm−3, respectively.
Allen et al. (2001) measured the size distributions of
Ba, Cd, Co, Cu, Hg, Mn, Ni, Pb, Sn, Se, Sr, Zn and
Fe in atmospheric aerosols at three background sites in
central England and southern Scotland. They concluded
that the size distributions obtained in Scotland, which
were typically trimodal, significantly differed from those
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in central England, where modes were more variable. Lin
et al. (2005) reported on the size distribution of chemical
elements in size-resolved ambient particles near a highway
in Taiwan. Their results showed that anthropogenic ele-
ments, such as Zn, Ni, and Pb, were mainly distributed in
the size range of 1.0–0.56 µm. As the largest commercial
city in China, ambient inhalable particles (PM10, PM2.5) in
the Shanghai atmosphere have been investigated recently
(Ye et al., 2000; Wang et al., 2006; Fu et al., 2008;
Zhang et al., 2009). We have also reported the physic-
ochemical character and potential toxicity of Shanghai
ambient coarse/fine/ultrafine particles, and have concluded
that fine particles have a higher toxicity than either coarse
particles or UPFs, and in particular that the crustal element
calcium can be enriched in the ultrafine particles (Lu et al.,
2011). Nevertheless, relatively few studies have focused on
the physicochemical characterization of differently sized
airborne particles and their source apportionment. Hence
this study has focused on the size distribution of individual
elements in size-resolved airborne ambient particles in
Shanghai, and interpretation of their source apportionment.

1 Experiments

1.1 Field sampling

The sampling site was located in Xujiahui (XJH), one
of commercial centers of Shanghai (Fig. 1). A 13-stage
MOUDI125 B (Micro-Orifice Uniform Deposit Impactor,
MSP, Co., Minneapolis, USA) with the flow rate of 10
L/min was employed to collect the size-resolved ambient
particles. The particles were collected on polycarbonate
filters (Millipore, 47 mm diameter, 0.6 µm pore size). The
MOUDI impactor effectively separated the particulate mat-
ter into 13 ranges (at 50% efficiency) with the following
equivalent cutoff diameters (µm): 10–5.6, 5.6–3.2, 3.2–
1.8, 1.8–1.0, 1.0–0.56, 0.56–0.32, 0.32–0.18, 0.18–0.1,
0.1–0.056, 0.056–0.032, 0.032–0.018, and 0.018–0.010

Yellow Sea
Hangzhou Bay

Fig. 1 Sketch map of sampling site.

µm. The sampler was mounted on the roof of a build-
ing at the Shanghai Environmental Monitoring Center
(31◦11′20.42′′N; 121◦26′09.99′′S). The sampling site was
about 15 m high above the ground. The sampling cam-
paigns were performed from Aug 27 to Sep 10, 2008.

A total of five groups (65 samples) of size-segregated
ambient particle samples were collected. The sampling
period for each group was set at 48 hr. If it was rainy day
during the sampling times, the sampling campaign would
be stopped; therefore, the sampling dates were on Aug 27,
Aug 30, Sep 02, Sep 04 and Sep 08. Meteorological data
during the sampling times were also recorded (Table 1).
The sampled filters were kept in desiccators (with room
temperature and around 50% RH) until analysis. The filters
were weighed before and after sampling, under the same
conditions at constant temperature (20 ± 1)°C and humid-
ity (40% ± 5%) with a microbalance (Model CP225D,
Sartorius, Germany), then, mass concentrations of the size-
resolved ambient particles were obtained by the following
equation:

C =
(W2 −W1)

L × t
(1)

where, C (µg /m3) is mass concentration; W1 (µg) and W2
(µg) are weight of the filters before and after sampling,
respectively; L (m3/min) is sampling flow of air; t (min)
is sampling time.

Table 1 Meteorological data during sampling times

Dates Aug 27 Aug 30 Sep 02 Sep 04 Sep 08

Temperature (°C) (ave.) 32 26 24 26 26
Humidity (%) (ave.) 67 80 62 60 71
Wind Speed (km/hr) (ave.) 5 12 6 7 8
Wind direction ESE ES W ES EN

Ave. means average value of 48 hr.

