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Abstract
Two after treatment units, selective catalytic reduction (SCR) and continuously regenerating trap (CRT), were independently retrofitted
to a diesel engine, with the objective to investigate their impact on the conversion/reduction (CR) of polycyclic aromatic hydrocarbons
(PAHs). The experiments were conducted under the European steady state cycle (ESC) first without any retrofits to get baseline
emissions, and then with SCR and CRT respectively, on the same engine. The particulate matter (PM)-phase PAHs were trapped in
fiberglass filters, whereas gas-phase PAHs were collected in cartridges, and then analyzed using a gas chromatograph-mass spectrometer
(GC-MS). Both PM-phase and gas-phase PAHs were greatly reduced with CRT showing respective CR of 90.7% and above 80%,
whereas only gas-phase PAHs were abated in the case of SCR, with CR of above 75%. Lower molecular weight (LMW) PAHs were
in abundance, while naphthalene exhibited a maximum relative contribution (RC) to LMW-PAHs for all three cases. Further, the CR
of naphthalene and anthracene were increased with increasing catalyst temperature of SCR, most likely due to their conversion to solid
particles. Moreover, the Benzo[a]Pyrene equivalent (BaPeq) of PAHs was greatly reduced with CRT, owing to substantial reduction of
total PAHs.

Key words: diesel engine; continuously regenerating trap; urea-selective catalytic reduction; polycyclic aromatic hydrocarbons;
unregulated emissions

DOI: 10.1016/S1001-0742(11)60974-1

Introduction

Among efficient and economical working machines, the
diesel engine is deemed as one of the most reliable and
durable. The power produced by a diesel engine is well
suited not only to road transportation but also to stationary
working machines. However, there has always been a
challenge with this unmatched prime mover in the form
of increasing emissions standards. In the past, different
strategies including engine modification, fuel and/or lu-
brication alteration or the combination of both were used
by researchers for the control of pollutants (Ferguson and
Kirkpatrick, 2001; Park et al., 2004). Engine modifications
comprise high pressure fuel injection, exhaust gas recir-
culation, homogenous charge compression ignition, and
turbocharging/supercharging (Xiaoping and Shu, 1995;
Zheng et al., 2004).

The ever tighter emission levels for diesel engines
have compelled researchers to work not merely on engine
tuning or modification but also on suitable advanced af-
tertreatment devices to meet the upcoming more stringent

* Corresponding author. E-mail: Geyunshan@bit.edu.cn

standards. For instance, a number of aftertreatment devices
such as active and passive DeNOx catalysts, Lean NOx
Trap, SCR, diesel oxidation catalyst (DOC), and DPF
technologies have been used with the prime objective
to abate either oxides of nitrogen (NOx) or particulate
matter (PM) emissions (Pouille et al., 1998; Gekas et al.,
2002; Hoard et al., 2004). Depending on filter regeneration
techniques, DPF systems have been further categorized as
fuel-borne catalyst, catalyzed soot filter, and catalyst-DPF
(Khair, 2003). Currently, SCR and DPF units are being
used separately prior to the engine set-up or calibration
first to abate either PM or NOx, and then to control
the remaining category of pollutants through retrofitting
(Liu et al., 2008). Work has also been reported on the
integration of SCR and DPF units to reduce both pollutants
simultaneously (Walker et al., 2004).

In urea-SCR technology, a solution comprising 32.5%
urea (by wt.) and water referred to as AdBlue is introduced
in the exhaust pipe after the engine turbocharger (Dieter
et al., 2003). The urea-water solution is converted into
isocyanic acid, and then into ammonia and carbon dioxide
(Willand, 1998). Ammonia, serving as a reductant, reduces

http://www.jesc.ac.cn
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the nitric oxide (NO) or nitrogen dioxide (NO2) through
the oxidation process in the presence of oxygen. Urea-
SCR technology has the potential to perform with higher
sulfur contents and operate on a wider temperature range
with lower fuel economy penalty and higher durability
(Willand, 1998; Fritz et al., 1999). Various factors such as
exhaust gas temperature, concentrations of pollutants and
oxygen, catalyst temperature, space velocity (SV), and nor-
malized stoichiometric ratio may affect the performance of
a urea-SCR system (Calabrese et al., 2000).

