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Abstract
A TiO2 thin film electrode deposited on porous nickel net (TiO2/Ni) was prepared by the sol-gel method, and the surface morphology,
crystal structure features and the grain size were characterized by Field emission scan electron microscopy (FESEM) and X-ray
diffraction (XRD). The photoelectrocatalytic system was set up using a UV high-pressure mercury lamp as the light source, TiO2

coated on foamed nickel as photo anode, Pt sheet as counter electrode and the pesticide dipterex in synthetic wastewater. Various
factors that influence the photoelectrocatalytic decomposition of dipterex pesticide have been studied, such as degradation time, the
type of electrolyte, current density, original pH value and different degradation methods. The prepared catalysts were employed to
photoelectrocatalytically degrade the pesticide dipterex under UV irradiation, comparing the results with photocatalytic degradation and
electrochemical oxidation. The results indicated that under the optimal conditions of 0.02 mol/L NaCl as the supporting electrolyte,
current density = 2.5 mA/cm2, pH 6.0 and dipterex pesticide 40 mg/L, and reaction time 2 hr, dipterex chemical oxygen demand
(COD) removal rate and organophosphorous conversion of up to 82.6% and 83.5% were achieved, respectively. The method of
photoelectrocatalytic degradation is more efficient than photocatalysis and electrochemical oxidation. The possible roles of the
electrolytes on the reactions and probable mechanisms were also discussed.

Key words: photoelectrocatalysis; COD removal; TiO2; dipterex; pesticide
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Introduction

Since pesticides were invented, almost every country in the
world has used various pesticides to protect the agriculture
from pest hazards (Singer et al., 2010). Nowadays, the
output of agricultural chemicals has exceeded six million
tons every year world-wide. In addition, the produced
quantity of organophosphorous insecticides is 70% of total
pesticides, and dipterex is one of the most widely used
organophosphorous pesticides at present (Jin et al., 2010;
Zapata et al., 2010). With the vast amount of pesticides
used, people have begun to realize that application of
pesticides has brought great agricultural production and
more profits, but at the same time, they also inevitably have
brought about many negative impacts, such as human and
livestock poisoning, environmental pollution, agricultural
chemical residues and so on (Li et al., 2009). More-
over, with the enhanced consciousness of environmental
protection in mind, people have come to attach more
and more importance to the impact of agrochemicals on
human health and the environment. Therefore, treatment of
pesticide wastewater is becoming a hot topic in the field of

* Corresponding author. E-mail: xyyang@hit.edu.cn

environment protection research. Many investigators have
carried out a large amount of research on the experimental
and theoretical aspects of wastewater treatment (Yu, 2002;
Lafi and Qodah, 2006; Badawy et al., 2006; Basheer et al.,
2007; Clarke et al., 2010).

The semiconductor TiO2 has received particular atten-
tion in the environmental domain because of its high
catalytic activity, good stability and excellent photo-
electrochemical properties (Liu et al., 2009; Ballesteros
Martı́n et al., 2009). The use of TiO2 particle suspensions
is widely employed to degrade organic wastes in water.
Nevertheless, there are two obvious shortcomings in actual
application: first is that the powdered catalyst is difficult to
recover and reuse, leading to secondary pollution; second
is that the photo-induced electrons and holes undergo easy
recombination, resulting in low quantum yield (Marinas
et al., 2001; Konstantinou and Albanis, 2003). To solve
these problems, many researchers have investigated the
photoelectrocatalytic degradation of organically polluted
wastewater in UV light photoreactors employing photo-
anodes consisting of the photocatalyst TiO2 supported on
electrically conducting carrier substrates (Ti, ITO), with
considerable success (Xie and Li, 2006; Zhao et al., 2007;
Muff et al., 2009; Zhang and Pagilla, 2010; Ahmed et

http://www.jesc.ac.cn
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al., 2011). Therefore, photoelectrocatalysis has become
an attractive way to increase the photocatalytic efficiency.
However, research on the treatment of dipterex pesticide
wastewater using a TiO2 film electrode coated on porous
nickel net is rare in related domestic and international
reports. The most likely reason for this is the toxicity of
dipterex.