1.2 Analysis methods

1.2.1 Scanning electronic microscopy
Sample preparation for SEM observation was as described
by Lu et al. (2007). Briefly, for each sample, approximately
1.5 × 2 cm2 of the polycarbonate filter was cut off using
resin scissors and was attached to conductive metal pads
using double-sided adhesive. The samples were examined
using scanning electron microscopy (SEM) (JSM-6700F,
JEOL, Japan), equipped with an energy dispersive X-ray
system (EDX) which was used for the chemical elemen-
tal analysis. The EDX spectrometer was a Link ISIS
spectrometer with a Si(Li) detector which allows X-ray
detection from elements higher than carbon (atomic num-
ber, Z > 6). The system was equipped with software, and
elemental weight percents were calculated using standard
ZAF (atomic number, absorption, fluorescence) correc-
tions. Operating conditions of the SEM were 10 KeV
accelerating voltage and 10 µA beam current, with spectral
acquisition times of 100 sec. The diameter of the spot
of the electron beam was 1 µm. The instrument allowed
observation of the diameter of particles down to 0.5 µm.

http://www.jesc.ac.cn


jes
c.a

c.c
n

884 Journal of Environmental Sciences 2012, 24(5) 882–890 / Senlin Lü et al. Vol. 24

1.2.2 Synchrotron radiation X-ray fluorescence analy-
sis

The synchrotron radiation technique has been used in
other studies of the elemental composition and species
of atmospheric particulate matter (Li et al., 2007, 2009;
Lin et al., 2009; Wang et al., 2007). The chemical
composition analysis of the size-segregated particles was
carried out in Tsukuba, Japan, at the synchrotron radiation
X-ray fluorescence analysis end station (BL-4A) of the
Photon Factory’s high energy accelerator research orga-
nization. The electron beam energy and ring current of
the synchrotron radiation were 2.5 GeV and 300–450 mA,
respectively, and the X-ray energy ranged from 1 to 20
keV. A double crystal monochromator was employed, and
the monochromatic excitation energy was 19.5 keV. The
electronic slot was adjusted to make the beam spot sizes 5
µm × 5 µm. Measurement time for each sample was set for
100 sec. The fluorescence signals were acquired by a Si(Li)
semiconductor detector and sent into a 1024 channel pulse
height analyzer to record the XRF spectrum. Recordings of
the intensity of the fluorescent signal from each filter were
repeated 3 times. The spectra were analyzed and processed
by the software AXIL. The advantage of this method is
that the analyzer recorded the intensity of fluorescence
emitted by the measured particles, and the X-rays cannot
do damage to the filter, therefore, the filter is kept in good
condition during the experiment.

1.2.3 Source apportionment
Source apportionment of chemical elements in the size-
resolved particles was studied by using an enrichment
factor method. The enrichment factor (EF) is used to iden-
tify whether the measured chemical elements are emitted
from natural sources (EF < 100), or from anthropogenic
sources. The EF value is calculated by using the following
equation:

EFi =
(Mi/Mr)aerosol

(Mi/Mr)crust
(2)

where, Mi is the concentration of the element in aerosol
and Mr is the abundance of titanium in the crust. The
titanium is selected as the reference element, which is
relatively stable in the crust, and its distribution is not
affected by human activities (Chen et al., 2008).

2 Results and discussion

2.1 Mass concentrations

Mass levels of the different size airborne particles are
shown in Fig. 2. The total mass concentration of the
ambient variously size-resolved particles was 74.63 µg/m3.

The average mass concentration of Shanghai coarse
particles (PM10−5.6, PM5.6−3.2, PM3.2−1.8) from Aug 27
to Sep 9, 2008 ranged from 7.3 to 12.47 µg/m3 with
an average mean of 9.38 ± 2.18 µg/m3. The average
mass level of the fine particles (PM1.8−1.0, PM1.0−0.56,
PM0.56−0.18, PM0.18−0.1) ranged from 5.3 to 12.57 µg/m3

with an average mean of 8.82 ± 3.52 µg/m3, with higher
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Fig. 2 Mass concentrations of size-segregated particles collected in
the Shanghai atmosphere. Data are presented as means with standard
deviations.

mass concentration of fine particles found on Aug 30 and
Sep 2; relatively high humidity (80%) might contribute
to the high mass levels. Mass concentrations of the ul-
trafine particles (PM0.1−0.056, PM0.056−0.032, PM0.032−0.018,
PM0.018−0.01) ranged from 1.39 to 2.43 µg/m3 with an
average mean of 2.02 ± 0.41 µg/m3. After the size-resolved
particles were divided into coarse particles (size diameter,
1.8–10 µm), fine particles (size diameter, 0.1–1.8 µm)
and ultrafine particles (size diameter < 0.1 µm), the mass
percentage of the fine particles accounted for 51.47% in the
total mass of PM10, while the coarse particles and ultrafine
particles accounted for 37.69% and 10.84%, respectively
(Fig. 3).

