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Abstract
We aim to investigate the effects of humic acid (HA) and citric acid (CA) on the toxicity and subcellular distribution of Cd in wheat.
Results show that the toxicity and uptake of Cd decreased with increasing HA. The EC50 values of Cd increased from 3.36 µmol/L
to 4.96 and 7.33 µmol/L at 50 and 250 mg/L HA, respectively, but decreased to 1.39 µmol/L in the presence of CA based on free
ion activity model (FIAM). HA decreased the relative subcellular distribution of Cd in the heat-denatured proteins (decreased from
54% to 33%) but increased Cd in the heat-stable proteins in root (from 25% to 50%) at 7.61 µmol/L {Cd2+} (free Cd activity), which
resulted in decreasing Cd toxicity. However, CA increased Cd toxicity due to the increased internalization of Cd although the relative
subcellular distributions of Cd exhibited a decrease in the heat-denatured proteins and increase in the granule fraction compared to the
control at high-level Cd. The FIAM could not predict the toxicity of Cd in the presence of organic acids. Alternatively, the internal Cd
accumulation and subcellular Cd concentration were better to describe the toxicity of Cd to wheat.

Key words: toxicity; cadmium; organic acid; subcellular distribution
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Introduction

The toxicity of metals in environment is generally depen-
dent on their chemical speciation, which is related to the
physicochemical characteristics of environmental medium,
such as cations, pH, and metal complexation (Campbell
and Evans, 1987; Davies et al., 1993; Bervoets and Blust,
1999; Fraysse et al., 2000). Therefore, the total metal
concentration is not a good predictor of its bioavailability
in many cases. The steady-state models such as the free
ion activity model (FIAM) and the biotic ligand model
(BLM), as an extension of the FIAM, are able to more
accurately predict trace metal bioavailability (Campbell
et al., 2002). According to the FIAM, the activity of
free metal ion in solution dominates its interaction with
cellular surface sites and hence its bioavailability (Morel,
1983). Although they are widely used under laboratory
conditions, these equilibrium models are not always able
to quantify metal bioavailability in the presence of organic
ligands (Lamelas et al., 2009). For example, Al uptake
by freshwater algae Chlorella pyrenoidosa (Parent et al.,
1996) and juvenile Atlantic salmon Salmo salar (Roy and
Campbell, 1997) were overestimated, while Pb uptake by
C. kesslerii in the presence of both humic and fulvic acids
was underestimated by the FIAM (Slaveykova et al., 2003).

* Corresponding author. E-mail: dmzhou@issas.ac.cn

In addition, the BLM and FIAM just consider the chemical
factors, but they did not take into account the physio-
logical factors. Actually, to evaluate the bioavailability of
heavy metal should consider the influences of biological
and geochemical factors because the bioavailability of
heavy metals is the outcome of several processes: uptake,
distribution, storage, and excretion (Rainbow, 2002). The
subcellular partition model (SPM) considers the geochem-
ical factors and the physiological factors (Wallace et al.,
2003). Furthermore, many publications reported that SPM
was a useful model to describe the bioavailability of metal
to organisms (Wang and Wang, 2008a, 2008b; Lavoie et
al., 2009).

Humic acid is complex aromatic macromolecules with
a wide variety of functional groups such as carboxylic and
phenolic alcoholic and amino groups (Stevenson, 1982),
and is often present at concentrations many orders of
magnitude higher than that of the trace metals (Boggs et
al., 1985). The citric acid as a small organic ligand is
one of the root exudates on rhizosphere, and is commonly
found in soil. These organic ligands react with metal ions
in the solution and dominate the complexation character-
istics (Turner et al., 1986). Subsequently, it affects the
bioavailability of heavy metal. Although the effects of
organic acid on metal toxicity have been studied through
chemical speciation, little is known about the physiologic
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mechanisms of uptake and toxicity of heavy metal in the
presence of organic acid. Therefore, the aim of this study
was to investigate the effects of organic ligands, taking hu-
mic acid and citric acid as examples, on the bioavailability
and toxicity of Cd and the subcellular distribution of Cd in
wheat (Triticum aestivum) root.

1 Materials and methods

1.1 Test organism and experimental conditions

The tested wheat seeds (Triticum aestivum L. Yang line 16)
were provided by the Agricultural Academy of Sciences,
Yangzhou, China. Seeds were surface sterilized in 0.1%
NaClO solution for 15 min and rinsed with deionized
water. Germination was performed in the dark on filter
papers which were moistened with culture solution for 48
hr at 25°C.