In this study, porous nickel net, which has large specific
surface area, great electrical conductivity and a high ca-
pability/price ratio compared to the most commonly used
Ti metal carriers (Zhou and Ma, 2009), was used as the
photocatalyst carrier. TiO2 supported on a nickel foam
electrode prepared by the sol-gel method was used as the
photo anode, Pt sheet was the counter electrode and the
pesticide dipterex, which is a typical organophosphorous
pesticide widely used in the world, was used as the simu-
lated organic pollutant. The effects of various parameters,
such as the degradation time, the amount of electrolytes,
Cl− concentration, current density, initial pH value and
different degradation methods on the photoelectrocatalytic
degradation of high COD dipterex were researched. From
the investigation, the optimum technological conditions for
photoelectrocatalytic treatment of dipterex and the differ-
ent effects of the parameters on the photoelectrocatalytic
COD removal of dipterex were obtained.

1 Materials and methods

1.1 Main materials and apparatus

Porous nickel (purity 99.9%, thickness 1.0 mm) was
obtained from Changsha Liyuan New Material Co.,
Ltd., China. Dipterex (O,O-dimethyl-1-hydroxy-2,2,2-
trichloroethyl phosphonate, C4H8Cl3O4P, its molecular
structure is given in Fig. 1) was purchased from the Hunan
Nantian Industrial Co., Ltd., China. Tetrabutyl titanate,
absolute ethyl alcohol, silver nitrate and potassium dichro-
mate, 1,10-phenanthroline, ferrous ammonium sulfate, and
silver sulfate were of analytical grade and were used
as received without further purification. Deionized and
doubly distilled water was used throughout the study.

CH3O P

O

CH

OH

CCl3

OCH3

Fig. 1 Molecular structure of dipterex.

Apparatus included a self-made photoelectrocatalytic
reactor, 125 W high pressure mercury lamp, ultravio-
let spectrum radiometer (USR), UV-Visible spectrometer
(UV-Vis), 78–1 magnetic agitator, 101-A-1 electric-
blasting drying oven, F48020–33 muffle furnace, LW5J5
D.C.-stabilized power supply, COD detector (Hana Co.,
Ltd., Italy), Field Emission Scanning Electron Microscope
(Dutch FEI Sirion 200) and Crystal X-ray Diffractometer
(Shimadzu D/MAX-3B, Cu target).

1.2 Preparation of TiO2/Ni photo electrode

The 40 mL absolute ethyl alcohol and 10 mL Ti(OC4H9)4
were added to a beaker, and stirred to form solution A;
10 mL anhydrous ethyl alcohol and 3 mL distilled water
were placed into another beaker, with nitric acid added
to adjust the pH to 3–4 to form solution B, respectively.
Solution A was mixed with solution B at 1–2 drops/sec and
magnetic mixing for 15 min, and the resulting precipitate
was continuously stirred until it was completely peptized
to form a stable colloidal suspension. Thin-film photo
electrodes were dip-coated onto both sides of pretreated
porous nickel net. A sequence of dipping, drying and
firing at 500°C for 2 hr was used after each coating (five
repetitions), then the TiO2/Ni electrode was obtained after
natural cooling (Guaraldo et al., 2011).

1.3 Experimental setup and analytical method

A diagram of the experimental apparatus and the electrode
assembly used for photoelectrocatalytic degradation of
dipterex is shown schematically in Fig. 2. The photoreactor
system consisted of a cylindrical quartz glass with a double
electrode configuration and a 125 W high pressure mercury
lamp with a main emission at 365 nm as an external UV
light source. The lamp was positioned parallel with the
anode, at a distance of about 15 cm; the irradiance was
measured to be 4.23 mW/cm2 by USR detection. In this
reactor, the TiO2/Ni electrode served the photo anode, Pt
sheet was the cathode, and the electrode pair was dipped in
the dipterex pesticide wastewater to a depth of 10 cm, with
the electrodes approximately 4 cm apart. The effective area
of the electrode pair was 10 cm2. Electrical voltage was
provided by a manually controllable D.C power supply
operating in the constant current mode (range: 0–400
mA). The COD value of the dipterex solution before and
after degradation was determined using the COD detector
according to the GB11914–89 method. After sampling
every 30 min and testing the COD value, the COD removal
rate (η) can be described as Eq. (1) (Guida et al., 2007):