The fine-to-coarse mass concentration ratios ranged
from 54% to 68% with an average of 62%, indicating
that Shanghai ambient particles were dominated by the
fine particles. Zhao and Gao (2008) showed that PM1.8
accounted for about 68% of the mass concentrations of
PM10 in the New Jersey urban atmosphere from July to
December 2006. Ntziachristos et al. (2007) demonstrated
that mass levels of coarse, fine and ultrafine particles near
the I-710 freeway in Los Angeles were 6.3 ± 0.88, 5.8
± 0.95 and 1.7 ± 0.67 µg/m3, respectively. Additionally,
we have previously reported average mass levels of coarse
particles, fine particles, and UFPs, which were collected in
winter at the same sampling site as used in this study, to
be 6.2 ± 3.8, 12.9 ± 8.4, 2.7 ± 1.4 µg/m3, respectively

37.69%

51.47%

10.84%

Coarse

Fine

Ultrafine

Fig. 3 Mass ratios of size-resolved particles in Shanghai summer
atmosphere.
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(Lu et al., 2011), Therefore, compared with the above
mentioned results, particulate pollution in the center of
Shanghai (XJH) is serious, and their mass levels show no
significant variation from winter to summer.

2.2 Microscopic characterization of the size-resolved
particles

The SEM results demonstrated that microscopic charac-
terization of Shanghai particulates revealed that different
size particles had visibly different attributes. Based on
SEM morphological character (Fig. 4) and EDX spectrum
(Fig. 5), individual particle types in the Shanghai atmo-
sphere could be identified as irregular mineral particles
(with main chemical elements, Si, Al, K, Na, Ca); regular
mineral particles (S, O, Cl, Na); fly ash (Si, Al, O);
soot particles (carbon); and unidentified particles. The
coarse particles were mainly composed of mineral particles
(Fig. 4a); fine particles were dominated by mineral parti-
cles, soot aggregates, fly ashes and unidentified particles
(Fig. 4b); and ultrafine particles consisted of soot aggre-
gates (Fig. 4c). The clustered soot aggregates (Fig. 4d), that
had originated from combustion, were commonly found in
all the size ranges.

Fly ash particles with a spherical shape (Fig. 4e) could
be observed; they were largely derived from coal com-

bustion and metallurgical emissions (Lu et al., 2008).
The cubic particles (Fig. 4f) were composed of sodium
chloride, its chemical elements being identified as Na
and Cl by EDX (Fig. 5a). Regular mineral particles with
quadrate shape (Fig. 2g), of which the chemical elements
were Ca, S, O (Fig. 5b), were mainly generated by
atmospheric reactions, similar to particles identified in a
case study in Phoenix, Arizona reported by Katrinak et
al. (1995). It is noted that there were numerous particles
which were dominated by sulfur; their micrographs are
shown in Fig. 4h (with EDX spectrum, Fig. 5c) and Fig. 4i
(with EDX spectrum, Fig. 5d). This phenomenon of S
being deposited on particles could be used to demonstrate
that S pollution exists in Shanghai air. Shi et al. (2003) and
Li and Shao (2009) have also reported that sulfur could be
readily observed in Beijing ambient particles.

2.3 Chemical elements analysis

The mass concentrations of a total of 20 elements in
Shanghai size-segregated particles were investigated by
SRXRF (Table 2). The chemical elemental analysis results
showed that the value for the mass concentration of Si
was the highest both in the coarse particles (1385.84 ±
143.87 ng/m3) and in the ultrafine particles (111.75 ±
26.77 ng/m3). Being the most abundant element in the

a b c

d e f

g h i

Fig. 4 SEM micrographs of size-segregated particles. (a) coarse particles; (b) fine particles; (c) ultrafine particles; (d) soot aggregates; (e) fly ash; (f),
(g) mineral particles; (h), (i) irregular particles.
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Table 2 Mass concentrations of 20 elements in coarse, fine, ultrafine
particles (unit: ng/m3)