The culture solutions contained 0.25 mmol/L Ca(NO3)2,
0.25 mmol/L MgSO4, 0.25 mmol/L KNO3, and 0.08
mmol/L KH2PO4 (Li et al., 2011b). Cadmium was added
as chloride salt into the culture solution in final concentra-
tions ranging from 0.50 to 50 µmol/L. The solution was
buffered at pH 6.0 with 2.0 mmol/L MES (C6H13NO4S,
2-[N-morpholino] ethane sulfonic acid). The humic acid
(HA) stock solution of 1 g/L was prepared by dissolving
the HA sodium salt (technique grade) from Aldrich Sigma
(USA) and stored at 4°C in the dark. The DOC values
of different concentrations of HA were measured by the
TOC analyzer (Multi N/C 3000, Analytikjena, Germany).
Before measuring DOC, the HA solution should be fil-
trated through 0.45 µmol/L filter. The citric acid (CA)
stock solution (44.2 mmol/L) was also prepared and stored
at 4°C in the dark. During the exposure processes, the
solution remained unstirred. Before and after the exposure,
Cd concentration in the test solutions was determined
by Flame Atomic Absorption Spectrometry (F-AAS; Hi-
tachi Z-2000, Japan). The range of Cd determination
was 0.025–2 mg/L for F-AAS. Standard Cd solution was
bought from Ministry of Environmental Protection of the
People’s Republic of China. A range of concentration
(from 0.025 to 2 mg/L) was prepared for standard curve
by diluting the stock standard Cd solution with super pure
water containing 1 mol/L HNO3. The standard error was
lower 5%. Preliminary tests showed that the depletion of
Cd in the solution was negligible.

All chemicals except HA sodium salt used were ana-
lytical grade or much higher, and bought from Sinopharm
Chemical Reagent Co. Ltd., China. The glassware used for
toxicity experiments were cleaned, followed by immersion
in an acid bath containing 10% HNO3 for 24 hr and rinsing

with deionized water for several times prior to use.

1.2 Toxicity experiments

The 72-hr root elongation toxicity tests were performed
following ISO Guideline 11269-1 (ISO, 1993). Six uni-
formed seedling, after seed germination, were transferred
to a beaker with a volume of 500 mL test solution
containing six levels of total Cd in the absence or presence
of HA or CA for 72 hr (Table 1). To investigate the effect of
humic acid or citric acid on Cd toxicity in wheat root, 50
mg/L HA, 250 mg/L HA and 442 µmol/L CA according
to literatures, respectively, was added into the solution
containing different concentrations of Cd. Meanwhile, for
the control, four treatments were performed. Six seedlings
were transferred to the culture solution in the absence or
presence of HA solution or CA solution.

The beakers were placed randomly in a growth cabinet
with 80% humidity and the temperature was maintained
at 25°C. Each treatment was run in triplicates. At the end
of the experiment, the roots in each treatment were rinsed
with deionized water, and then washed with 25 mL of 10
mmol/L ethylenediaminetetraacetic acid (EDTA) for 5 min
to remove the surface-bound (adsorbed) Cd from the roots.
Then, the roots were rinsed with deionized water again
and the length and fresh weight of roots were measured.
Finally, the roots were dried at 70°C for obtaining the
dry weight, and digested with 5.0 mL of concentrated
pure nitric acid. Cd was measured by the Flame Atomic
Absorption Spectrometry (F-AAS; Varian 220Z).

To investigate the effect of HA and CA on the sub-
cellular distribution of Cd, another 72-hr root elongation
toxicity tests were performed in the presence or absence of
HA or CA. In this experiment, two levels of {Cd2+} were
investigated (Table 2). The following procedures were the
same as above. At the end of the exposure, the root was
frozen at –70°C for analyzing the subcellular distribution
of Cd.