In a catalyst-diesel particulate filter (DPF) commonly
known as continuously regenerating trap (CRT) or CR-
DPF, the functions of oxidation catalyst and DPF have
chemically been integrated to achieve passive regeneration.
NO2 produced by the oxidation of NO in the catalyst zone
of the unit is used to combust the trapped soot, and thus
to regenerate the filter (Khair, 2003). The oxidation of
NO is also accompanied by the oxidation of hydrocarbons
(HC) and carbon monoxide (CO) yielding ideally carbon
dioxide and water. In this way, CRT at the same time
gives very good control of PM, CO and HC emissions
(Liu et al., 2011). However, the performance of a CRT
unit is a function of sulfur content, and thus decreases with
increasing sulfur levels in the fuel (Walker et al., 2002).

A multitude of regulated (CO, HC, NOx, and PM) and
unregulated (PAHs, carbonyls or aldehyde and ketones,
number-size distribution of particles, volatile organic com-
pounds etc.) emissions originating from diesel engines in
the atmosphere depend on the type of engine, its tuning
and maintenance, mode of operation, and fuel type. PAHs,
however, have been selected for this study because of their
harmful effects on human health. Some of these PAHs
are considered to be carcinogenic and mutagenic, and
hence are grouped into class 2A (probably carcinogenic
to humans) by the International Agency for Research
on Cancer (Chen et al., 2006). Some researchers are of
the view that PAHs are immunosuppressive pollutants in
the environment, and are involved in antiandrogenic and
antiestrogenic activities (Kizu et al., 2000; Lin et al.,
2006). Many studies focused on PAHs have revealed that
benzo(a)pyrene, an important PAH component, injures the
respiratory and immune system, and causes cell mutation
and cancers (Lin et al., 2006). According to Ravindra
et al. (2008), benzo[a]anthracene and chrysene consisting
of four rings are actively involved in teratogenic and
carcinogenic activities.

PAHs, being the most stable form of hydrocarbons and
having low hydrogen-to-carbon ratios, do not exist as
single compounds owing to their complicated structure
(Ravindra et al., 2008). These pollutants constitute a class
of semi-volatile organic species that consist of two to seven
carbon rings. The lighter PAHs with two to three rings
exist in the gas phase, while the heavier PAHs with five
to seven rings are found adsorbed onto particles (Park
et al., 2002). These are formed due to the incomplete
combustion of fuel molecules, high temperature pyrosyn-
thesis of organic material, and structural modifications
leading to conversion of one PAH into another during the
combustion process (Corrêa and Arbilla, 2006). Bartok and

Sarofim (1991) proposed that formation of PAHs during
combustion takes place possibly in three distinct ways, i.e.,
rapid radical reactions, ionic reactions, and slow Diels-
Alder condensations. It has also been reported that about
80% of benzo(a)pyrene in the exhaust is formed by the
same molecules originally available in the fuel (Corrêa and
Arbilla, 2006), leading to the fact that it can retain the same
carbon skeleton or survive the combustion.

The objective of the current work is to identify, and
hence quantify PAH concentrations from a common rail
diesel engine exhaust without and with two different
retrofits, i.e., vanadium-based urea SCR and CRT, and
hence to compare the results with those of baseline
measurements. Although many studies have successfully
examined PAH emissions from diesel engine exhaust under
different conditions, this field is still open for researchers
owing to the limited data of PAHs available in cases of
different engines, working cycles/working conditions, and
retrofits. To best of the authors’ knowledge, comparative
study of the effect of vanadium-based SCR and CRT on
PAHs has seldom been addressed. The primary objective
of current CRT and SCR system studies has been to
examine their impact on the control of regulated emissions
from diesel engines (Shah et al., 2009; Liu et al., 2011).
In the current study, however, the objective is extended
to investigate their effect on PAH emissions due to the
expected secondary reactions in the aftertreatment units.