Elements Coarse particles Fine particles Ultrafine particles

Si 1385.84 ± 143.87 239.03 ± 45.24 111.75 ± 26.77
P 10.38 ± 2.51 18.86 ± 2.04 4.50 ± 0.59
S 88.74 ± 12.76 1124.29 ± 142.23 39.3 ± 3.09
Cl 148.57 ± 13.30 98.06 ± 10.03 18.23 ± 3.67
K 167.64 ± 23.40 139.5 ± 16.04 2.17 ± 0.77
Ca 488.13 ± 88.83 224.72 ± 41.04 6.23 ± 1.10
Ti 27.42 ± 3.37 4.23 ± 0.94 0.43 ± 0.08
V 3.87 ± 0.54 4.57 ± 0.83 4.00 ± 0.62
Cr 1.73 ± 0.29 2.49 ± 0.61 0.69 ± 0.15
Mn 6.92 ± 1.88 9.56 ± 1.23 0.48 ± 0.09
Fe 475.84 ± 63.92 447.69 ± 40.24 14.38 ± 2.39
Ni 0.84 ± 0.08 3.84 ± 0.84 0.61 ± 0.13
Cu 20.07 ± 1.73 36.31 ± 3.33 7.34 ± 1.09
Zn 33.64 ± 6.25 159.86 ± 20.83 2.06 ± 0.11
As 5.95 ± 1.30 2.59±0.48 2.16 ± 0.38
Se 0.17 ± 0.02 2.76 ± 0.50 0.08 ± 0.01
Br 3.27 ± 0.26 12.98 ± 1.40 1.34 ± 0.17
Rb 1.74 ± 0.23 1.19 ± 0.10 0.14 ± 0.02
Sr 2.22 ± 0.33 0.47 ± 0.03 0.03 ± 0.01
Pb 16.77 ± 1.67 103.24 ± 10.06 4.88 ± 0.41

crust, it is to be expected that high mass concentrations
of Si could be found in ambient coarse particles (Lu et al.,
2007). However, Lin et al. (2005) claimed that emissions
from diesel engines could also contribute to concentrations
of Si found in ambient nano particles. Therefore, the high
concentrations of Si found here in the Shanghai ultrafine
particles might be at least in part explained by the many
vehicles (30,000 /day) driving around our sampling site.

Sulfur (1124.29 ± 142.23 ng/m3) was the most abundant
chemical element in Shanghai fine particles. Sulfur in am-
bient particles is a typical anthropogenic element, mainly
contributed by coal combustion (Tang, 1990). The high
mass level of sulfur in the Shanghai atmosphere suggested
that coal combustion was one of the pollutant sources.

The mass concentrations of Ca in coarse, fine and

ultrafine particles were 488.13 ± 88.83, 224.72 ± 41.04,
and 6.23 ± 1.10 ng/m3, respectively. The corresponding
mass level of Fe in coarse, fine, and ultrafine particles
was 475.84 ± 63.92, 447.69 ± 40.24,and 14.38 ± 2.39
ng/m3, while that for K was 167.64 ± 23.40, 139.5 ± 16.04,
and 2.17 ± 0.77 ng/m3. These three elements were mainly
distributed in the coarse particles.

The mass levels of Zn and Pb in fine particles were
159.86 ± 20.83 and 103.24 ± 10.06 ng/m3, respectively.
Elevated mass concentrations of Zn in ambient particles
have also been reported in the air of Cardiff (Moreno et al.,
2004), Beijing (Lu et al., 2006) and Shanghai (Fu et al.,
2008). We once reported that a high mass level of Pb (325
ng/m3) could be found in Shanghai winter PM2.5 (Lu et al,
2008); compared with our previous results, the mass level
of Pb in fine particles reported here has decreased greatly.
Because Pb in airborne particles is related with leaded
gasoline combustion (Fu et al., 2008), leaded gasoline
prohibition and air quality control measures might well
have contributed to the Pb decrease.

The mass levels of other metal elements in the fine
particles ranked in the following order: Cu (36.31 ± 3.33
ng/m3) >Mn (9.56 ± 1.23 ng/m3) >Ni (3.84 ± 0.84 ng/m3)
> Cr (2.49 ± 0.61 ng/m3).

Figure 6 shows that all of the mass ratios of Si, Ca,
Ti, Sr, Fe, K in the coarse particles were more than
50%, suggesting these abundant elements were mainly
distributed in the coarse particles, while the mass ratios
of S, Zn, Pb, Ni, Se in the fine particles were more than
50%, implying these elements were concentrated in the
fine particles.