η =
COD0 − CODt

COD0
× 100% (1)

where, η is the COD removal rate of the dipterex, COD0 is
chemical oxygen demand of the initial solution, and CODt

is chemical oxygen demand of the solution after reaction t

UV light
TiO

2
/Ni anode

Pt sheet cathode

Dipterex

Stirring seed
V

A

D.C. stabilized power supply
Magnetic agitator

+ -

Fig. 2 Schematic diagram of the experimental setup.
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time.
Photoelectrocatalytic degradation of dipterex and one

of the products (PO3−
4 ) in the solution were investigated

using a molybdate-antimony-scandium spectrophotometry
method at the wavelength 650 nm. The concentration
of organophosphorus in the initial dipterex pesticide was
0.155 mmol/L. The organophosphorous conversion (R) of
dipterex was calculated as shown in Eq. (2):

R =
Pt

P0
× 100% (2)

where, Pt is the content of inorganic phosphorus in the
solution after reaction t time, and P0 is the content of
organic phosphorus in the initial solution.

2 Results and discussion

2.1 SEM and XRD analysis of TiO2/Ni electrode

The microstructures of the TiO2/Ni electrode and sintered
bulk materials were characterized using scanning electron
microscopy (SEM) and X-ray diffraction (XRD). The SEM
images are displayed in Figure 3a, b. From Fig. 3a, we
can see that the surface of the nickel foam skeleton is
covered with sintered TiO2. The results indicated that the
foamed nickel net is a good electrode material due to
its huge specific surface area, which greatly improves its
ability to adsorb the pollutants. This created favorable
conditions for the degradation of dipterex. Figure 3b shows
a 35,000-fold magnification of the TiO2/Ni electrode, and
the sintered TiO2 layer with network surface morphology
was observed. It has been shown that the TiO2 disperses
uniformly on the surface of the skeleton.

The crystal structure of the TiO2 electrodes coated on
the porous nickel net (TiO2/Ni) was analyzed with the X-
ray apparatus and the XRD patterns of TiO2/Ni are shown
in Fig. 4. The patterns show that the peaks of foamed
nickel appear at 2θ of 44.635˚, 52.147˚ and 77.621˚. The
other six peaks at 2θ of 25.556˚, 37.318˚, 48.279˚, 54.362˚,
56.636˚ and 62.845˚ correspond to the TiO2 (101), (004),
(200), (105), (211) and (204) reflections, respectively. The
target product of anatase TiO2 was verified by comparison

with the JCPDS standard diffraction card. From the XRD
patterns, no other diffraction peaks except for the peaks of
the foam nickel and TiO2 anatase structure were detected.
The average crystallite size of TiO2 (D) was calculated by
the Debye-Scherrer Equation (Klug and Alexander, 1974):

D =
Kλ
βcosθ

(3)

where, K is the Scherrer constant K = 0.89, and β is
the peak width at half maximum. The calculated average
particle size perpendicular to the TiO2 (101) crystal plane
was 23.7 nm. The result revealed that nanometer-size TiO2
had been prepared on the nickel foam net surface.

To optimize the photoelectrocatalytic system with re-
spect to maximum performance for dipterex degradation,
several parameters including degradation time, different
electrolytes, chloride concentration, current density, pH,
and four kinds of degradation methods in the photoelec-
trocatalytic process were tested.

2.2 Effect of degradation time

Under the photoelectrocatalytic conditions of initial con-
centration of dipterex 40 mg/L, 0.02 mol/L NaCl as the
supporting electrolyte, current density j = 2.0 mA/cm2

and neutral pH, the relationship between the dipterex COD
removal rate and degradation time is shown in Fig. 5.

In
te

n
s
it

y
 (

a
.u

.)