1 Materials and methods

1.1 Engine, operating cycle and fuel

A 2.771-L, turbocharged, 4-cylinder, common rail diesel
engine was used in the current study. The bore and
stroke of the engine were 93 and 102 mm, respectively,
while the compression ratio was 18.2:1. The rated power
and maximum torque of the engine were 85 kW and
270 Nm respectively, whereas their corresponding speeds
were 3600 and 1900 r/min. The engine was operated on
an AC electrical dynamometer (Schenck HT350, Hori-
ba, Germany) in accordance with the 13-mode European
steady-state cycle (ESC), as shown in Fig. 1. The ESC test
parameters are listed in Table 1. The weighting factor (WF)
of pollutants during modes A25, A50, A75, C25, C50 and
C75 was 5% for each case, while it was 8% during A100
and C100 modes. Further, WF was 9% during B100, and
10% during B25, B50 and B75 modes. The WF during the
idle mode is 15% in this cycle.

The properties of the fuel used in this study are given in
Table 2. The fuel flow rate, and coolant and engine oil tem-
peratures were measured using a PLU4000 (Pierburg Inc.,
Germany) and temperature sensor (Pt-100), respectively.
The air flow rate and exhaust temperature were measured
using a Sensy flow P (ABB Inc., Switzerland) and a k-
series thermocouple, respectively.

1.2 SCR and CRT systems

The urea-SCR system that was used in this study was
designed and developed in the Beijing Institute of Tech-

http://www.jesc.ac.cn
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Fig. 1 Schematic of experimental setup.

Table 1 Specifications of the test engine

Parameter Feature/Size

A* 64.3
B 75.2
C 84.4
50% Pmax 42.5
70% Pmax 60.2
Pmax 84.9
Idle 0

* A is the point between B and 50% of maximum power (50% Pmax),
whereas B is the point between 50% Pmax and 70% of the maximum
power (70% Pmax), and C is the point between B and 70% Pmax.

Table 2 Specifications of the test fuel

Properties Diesel Chinese standard

Sulfur content (ppm) 350 SH/T 0253-92
Density (kg/m3) 841 SH/T 0604
Cetane number 52 GB/T 386-91
Lower heating value (MJ/kg) 42.8 GB/T 384
Viscosity (mm2/sec) at 20°C 4.0 GB/T 265
Carbon content (%) 87 SH/T 0656-98
Hydrogen content (%) 13 SH/T 0656-98
Oxygen content (%) 0 Elemental analysis

nology, so it was given the name BiTBlue-P (Shah et
al., 2011). A urea tank, urea pump, injector, measuring
unit, air assistant system, and catalyst are the major parts
of this unit. The significant features of the pump are as
follows: volume 20–1000 mL/min; 70 W; DC 24 V; and
rated pressure 700 kPa. The injector specifications are as
follows: No. of holes = 4; diameter of each hole = 0.5 mm;
and injection angle = 90◦. All the catalyzed honeycomb
ceramic substrates of the catalyst are similar with a cell
density of 62 cell/cm2 (or 400 cells/in2). The diameter,
length, and volume of the catalyst are 190 mm, 320 mm
and 9.07 L, respectively. This SCR system has already
been discussed by the authors in terms of its performance
for the controlling of exhaust emissions such as NOx, CO,
HC, number size distribution of particles, and carbonyls

(Shah et al., 2009), and volatile organic compounds (Shah
et al., 2011), operating the engine under an 8-mode (ISO
8178 Type C1) steady-state test cycle (Shah et al., 2009).

In this study, a commercial CRT unit was used. The
PM trapping efficiency of the unit and its effects on other
regulated emissions such as CO, HC and NOx together
with its impact on number-size distribution of particles,
nuclei and accumulation mode particles, and the economy
of the engine have already been addressed by the authors
(Liu et al., 2011). The significant features/characteristics
of the unit are given in Table 3.

1.3 Sampling and analysis of PAHs

The sampling process for PAHs was carried out for both
particle and gas phases at a temperature below 52°C as
per the sampling scheme shown in Fig. 1. The samples
were drawn both upstream and downstream of the retrofits,
and diluted using an ejection dilutor (Dekati, Finland).
The diluted exhaust was taken using a battery-operated
constant volume pump (Air Chek2000 SKC, USA) at a
flow rate of 5 and 35 L/min for gas-phase and particle-
phase PAHs respectively, with sampling time of 30 min.
There was a flow meter downstream of the pump to control
its flow rate.