2.4 Size distribution of individual chemical elements

Figures 7 and 8 present the size distributions of the
individual chemical elements in the Shanghai size-resolved
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Fig. 5 EDX spectra of individual airborne particles in Shanghai atmosphere. (a) salt particles; (b), (c) sulfates; (d) particles containing S and K.
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particles.
Figure 7 shows the size distribution of the crustal ele-

ments Si, Fe, Ca, K (major chemical elements) in Shanghai
airborne size-resolved particles. Si and Ca exhibited a
single modal size distribution, and their highest mass peaks
appeared in the 3.2–5.6 µm range. Fe and K exhibited
approximately bimodal size distributions, with primary
peaks in the 3.2–5.6 µm range and secondary peaks in the
0.56–1.0 µm range. However, Lin et al. (2005) reported
that the four elements in particles which were sampled
near a highway, showed different size distributions, with K
exhibiting a trimodal size distribution, Ca and Si showing a
bimodal size distribution, and Fe which was single modal.
Therefore, it appears that the size distributions of chemical
elements reflect their different emission sources.

Figure 8 shows that the size distributions of S, Pb, Sr and
Se were single modal, their primary peak being at 0.56–
1.0 µm. Although Zn, Cl, Ti, As, Sr also exhibited single
modality, their peak values were different; the peak of Zn
was in the range 0.56–1.8 µm, but the peak of Cl, Ti, As,
and Sr was in the 3.2–5.6 µm fraction. The elements Pb,
Cu, P, Mn and Rb exhibited bimodal size distributions. Pb,
Cu, P, and Mn displayed the two peaks at 0.56–1.0 and
3.2–5.6 µm, but those of Rb were at 0.56–1.0 and 5.6–10
µm. The size distributions of V, Ni, and Cr were trimodal.
The peaks of V were in the ranges 0.018–0.032, 0.18–0.32
and 1.8–3.2 µm; of Ni in 0.18–0.32, 1.0–1.8 and 3.2–5.6
µm ranges; and of Cr in 0.018–0.032, 0.18–0.32 and 3.2–
5.6 µm ranges. The size distribution of trace elements in
Shanghai urban ambient particles revealed that Zn, Pb,
S, Cl, As, Sr, and Mn were mainly embodied in the fine
particles, while V, Ni, Cr had a wide range of distribution.
Therefore, it can be deduced that the complexity of size
distribution of trace metals in Shanghai airborne particles
brings challenges for the control of pollution caused by
these elements.

2.5 Source apportionment

Table 3 shows that the enrichment factors of different
chemical elements in coarse, fine, and ultrafine particles
were different. The EFs of Si, K, Ca, Fe, Mn, Rb, and Sr
in the coarse, fine and ultrafine particles were less than
10, implying these elements were emitted from natural
sources. However, the EFs of S, Cl, Cu, Zn, As, Se,
Br, and Pb in the three size ranges of particles were all
much higher than 10, indicating these elements come from
anthropogenic resources. It was noted that the EFs of P, V,
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Fig. 7 Size distributions of crustal elements in size-resolved airborne particles in Shanghai.
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Fig. 8 Size distributions of trace elements in Shanghai size-resolved airborne particles.

Cr, Ni in coarse particles was less than 10, but their values
in fine particles and in ultrafine particles were extremely
high (> 10) implying that the four elements could be
attracted to fine particles and ultrafine particles.

It can be seen (Fig. 9) that significant differences in the
EFs of an individual element in different size categories
reflect variations in their abundance in the different size
particles. EF values of crustal elements (Si, K, Ca, Mn,
Fe and Sr), and of anthropogenically-derived elements
(S, Cl, Cu, Zn, As, Br, Pb), all had two peaks, with the
primary peak in the 3.2–5.6 µm and secondary peak in
the 0.56–1.0 µm range. However, the EF values of another
anthropogenic element group (P, V, Cr, Ni) exhibited 3
peaks, in 3.2–5.6, 0.56–1.0 and 0.018–0.032 µm ranges
respectively. It is noted that the pattern of abundance
variation of the measured individual chemical elements
was very similar to that of their size distribution, therefore
the size distribution of chemical elements and their EFs

could be used to evaluate particulate matter pollution in
the urban atmosphere.

3 Conclusions

Size-resolved ambient particles were sampled in the center
of Shanghai in the summer of 2008, and their physico-
chemical characterization and source apportionment were
investigated. The results from this work yield the following
conclusions.