10 9080706050403020

2θ (degree)

(1
0

1
)

(0
0

4
)

(2
0
0

)

(1
0

5
)

(2
1
1

)

(2
0

4
)

Ni

Ni

Ni

Fig. 4 XRD patterns of TiO2/Ni electrode.

a b

Fig. 3 SEM images of TiO2/Ni electrode.
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Fig. 5 Effect of time on dipterex COD removal. Conditions: dipterex 40
mg/L; NaCl 0.02 mol/L; j 2.0 mA/cm2; natural pH.

The results show that during the initial 2 hr of the
photoelectrocatalytic reaction, the COD degradation rate
of dipterex continuously increased with increasing time.
The dipterex COD removal rate was 76.2% at 2 hr, whereas
the COD degradation rate change was very slow in the next
hour, and the COD degradation rate only reached 79.4%
after 3 hr. Consequently, we considered that the reaction
had been essentially completed, and 2 hr was selected as
the chemical reaction time in subsequent experiments.

The photocatalytic degradation of dipterex is believed
to take place according to the following mechanism. When
TiO2 is exposed to UV radiation, electrons are promoted
from the valence band to the conduction band. As a result
the electron-hole pairs are produced (Bukallah et al., 2007;
Phanikrishna et al., 2008):

TiO2 + hv −→ e−cb + h+vb (4)

where, ecb
− and hvb

+ are electrons in the conduction band
and electron vacancies in the valence band, respectively.
Both these entities can migrate to the catalyst surface,
where they can enter a redox reaction with other species
present on the surface. In most cases, hvb

+ can react easily
with surface-bound H2O to produce hydroxyl radicals
(HO.), whereas, ecb

− can react with O2 to produce the
superoxide radical anion of oxygen.

H2O + h+vb −→ HO. + H+ (5)

O2 + e−cb −→ O2
−. (6)

This reaction prevents the recombination of the electron
and the hole which are produced in the first step. The HO.,
H+ and O2

.− produced in the above manner can then react
with the dipterex molecule to form other species and are
thus responsible for the COD removal of the dipterex.

O−2 . + H2O −→ H2O2 −→ 2HO. (7)

HO. + h+ + Dipterex −→ · · · −→ PO3−
4 + CO2 + H2O (8)

2.3 Effect of different electrolytes

To further study the effects of different electrolytes on the
degradation of dipterex, 0.02 mol/L of NaNO3, Na2SO4
and NaCl electrolyte were used in the reaction system, re-
spectively. For initial concentration of dipterex of 40 mg/L,
current density j = 2.0 mA/cm2, and photoelectrocatalytic
degradation time of 2 hr, the result is shown in Fig. 6.

It can be seen that at different reaction phases, the COD
removal rate of dipterex with NaCl as the electrolyte is
significantly higher than with the NaNO3 and Na2SO4
electrolytes. After 2 hr reaction the COD removal rates
of the Na2SO4 and NaNO3 electrolyte systems were
59.7% and 53.8%, respectively. However, the removal
rate reached 78.8% in the NaCl electrolyte system. The
results indicated that adding NaCl to the wastewater in-
creases the solution conductivity, decreases the energy
consumption, and promotes indirect anodic oxidation by
producing hypochlorite at the anode. The participation of
Cl− can significantly reduce the COD value of dipterex.
Furthermore, the effect of different concentrations of NaCl
on the degradation of dipterex was also investigated,
and the results are shown in Fig. 7. NaCl electrolytes
(0.01, 0.02, 0.05 and 0.10 mol/L) were added to the
photoelectrocatalytic system, respectively. It can be seen
from Fig. 7 that the greater the NaCl concentration, the
higher the COD removal rate of dipterex. The results may
be attributed to two aspects: First, the TiO2/Ni electrode
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under UV radiation can generate electron-hole pairs by the
application of current, and the COD removal of dipterex
can take place in accordance with the above photocatalytic
reaction (Reactions (4)–(8)). Second, Cl− can adsorb on
the surface of titanium dioxide and be converted to high
oxidative activity groups (Cl·, Cl2 and HClO) by electron-
hole pairs. The groups can then oxidize the pollutants
effectively, therefore the removal efficiency of dipterex
COD will increase. The reaction process is as follows
(Ghaly et al., 2007):