Table 2 Initial organic acid and total Cd concentrations in the exposure
solution at constant free Cd2+ activity ({Cd2+}) for each experiment

Test no. Experimental condition
Organic acid Total Cd

concentration

1 {Cd2+} 0.763 µmol/L 0 1.0 µmol/L
2 50 mg/L HA 1.62 µmol/L
3 250 mg/L HA 5.37 µmol/L
4 442 µmol/L CA 3.07 µmol/L
5 {Cd2+} 7.61 µmol/L 0 10 µmol/L
6 50 mg/L HA 13.2 µmol/L
7 250 mg/L HA 32.5 µmol/L
8 442 µmol/L CA 29.3 µmol/L

Table 1 Chemical composition of the exposure solution used in different bioassay sets

Bioassay set Cd concentration Humic acid (mg/L), Concentration of other cations pH
(µmol/L) or citric acid (µmol/L) keeping at constant (mmol/L)

Cd-set 1.0, 2.5, 5.0, 10, 25, 50 0 0.25 Ca, 0.25 Mg, 0.33 K 6.00
Humic acid-set 1.0, 2.5, 5.0, 10, 25, 50 50, 250 0.25 Ca, 0.25 Mg, 0.33 K 6.00
Citric acid-set 1.0, 2.5, 5.0, 10, 25, 50 442 0.25 Ca, 0.25 Mg, 0.33 K 6.00
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1.3 Subcellular distribution of Cd in wheat roots

The subcellular distribution of Cd in wheat roots was
performed at 4°C according to Wang and Rainbow (2006)
with some modifications. In brief, 0.2 g root sample from
each treatment was ground to powder with liquid nitrogen
using a mortar and pestle, and homogenized in 5.0 mL of
buffer solution containing 0.25 mol/L sucrose, 1.0 mmol/L
dithioerythritol, and 50 mmol/L Tris-HCl (pH 7.5) (Weigel
and Jäger, 1980). The homogenate was centrifuged at 2500
×g for 15 min. The resulting supernatant (S1) and pellet
(P1) were separated. The 2.0 mL ultra-pure water was
added in P1 and kept in a water bath at 100°C for 2
min, followed by adding 2.0 mL NaOH (1.0 mol/L) and
heating again at 70°C for 1 hr, and then was centrifuged
at 10,000 ×g for 15 min. The pellet contained granule
(MRG) and the supernatant contained the cellular debris.
Meanwhile, S1 was centrifuged at 100,000 ×g for 60
min to get the pellet (organelles) and supernatant (S2).
S2 containing the cytosol fraction was heat denatured at
80°C for 10 min and cooled on ice for 60 min, followed
by centrifugation at 50,000 ×g for 15 min. The resulted
pellet contained heat denatured proteins (HDP) and the
supernatant contained the heat-stable proteins (HSP, MT-
like proteins). The five fractions were digested with 5.0 mL
pure concentrated HNO3. Then Cd was measured by the
Flame Atomic Absorption Spectrometry (F-AAS; Hitachi
Z-2000, Japan). The presumed metal-sensitive fraction
(MSF) was defined as organelles+HDP, and the biological
detoxification fraction (BDM) were defined as HSP +
MRG. The total recovery of the five different subcellular
fractions was greater than 95% in preliminary experiment,
suggesting that the separation was satisfactory in this
study.

1.4 Data analysis

The solution Cd speciation was calculated using visual
MINEQL (version 2.51) chemical equilibrium program
(US Environmental Protection Agency, Athens, GA, USA)
by inputing the concentration of different cations and
anions in the solution, pH, and temperature. Stability
constants were updated using the data from NIST (Na-
tional Institute of Standards and Technology), and the
equilibrium phases in the speciation calculation included
atmospheric CO2. The free Cd ions in the presence of
HA were calculated according to the NICA-Donnan model
of Visual MINTEQ. In the parameters, we presumed
the DOM:DOC = 1:1 and other parameters according to
ppha.NPF.txt in the NICA-Donnan model (which suggest-
ed that 100% DOM was humic acid). The concentration of
DOC is the measured value according to TOC analyzer.

Relative root elongation (RRL, %) was calculated using
Eq. (1):

RRL = ((RLT − RLS)/(RLC − RLS)) × 100% (1)

where, RLT (cm) represented the mean root length (RL) in
the presence of toxicants (i.e., Cd), RLC (cm) represented
RL in the corresponding toxicant-free control, and RLS
(cm) represented RL in toxicant sufficient to saturate

growth-inhibitory processes. The RLS is nearly equal to
RL at the time of seedling transfer to the test media.

The 72-hr EC50 values expressed as the median effective
concentration of total, free activity of Cd and the intracel-
lular Cd denoted EC50[Cd], EC50{Cd2+} and EC50[Cd]intra,
respectively, which could result in 50% lethal effect of the
wheat seedlings, were calculated from the observed RRL at
each Cd concentration by fitting a sigmoid dose-response
curve.

RRL = (100/(1 + 10(log EC50−X)b)) × 100% (2)

where, X (µmol/L) is the logarithm of concentration of
total Cd or free activity of Cd, intracellular Cd; b is the
slope of the curve.