(1) The average mass concentrations of coarse particles,
fine particles and ultrafine particles in summer in Shanghai
atmosphere were 9.38 ± 2.18, 8.82 ± 3.52, and 2.02 ± 0.41
µg/m3 respectively. The mass percentage of the fine parti-
cles accounted for up to 51.47% of the total mass of PM10,
indicating that fine particles were the major component in
Shanghai ambient particles; (2) Shanghai size-segregated
particles can be divided into regular and irregular particles,
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Table 3 Enrichment factors of coarse, fine, and ultrafine particles in the
Shanghai atmosphere

Coarse Fine Ultrafine
particles particles particles

Si 0.80 0.90 4.13
P 1.59 18.70 43.85
S 54.76 4502.24 1546.69
Cl 183.36 785.37 1434.92
K 1.04 5.61 0.86
Ca 2.16 6.45 1.76
V 4.60 35.24 303.04
Cr 2.78 25.91 70.09
Mn 1.17 10.48 5.16
Fe 1.53 9.32 2.94
Ni 1.79 53.25 83.63
Cu 58.55 687.36 1365.58
Zn 77.10 2377.74 301.13
As 530.53 1499.87 12290.44
Se 548.72 57556.08 15348.84
Br 210.05 5404.52 5472.37
Rb 3.10 13.80 15.58
Sr 0.95 1.29 0.82
Pb 206.97 8268.52 3841.14
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Fig. 9 Enrichment factor of individual chemical elements in Shanghai
size-resolved particles.

from the point view of their microscopic character. The
coarse particles were dominated by minerals, fine particles
by soot aggregates and fly ashes, and ultrafine particles by

soot particles and unidentified particles; (3) SRXRF results
demonstrated that crustal elements such as Si, Ca and Fe
were mainly distributed in coarse particles, and a higher
mass level of S could be found in size-resolved particles.
Heavy metals, including Cr, Mn, Ni, Cu, Zn, and Pb, were
mainly distributed in the fine particle fraction; (4) source
apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and
Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se,
Br, and Pb from anthropogenic sources. P, V, Cr, and Ni in
particles might be contributed by multi-sources, and need
further investigation.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (No. 10775094, 40973072,
41073073), the Shanghai Pujiang Talent Program, the
Shanghai Committee of Science and Technology (No.
10JC1405500), the Innovation Program of Shanghai Mu-
nicipal Education Commission (No. 11ZZ80), and the
Shanghai Leading Academic Discipline Project (No.
S30109). We thank stringent but constructive comments
from the anonymous reviewer, and thank Prof. Margaret
Burchett for her revision.

References

Allen A G, Nemitz E, Shi J P, Harrison R M, Greenwood J
C, 2001. Size distributions of trace metals in atmospheric
aerosols in the United Kingdom. Atmospheric Environment,
35(27): 4581–4591.

Chen J M, Tan M G, Li Y L, Zheng J, Zhang Y M, Shan Z
C et al., 2008. Characteristics of trace elements and lead
isotope ratios in PM2.5 from four sites in Shanghai. Journal
of Hazardous Materials, 156(1-3): 36–43.

Dockery D W, Pope C A, 1994. Acute respiratory effects of
particulate air pollution. Annual Review of Public Health,
15(1): 107–132.

Dockery D W, Pope C A, Xu X P, Spengler J D, Ware J H,
Fay M E et al., 1993. An association between air pollution
and mortality in six US cities. New England Journal of
Medicine, 329(24): 1753–1759.

Duffin R, Tran L, Brown D, Stone V, Donaldson K, 2007. Proin-
flammogenic effects of low-toxicity and metal nanoparticles
in vivo and in vitro: Highlighting the role of particle surface
area and surface reactivity. Inhalation Toxicology, 19(10):
849–856.

Fu Q Y, Zhuang G S, Wang J, Xu C, Huang K, Li J et al.,
2008. Mechanism of formation of the heaviest pollution
episode ever recorded in the Yangtze River Delta, China.
Atmospheric Environment, 42(9): 2023–2036.

Hetland R B, Cassee F R, Refsnesa M, Schwarze P E, Låg M,
Boere A J F et al., 2004. Release of inflammatory cytokines,
cell toxicity and apoptosis in epithelial lung cells after
exposure to ambient air particles of different size fractions.
Toxicology in Vitro, 18(2): 203–212.

Katrinak K A, Anderson J R, Buseck P R, 1995. Individual parti-
cle types in the aerosol of Phoenix, Arizona. Environmental
Science and Technology, 29(2): 321–329.

Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger
P et al., 2000. Public-health impact of outdoor and traffic-
related air pollution: a European assessment. The Lancet,

http://www.jesc.ac.cn


jes
c.a

c.c
n

890 Journal of Environmental Sciences 2012, 24(5) 882–890 / Senlin Lü et al. Vol. 24
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