Cl− + h+ −→ Cl. (9)
Cl. + Cl. −→ Cl2 (10)
Cl2 + H2O→ HClO + HCl→ [O] + 2HCl (11)

[O] + Dipterex −→ · · · · · · −→ PO3−
4 + CO2 + H2O (12)

With the increase of NaCl, the degradation of dipterex
may be aided in this way. Nonetheless, excessive NaCl
has been found to have an inhibitory effect on COD
removal, and h+ react faster with Cl− than with undissoci-
ated dipterex molecules. Therefore, 0.02 mol/L NaCl was
chosen for further study.

2.4 Effect of current density

Current density is a very important variable in photoelec-
trocatalytic engineering. The effects of current density on
COD removal are displayed in Fig. 8. As can be seen, the
COD removal rate of dipterex increased with increasing
current density. When current density was 0.5, 1.0, 1.5,
2.0 and 2.5 mA/cm2, the dipterex COD removal rate was
55.8%, 62.3%, 69.9%, 77.8% and 80.9%, respectively. The
amount of hypochlorite produced increased with increas-
ing applied current density: the higher the current density
and the more hypochlorite produced, the more COD was
removed by the reaction of dipterex and hypochlorite.
Thus, the electron and hole recombination process was
inhibited, and the photoelectrocatalytic reaction system
had more holes h+ present (Wang et al., 2009). The results
demonstrated that the more active groups (HClO, Cl2, Cl·,
OCl−) greatly increased the removal efficiency of dipterex
COD. In addition, the electrical conductivity of the Ni car-
rier is six times that of a Ti substrate, so the nickel electrode
current density will be greater than that of a Ti electrode for
the the same bias voltage in a photoelectrocatalytic system,
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Fig. 8 Effect of current density on dipterex COD removal.

which results in better separation of electron-hole pairs
and further increase in the COD removal rate of dipterex.
Therefore, we chose the current density j = 2.5 mA/cm2

for subsequent research.

2.5 Effect of initial pH

Under the conditions of 0.02 mol/L NaCl and j = 2.5
mA/cm2, the effect of the original pH value (pH 1.0, 3.0,
5.0, 6.0 and 7.0) on the photoelectrocatalytic degradation
of dipterex was investigated. The results are shown in
Fig. 9.

Dipterex, which is a weak acid pesticide with a pKα
value of 6.18, can quickly yield more poisonous DDVP on
basic hydrolysis. Therefore, effects of pH on the dipterex
COD removal rate were studied under acidic and neutral
conditions. As can been seen from Fig. 9, with the pH
from 1.0 to 7.0, the dipterex degradation rate was optimal
at pH 6.0. This result was consistent with observations
by researchers studying PEC degradation of imidacloprid
(Philippidis et al., 2009). The pH influences the PEC
process in many ways, such as TiO2 flat-band potential
variation and changes in adsorption ability of the dipterex
on the TiO2 film (Kesselman et al., 1997). The most likely
reason for this is that the TiO2 isoelectric point pH is 6.28;
when the initial solution pH lower than 6.28, the TiO2
surface carries a positive charge, increasing the tendency
of dipterex negative ions to migrate and adsorb on the
surface of TiO2, which is beneficial to the beginning of the
photoelectrocatalytic reaction. However, increased acidity
protonates the molecules of dipterex so that they are no
longer negatively charged, and reduces their adsorption
and the photoelectrocatalytic activity of TiO2. Moreover,
the acid solution could increase the corrosion of the
foamed nickel carrier, and disrupt the normal conduction
of the TiO2 catalyst. This may be one of the causes of
its lower catalytic activity. The experimental result showed
that the optimum pH value was 6.0.