In order to collect the gas-phase PAHs, a glass cartridge
‘PUF/XAD-2/PUF’ (Supelco, Orbo-1500, USA) was used,
while a fiberglass filter was used for the collection

Table 3 Characteristics of continuously regenerating trap (CRT)

Parameter Feature/Value

DPF substrate Cordierite
DOC substrate Cordierite
DPF Pt. content (g/ft3) 35
DOC Pt. content (g/ft3) 50
DPF cell density (cells/in2) 200
DOC cell density (cells/in2) 400
Diameter × Length (inch × inch) 8.5 × 14.0

DPF: diesel particulate filter; DOC: diesel oxidation catalyst.
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of particle-phase PAHs. Prior to sampling, filters were
cleaned in a muffle furnace at a temperature of 450°C for
about 8 hr to prevent the presence of any organic material.
The cleaned filters were pre-conditioned in a desiccator for
8 hr to remove any moisture content, and then weighed
on an electronic digital balance (Mettler Toledo AT261,
Switzerland). After sample collection, filters were placed
again in a desiccator for 8 hr, and weighed to find out
the net mass of the collected particles by the difference
between the two weights. The sampled material was stored
in a refrigerator at about –4°C till its subsequent extraction
within 7 days.

A Soxhlet extractor was used for 24 hr to extract the
sampled cartridge using dichloromethane (DCM), while an
ultrasonic extractor was used three successive times (30
min each time) to extract the sampled filters. Both the gas-
phase and particle-phase PAHs extracts were concentrated
by a rotary evaporator (Kuderna-Danish). The concentrat-
ed sampled material was then cleaned up using a column
chromatography procedure so that potential interferences
would be removed before the analysis. For this, the sample
was passed through a silica gel column at 2–3 mL/min
speed. Finally, the re-concentration of the eluent was
carried out again by (K-D) evaporator exactly to 1 mL,
and then collected in a volumetric flask for the subsequent
analysis.

The extracted liquid was placed in a 500 mL flask,
then concentrated by a rotary evaporator (Kuderna-Danish
evaporator) to 1 mL. The concentrated sample was cleaned
up by passing it through a silica gel column at a speed
of 2–3 mL/min as discussed earlier. The column which
is connected to a solid-phase extraction (SPE) device was
activated with 3 mL n-hexane. In order to wash PAHs
retained on the silica gel column, a 15 mL mixture of n-
hexane and DCM (volume ratio, 1:1) was added to the
sample. Finally, the PAHs-washing liquid was concentrat-
ed by evaporator (K-D) exactly to 1 mL, and refrigerated
until analysis.

PAHs were analyzed on the basis of EPA method
TO-13A (1999), and determined by GC/MS (Agilent
6890N/5795C, USA). A capillary column HP-5MS with
specifications (30 m × 0.25 mm × 0.25 µm) was used
for the GC, while the oven temperature was programmed
80–160°C at 20°C/min, from 160–280°C at 5°C/min, and
then kept at 280°C for about 10 min. The carrier gas
was helium with a flow rate of 1 mL/min. For the MS,
the ion source was electron impact (EI) at a temperature
of 220°C, while the transfer line to MS was at 250°C.
The acquisition/qualification mode of PAHs was selected
ion monitoring (SIM). The curves were constructed under
five-point calibration, with correlation coefficient of 0.999.
Analysis of field blanks and recovery was carried out to
guarantee the experiment reliability.

1.4 Chemical analysis of PAHs

PAHs are grouped according to their number of rings
as follows: Naphthalene (Nap) consists of 2-rings,
while Acenaphthylene (AcPy), Anthracene (Ant) Fluo-
rene (Flu), Acenaphthene (Acp), and Phenanthrene (PA)

carry 3-rings. Pyrene (Pyr), Fluoranthene (FL), Chry-
sene (CHR), and Benzo[a]anthracene (BaA) are com-
posed of 4-rings, whereas Benzo[b]Fluoranthene (BbF),
Benzo[a]Pyrene (BaP), Dibenzo[a,h]Anthracene (DBA),
and Benzo[k]Fluoranthene (BkF) have 5-rings. Finally,
Benzo[g,h,i]Perylene (BghiP) and Indeno[1,2,3-cd]Pyrene
(IND) are made up of 6-rings. Furthermore, total PAHs can
be divided into three groups depending on their molec-
ular weight (MW), e.g., low molecular weight (LMW),
medium molecular weight (MMW) and high molecular
weight (HMW). In this way, LMW species consist of 2–
3 rings, MMW-PAHs have 4 rings, while HMW-PAHs are
composed of 5–6 rings. Generally, the toxicity of PAHs
increases with their molecular weights, which implies that
gas-phase PAHs are less toxic as compared to PM-phase
PAHs (He et al., 2010).