Significant differences among the different subcellular
distribution of Cd in wheat were determined by one-way
ANOVA using a least significant difference test (LSD test).
Significant difference was accepted at p < 0.05. All the
data were the mean values which were calculated with
triplicates.

2 Results

2.1 Effect of humic acid on the toxicity and uptake of
Cd in wheat root

The addition of Cd caused significant reduction in root
length, and the relative root length was fitted to the dose-
response curve (Fig. 1). The values of EC50 for the total Cd
and free ion activity of Cd were 4.34 and 3.36 µmol/L, re-
spectively. In the control, the addition of HA significantly
increased the root length. HA also alleviated the toxicity of
Cd. The values of EC50 for total Cd increased to 8.97 and
31.5 µmol/L at 50 and 250 mg/L HA, respectively (Fig.
1a). In addition, HA also increased the values of EC50 to
4.96 µmol/L at 50 mg/L HA and 7.33 µmol/L at 250 mg/L
HA based on the free activity of Cd (Fig. 1b).

The uptake of Cd in the root increased from 1077 to
4133 µg/g with the solution Cd varied from 1.0 to 50
µmol/L in the control. The addition of HA decreased the
uptake of Cd in the root (Fig. 2a). When 250 mg/L HA was
added, the uptake of Cd in the root was decreased to a half.
On the base of free ion activity of Cd, HA also decreased
the uptake of Cd in root (Fig. 2b).

The relationships between the combined data of relative
root length and the free ion activity of Cd in solution
and the intracellular Cd in the root were established
respectively in the absence and presence of HA (Fig. 3).
The intracellular Cd in root was better to indicate the Cd
toxicity.

2.2 Effect of citric acid on the toxicity and uptake of Cd
in wheat root

In the control, the addition of CA decreased the root length.
Based on total Cd, CA slightly decreased the toxicity of
Cd (Fig. 4a). However, CA enhanced the toxicity of Cd
on the base of free Cd ion activity and the value of EC50
decreased to 1.39 µmol/L (Fig. 4b). Similarly, the addition
of CA slightly decreased the uptake of Cd based on the
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total Cd while increased the uptake of Cd based on the free
Cd ion activity (Fig. 5). Therefore, the intracellular Cd was
better to correlate with the relative root length than free
activity of Cd (Fig. 6). In addition, we observed that the

pH in the exposure solution increased from 6.0 to 6.85 at
the end of experiment in the presence of CA, while the pH
was kept at 6.0 in the absence of CA or in the presence of
HA.
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2.3 Effects of humic acid and citric acid on the subcel-
lular Cd distribution in root

When the experiment was performed at the same free
Cd ion activity, the measured relative root length and the
uptake of Cd in root were consistent with the results in the
first experiment. As shown in Fig. 7, the addition of HA
decreased the uptake and toxicity of Cd while the addition
of CA increased the uptake and toxicity of Cd.

Cd was mainly bound to HDP, HSP, and cell debris
fractions. Cd in the MRG fraction was the least (Fig.
8). The relative subcellular distribution of Cd decreased
and increased in the HSP and HDP, respectively, with
increasing Cd in the exposure solution in control. At the

low level of free Cd activity, both HA and CA did not
change the relative subcellular distribution of Cd. At the
high level of free Cd ion activity, the percentage of Cd
in the HSP fraction increased and in the HDP fraction
decreased with increasing HA compared to the control.
In the presence of CA, the percentage of Cd had a slight
decrease in HDP and increase in MRG and cell debris
fractions at high level free Cd ion activity.

The correlation between relative root length and the Cd
concentration in subcellular fractions in the presence and
absence of HA and CA were established. As shown from
the Table 3, result shows that the Cd in organelle fraction
and in HDP fraction were well correlated with Cd toxicity.
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Fig. 8 Relative subcellular distribution of Cd in root at free Cd ion concentration of 0.763 (a) and 7.61 µmol/L (b) in the presence or absence of citric
acid (CA) or humic acid (HA).

Table 3 Correlation between relative root length and the Cd concentration in subcellular fractions in the presence and absence of organic acid

Correlation MRG Organelle Cell debris HDP HSP Total

RRL –0.668** –0.915** –0.897** –0.903** –0.821** –0.97**

MRG: metal-rich granules; HSP: heat-stable proteins; HDP: heat-denatured proteins; Total: the cellular accumulation; RRL: relative root length.