2.6 Effect of different degradation methods

By a series of experiments, the optimal processing con-
ditions were obtained as follows: the concentration of
dipterex and the supporting electrolyte NaCl solution
concentration were 40 mg/L and 0.02 mol/L, respectively,
reaction time 2 hr, the current density j = 2.5 mA/cm2 and
initial pH of 6.0.
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The effect of photodegradation (PD), photocatalytic
degradation (PC), electrocatalytic degradation (EC) and
photoelectrocatalytic degradation (PEC) on the degrada-
tion of dipterex were analyzed by four separate degradation
experiments. From Fig. 10, the results revealed that the
dipterex COD removal rate showed almost no change
when induced by UV light after 2 hr. However, dur-
ing the photocatalytic (PC), electrocatalytic (EC) and
photoelectrocatalytic (PEC) reactive processes, the COD
degradation rate reached 42.9%, 30.3% and 82.6%, re-
spectively. The reason is that TiO2 produced electron-hole
pairs under the excitation of UV light, and the external
potential applied to the anode prevented the electrons
and holes’ recombination. Moreover, the chloride ions
were converted into more active groups by the electron-
hole pairs’ oxidation. The results also demonstrate that
the photoelectrocatalytic efficiency was better than the
photocatalytic efficiency and electrocatalytic efficiency,
respectively. The results further confirm that the light and
electrical power do play synergistic roles.

2.7 Organophosphorous conversion of dipterex and its
oxidation products

The optimal conditions for photoelectrocatalytic degrada-
tion of high-COD dipterex wastewater were obtained by
the above experiments. Tests show that the toxicity of
the main intermediate product during the degradation is
stronger than dipterex itself, so, only degrading dipterex
completely can eliminate its toxicity. In order to get a
clear understanding of whether the photoelectrocatalytic
process degraded dipterex completely or not, therefore, the
dipterex degradation rate was obtained by determination
of the final product PO3−

4 . The concentration of inorgan-
ic PO3−

4 was measured using the molybdate-antimony-
scandium spectrophotometry method. The organophos-
phorous conversion of dipterex was calculated according
to the Eq. (2).

Figure 11 shows the change in the absorption spec-
trum of 40 mg/L dipterex during its photoelectrocatalytic
degradation at the optimized conditions. The absorption
is seen to decrease in intensity with increasing reaction
time, vanishing almost completely within about 120 min.
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Fig. 11 UV-Vis absorption spectra of dipterex during the photoelectro-
catalytic degradation at different reaction time.

The disappearance of the absorption peak with the reaction
time indicates the effective decomposition of the dipterex
molecule.

It can be seen from Fig. 12 that the removal rate of
COD and organophosphorus conversion of dipterex would
rise with the prolonging of reaction time, but the former
is a bit lower than the latter; under the optimal conditions
of photoelectrocatalysis, the degradation rates were up to
82.6% and 83.5%, respectively. Degradation of dipterex
mainly depends on the OH·, activated Cl· and atomic state
oxygen [O] and so on in the photoelectrocatalyitic system
(Reactions (4)–(12)). These activated groups can break
down the P=O bond, and finally it oxidizes into PO3−

4 , CO2
and other end-products.
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Fig. 12 COD removal contrast to organophosphorus conversion of
dipterex under optimal conditions.

3 Conclusions

In this study, a nano TiO2 thin film electrode deposited on
porous nickel net was prepared by a sol-gel method, and
was utilized in a self-made photoelectrocatalytic device for
the degradation of dipterex. The most optimum conditions
for dipterex COD removal and organophosphorous were
analyzed. The results show that under the optimal condi-
tions of 0.02 mol/L for the NaCl supporting electrolyte,
current density j = 2.5 mA/cm2, pH 6.0, and photo-
electrocatalytic treatment of 40 mg/L dipterex for 2 hr,
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the COD removal rate and organophosphorous conversion
could reach 82.6% and 83.5%, respectively. This study
offered a new porous nickel net photocatalyst carrier,
which could inhibit the recombination of electrons and
holes and enhance the efficiency of photoelectrocatalytic
degradation of dipterex pesticide wastewater, compared
with the commonly used Ti metal carrier. The research
work also establishes a good foundation for subsequent
research and practical application in the degradation of
organphosphorous pesticide wastewater.
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