2 Results and discussion

In the current study, PAHs are discussed in terms of brake
specific emissions (BSE), which is defined as the mass of
pollutants emitted during one kilowatt power development
of engine in one hour. The conversion/reduction (CR) of
pollutants with SCR or CRT aftertreatment is given as
follows:

CR =
(

UE − DE

UE

)
× 100% (1)

where, UE and DE are upstream (baseline) and downstream
(with aftertreatment) PAH emissions, respectively.

2.1 Phase-distributive analysis and conver-
sion/reduction of PAHs

Figure 2a shows PM-phase PAH emissions and their
respective CR at various modes in the ESC cycle. It is
clear that CRT gave very good control of these emissions,
and CR was from 71.8% to 90.7%. On the contrary, SCR
remained unable to reveal any significant control of these
emissions; even the CR was negative during most of the
modes in the cycle. Particularly, at higher load modes
SCR exhibited more negative conversion or reluctance to
conversion, and thus CR was higher in terms of negative
value. The decrease in PM-phase PAHs with CRT was
an expected result owing to the filtration, and subsequent
regeneration of the trap. The authors have already reported
the remarkable reduction in PM mass and accumulation
mode particles due to the removal of solid carbonaceous
matter across CRDPF units (Liu et al., 2011). PM, basi-
cally, consists of four major substances such as elemental
carbon, trace metals, inorganic ions and organic matter,
and all of these compounds are decreased with CRT (Liu et
al., 2008). The reluctance to conversion of PM-phase PAHs
with SCR was probably due to the formation of ammonium
sulfates at higher load modes, especially with the high
sulfur fuel used in this study (Shah et al., 2011). Thus
ammonium sulfate clogged the catalyst pores, and reduced
the conversion of pollutants. Authors have also reported
that urea-SCR has the potential to shift the number-
size distribution of particles from smaller to larger sizes
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Fig. 2 PM-phase (a), gas-phase(b), and total PAHs (c) emissions before
and after the retrofits along with their conversion/reduction (CR).

(Shah et al., 2009). Thus, larger size (accumulation mode)
particles might be responsible for choking the catalyst.
Further, it is probable that naphthalene and anthracene
were converted to phthalic anhydride (C6H4(CO)2O) and
anthraquinone (C14H8O2) solid particles respectively, par-
ticularly at higher loads where the catalyst temperature
was conducive to their conversion on the V2O5 cata-
lyst. Phthalic anhydride and anthraquinone solid particles
blocked the catalyst pores, and thus conversion of PAHs
was adversely affected. However, it is not immediately
clear whether conversion of naphthalene and anthracene
are directly related with catalyst temperature. This issue
will be undertaken separately, later in the current study.

Figure 2b presents gas-phase PAHs and their corre-
sponding CR during various modes of the cycle. In this
case, SCR and CRT both showed substantial reduction
in pollutants, and CR was up to above 75% and 80%,
respectively. The reduction in gaseous pollutants is at-
tributed to the tendency of both catalysts of the retrofits to
remove gaseous organic emissions prior to their adsorption
on EC. In previous studies (Shah et al., 2009; Liu et
al., 2011), authors have previously reported that gaseous
hydrocarbons causing a major portion of gaseous PAHs are
substantially reduced across CRT and SCR.

Figure 2c displays the total PAH emissions upstream
and downstream of the retrofits. It is elucidative that total

PAH emissions were greatly reduced across SCR and CRT,
and CR varied from 24% to 67.5% and 57% to 80.7%,
respectively. This overall appreciable reduction in total
PAHs, especially with SCR, is ascribed to the substantial
abatement of gas-phase PAHs, constituting a major portion
of PAHs.