3 Discussion

3.1 Effect of humic acid on the toxicity, uptake and
subcellular distribution of Cd in wheat root

Humic acid has potential effects on plant growth, toxicity,
and bioavailability of heavy metals in a soil-plant system.
Jindo et al. (2012) reported that humic acids promoted
root growth by releasing auxin-like plant growth promotors
and enhancing proton pump activity. The enhanced proton
pump activity increased the uptake of nutrients by en-
hancing the electrochemical proton gradient that drives ion
transport across cell membranes. Vigenault et al. (2000)
also reported that HA increased membrane permeability
due to the enhancement of negative algal surface charge
and affected the passive uptake of chemical species. In this
study, the addition of HA promoted the root length in the
control which was consistent with the literature as shown
above. However, the presence of HA decreased the uptake

of Cd in the root on the base of total Cd concentration and
free Cd ion activity. Thus the increase in electrochemical
proton gradient or the surface charge on the root surface
seems to play an insignificant role in the uptake of Cd.
Also, Lamelas and Slaverykova (2007) reported that the
changes in algal surface charge play a limited role in the
uptake of metals in the presence of HA. Two reasons
may explain the decrease in the uptake of Cd. First, the
complexing of Cd with HA reduced the solution free Cd
ion concentration, resulting in decreasing uptake of Cd.
Second, the HA adsorbed on the root surface and decreased
the uptake sites for the internalization of Cd, and thus
decreased the uptake of Cd.

In addition, the uptake of Cd was not different between
HA at 50 and 250 mg/L based on FIAM, but the toxicity of
Cd still decreased with increasing HA in this study (Fig.1b)
due to the possible physiologic process of Cd in root. After
its uptake by plant, Cd is either excreted, or detoxified, and
then sequestered in subcellular compartments, resulting in
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accumulation and toxicity to plants. Actually, only Cd in
the metal-sensitive fraction (organelle and HDP fractions)
could result in toxicity to organisms (Wallace et al., 2003),
while Cd in the biological detoxify fraction (granule and
HSP fractions) initiated detoxification for heavy metal to
organisms. In this study, we observed that the percentage
of Cd increased in the HSP fraction and decreased in the
HDP fraction with increasing HA at the high level of free
Cd ions in solution, which implied that Cd was regulated
by HA according to the SPM. Therefore, the presence of
HA decreased the uptake and toxicity of Cd by decreasing
the free Cd ion concentration accessible to organism and
changed the subcellular distribution of Cd.

3.2 Effect of citric acid on the toxicity, uptake and
subcellular distribution of Cd in wheat root

The addition of CA decreased the root length in the control
because citrate acid was possibly adsorbed on the roots
or internalized. Previous papers (Jones and Darrah, 1995;
Bell et al., 2003) also reported the root uptake of anionic
citrate and other low-molecular-weight organic anions.
The uptake and toxicity of Cd decreased on the base of
total Cd concentration in solution in the presence of CA
due to the complexing of Cd with CA which reduced the
solution free Cd ion activity. However, the presence of CA
increased the uptake and toxicity of Cd to wheat based on
the solution free Cd ion activity. This result was consistent
with previous reports (Berkelaar and Hale, 2003; Panfili
et al., 2009). There are many reasons to be related. First,
the dissociation of the Cd-citrate complex supplied free
Cd ions on the root surface resulting in increased uptake
of Cd, which is accepted mostly. Second, Senden et al.
(1994) observed an increase of adsorbed citrate on tomato
xylem cell walls, and Cd was complexed by citrate in the
cell walls (Senden et al., 1995). Thus the adsorbed citrate
decreased Cd transferring to cytosolic and increased the
percentage of Cd in cell debris fraction at high level of
Cd2+ in the presence of CA in this study. The increase in
percentage of Cd in cell debris fraction was just account
for 3%, and thus the adsorbed citrate seems to play a
limit role in the increase in the uptake of Cd. Third, the
Cd-citrate complex was directly taken up as suggested by
Berkelaar and Hale (2003) and Campbell et al. (2002). And
Krishnamurti et al. (2004) also reported that the toxicity of
the Cd-citrate complex was more toxic than Cd2+ in root.
In the last, the increased pH decreased the competition of
H+ with Cd2+ for the uptake sites on the surface root and
enhanced the uptake and toxicity of Cd to wheat according
to the BLM.