It is important to note that baseline PM-phase, gas-
phase, and total PAHs were higher during low-load modes
of the cycle. The trend was more uniform in the case
of gas-phase PAHs, and hence in total PAH emissions.
Furthermore, among the three speeds, i.e., NA, NB and
NC involved in the cycle, PAH emissions were, in general,
higher at maximum speed modes. Higher PAHs at lower
load modes are due to the higher HC emissions caused
by higher values of the excess air-to-fuel ratio or lambda
(Shah et al., 2009). Moreover, at low engine load the flame
front is quenched in the clearance of the cylinder between
top dead center and the piston top, which leads to an
increase in PAH emissions (Collier et al., 1995). On the
other hand, higher PAHs at higher speeds are most likely
due to the adsorption of particles on the inorganic nuclei
(such as sulfuric acid) formed by the oxides of sulfur and
dilution air during the cooling process (Armas et al., 2008).
Thus heterogeneous nucleation was promoted at higher
exhaust temperatures caused by higher speed modes.

2.2 Molecular weight-based analysis of PAHs

Figure 3 presents the molecular weight-based analysis of
PAHs. Total PAHs (PM and gas-phases) were calculated
in accordance with weighting coefficients regulated by the
ESC test (known as emission factors) for the baseline,
SCR, and CRT retrofits. The emission factors of LMW-
, MMW-, and HMW-PAHs in the case of the baseline
engine were 502.2, 41.5 and 9.5 µg/(kWh), respectively.
The respective emission factors with SCR were 178.6, 33.3
and 14 µg/(kWh), while with CRT they were 127.4, 12.1
and 5.4 µg/(kWh). In all the three cases, LMW-PAHs were
predominant, while HMW-PAHs exhibited the minimum
contribution to total PAHs. Since LMW-PAHs consist of
2–3 rings, while HMW-PAHs are made up of 5–6 rings,
their respective maximum and minimum contributions to
total PAHs are again expected results.

Due to their dominance, LMW-PAHs were further an-
alyzed in terms of their RC within the same group. It is
evident from Fig. 4 that naphthalene was the dominant
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compound within the LMW-PAHs group with RC of
78.4%, 63.2%, and 81% in the case of baseline, SCR,
and CRT, respectively. Since naphthalene has the lowest
MW among LMW-PAHs, its highest RC was quite pre-
dictable. After naphthalene, phenanthrene was the next
major contributor in the case of baseline and SCR showing
respective RC of 11.2% and 18.6%, whereas fluorene was
the subsequent major contributor in the case of CRT with
RC of 7.5%. The next highest contributor was fluorene in
the baseline and SCR cases with respective RC of 4.6%
and 9.2%. The lowest contributor to LMW-PAHs were
acenaphthene and then acenaphthylene for the baseline
engine, while it was anthracene with both the retrofits.
The variation in order of contribution of phenanthrene
and fluorene with the two retrofits may be due to the
difference in properties of the catalyst materials used in
them, which leads to the variation in order of control. The
lowest RC of anthracene, particularly with SCR, may be
due to its conversion to anthraquinone, while the relatively
higher RC of acenaphthene with both the retrofits is most
likely due to the conversion of some other PAHs into these
compounds.

2.3 Effect of catalyst temperature on naphthalene and
anthracene

Figure 5a displays the effect of catalyst temperature on
the conversion of naphthalene. It is evident that there
was a strong correlation between catalyst temperature
and naphthalene conversion rate. With increasing catalyst
temperature, naphthalene conversion was increased and
reached 50.2%, 59.4%, and 70% under the full load of
the ESC test speeds NA, NB, and NC respectively, at
which point the respective catalyst temperatures were at
their peaks. Higher catalyst temperatures promoted the
decomposition of naphthalene, thus leading to the higher
conversion rate of naphthalene on the SCR catalyst.

Figure 5b presents the influence of catalyst temperature
on the conversion of anthracene. Although the conversion
rate was enhanced with increasing catalyst temperature,
the increase was not significant. In fact, most of the cyclic
modes revealed negative conversion or simply reluctance.
Thus conversion fluctuated between –44.8% (Mode A25)
to 30.7% (Mode C50) within the cycle. This maximum
conversion at mode C50 is most likely due to the optimum
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Fig. 5 Effect of catalyst temperature on naphthalene (a) and anthracene
(b).

values of both catalyst temperature and space velocity be-
cause both the factors play a critical role in the conversion
of pollutants.