Our previous study (Li et al., 2011a) suggested that
the relative Cd distribution decreased in the HSP fraction
and increased in the HDP fraction with increasing root
Cd. In this study, a similar result was observed in the
control. Also, in the presence of CA the percentage of
Cd in the HSP fraction decreased with increasing solution
free Cd ion concentration. However, it was not the case
in the presence of CA although the internalization of
Cd was enhanced compared to the control. This result
indicated that CA posed a similar function of HA which

could regulate Cd in wheat. What’s more, although the
relative distributions of Cd in the presence of CA were
not different compared to the control at low-level free
Cd ion, the increased internalization of Cd could also
enhance its toxicity in the process of accumulation of Cd.
In addition, the relative distribution of Cd had a decrease
in the HDP fraction and increase in the MRG fraction in
comparison to the control at high level of Cd, which should
generate detoxification according to the SPM. However,
the concentrations of Cd in the five subcellular fractions
in the presence of CA were more than those in the control
and resulted in increased toxicity of Cd in the presence of
CA.

3.3 Prediction of Cd toxicity

The free ion activity model, which assumes that metal
uptake across the plasma membrane, is a rate-limiting
process, and the rate of metal uptake from a solution is
directly proportional to the free metal ion concentration
in the bulk solution. This model has been frequently
used to predict the bioavailability and toxicity of metals
(Campbell, 1995). For the effect of organic matter on the
uptake of Cd, different and even controversial results have
been reported in the literatures. Van Ginneken et al. (2001)
demonstrated that Cd uptake by carp was in accordance
with the FIAM. However, Höss et al. (2001) reported that
DOM increased the bioavailability and toxicity of Cd to
the nematode Caenorhabditis elegans. And Roditi et al.
(2000) found that DOM derived from algae provided a
nutritional supplement to zebra mussels and the zebra mus-
sels adsorbed some dissolved metals that were complexed
by the DOM. Some reports indicated that DOM-bound Cd
was partially available for uptake but that difference in
uptake efficiency depended on molecular weight, binding
characteristics and concentration of the DOM (Voets et al.,
2004). These examples concerning invertebrates and plants
suggest that the FIAM is not always valid.

In the present study, although we observed that the free
Cd ion could explain the toxicity of Cd to wheat to some
extent, we observed that the intracellular Cd was better to
predict the toxicity of Cd than the FIAM, since the relative
root length were much more dependent on the intracellular
Cd concentration, and sigmoid relationships were shown
between the relative root length and the intracellular Cd
concentrations (R2 = 0.973) (Figs. 3 and 6). Also, other
papers reported that intracellular metal was a better pre-
dictor for the toxicity of heavy metals (Zeng et al., 2009;
Penttinen et al., 2011). The intracellular metal as a result of
bioaccumulation is an explicit expression of a chemical’s
bioavailability and thus could be a better surrogate for dose
at the site of toxic action and a more constant measure of
toxicity than the conventionally used exposure concentra-
tion, which is sensitive to bioavailability-modifying factors
(Meador et al., 2008).

The bioaccumulation is the outcome of several process-
es: uptake, distribution, storage, and excretion (Rainbow,
2002). Similar to the total metal concentration in solution,
only a portion of the bioaccumulation of metal is biolog-
ically available for interaction with sites of toxic action.
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The subcellular partitioning of metal in organism implied
more significance to understand the metal toxicity. In this
study, Cd concentration in the organelle and HDP fractions
were well correlated with the relative root length (Table 3).
Although the relationship was less than the intracellular
Cd, the subcellular distribution of Cd could enough explain
the toxicity of Cd in the presence of HA and CA.

4 Conclusions

We can conclude that CA and HA complexed with solution
free Cd ions and decreased free Cd ion concentration.
Subsequently, the uptake and toxicity of Cd to wheat
were alleviated based on the total Cd concentration. The
uptake of Cd also decreased in the presence of HA based
on the FIAM. The presence of HA changed the relative
subcellular distribution of Cd in root which could result
in deceased toxicity to wheat based on the FIAM. In the
presence of CA, the uptake and toxicity of Cd to wheat
increased based on FIAM. The relative distribution of Cd
had a decrease in the HDP fraction and increase in the
MRG fraction in comparison to the control at the high level
of Cd, which should generate detoxification according to
the SPM. However, the toxicity of Cd in the presence of
CA was increased due to the increased internalization of
Cd. FIAM is not enough to predict the bioavailability and
toxicity of Cd in the presence of organic acid. The internal
accumulation of Cd and the subcellular Cd were better to
describe the toxicity of Cd to wheat.
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