From the above discussion, it is noteworthy that correla-
tion of catalyst temperature with anthracene conversion is
weaker than that of naphthalene. This leads to an important
finding that the role of naphthalene in the deactivation
of the SCR catalyst, particularly at higher load modes, is
dominant as compared to anthracene. Thus our speculation
made in Section 2.1 that naphthalene and anthracene were
responsible for the fouling of catalysts owing to their
conversion to solid particles seems to be valid, particularly
in the case of naphthalene.

2.4 Toxicity analysis of PAHs

Table 4 presents the emission factors of various PAHs
calculated on the basis of the weighting coefficients of

Table 4 Mean brake specific emission (BSE) of total PAHs with their
corresponding TEF

PAHs Mean BSE TEF
(µg/kWh)

Baseline SCR CRDPF

Naphthalene 414.643 129.223 107.627 0.001
Acenapthylene 5.263 4.134 3.474 0.001
Acenaphthene 3.323 3.965 2.925 0.001
Fluorene 12.042 9.966 4.669 0.001
Phenanthrene 61.592 24.574 5.874 0.001
Anthracene 5.307 6.750 2.803 0.010
Fluoranthene 11.251 9.599 3.318 0.001
Pyrene 21.880 12.933 3.869 0.001
Benz[a]anthracene 2.491 4.405 2.234 0.100
Chrysene 5.851 6.376 2.685 0.010
Benzo[b]fluoranthene 2.016 3.569 1.342 0.100
Benzo[k]fluoranthene 1.508 2.999 1.277 0.100
Benzo[a]pyrene 1.684 1.683 0.941 1.000
Indeno[123-cd]pyrene 0.950 1.358 0.457 0.100
Dibenzo [ah]anthracene 1.396 1.743 0.550 1.000
Benzo[ghi]perylene 2.388 2.659 0.869 0.010∑

Mean BSE 553.587 225.936 144.912
Total BaPeq 4.442 5.011 2.217

TEF: toxic equivalent factor.
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the ESC cycle, and their corresponding toxic equivalent
factors (TEFs). According to Nisbet and LaGoy (1992) and
the US EPA (1993), TEFs are used to calculate the car-
cinogenic potency of all PAHs using the Benzo[a]Pyrene
equivalent concentration (BaPeq). For this purpose, total
BaPeq was evaluated as follows:

BaPeq =
∑

(Ei × TEFi) (2)

where, E (µg/kWh) is the emission factor of a certain PAH
measured; and i = 1–16.

It is clear from Table 4 that the total emission factor of
all the PAHs was greatly reduced with both the retrofits.
The emission factor of BaP, the most carcinogenic PAH,
was appreciably reduced with CRT, while it decreased
marginally with SCR compared with the baseline engine.
The CRT retrofit abated each individual PAH pollutant
remarkably, whereas SCR could reduce only 2–3 ringed
PAHs. The BaPeq emission factor followed the order of
CRT < baseline < SCR. This leads to an important finding
that the potential carcinogenicity of the compounds was
outstandingly abated with the CRT unit. Although BaP
and total emission factor were lower with SCR, BaPeq was
higher compared with baseline engine. This is, no doubt,
due to the increase in most of the MMW and HMW-
PAHs with SCR, particularly those having higher TEFs.
The reduction in total emission factor in the case of SCR
is attributed to the considerable conversion of gas-phase
PAHs across SCR. The reduction in BaPeq with CRT is
due to its marked control of both PM-phase as well as gas-
phase PAHs.

3 Conclusions

An SCR and CRT were independently retrofitted to a
common rail diesel engine with an objective to charac-
terize PAH emissions in all three cases, and hence to
make a comparative analysis of them. Gas-phase pollutants
were collected in ‘PUF/XAD-2/PUF’, while PM-phase
PAHs were trapped in a fiberglass filter. A total of 16
PAHs were identified and quantified in the current study.
The phase-distributive analysis, MW-based analysis, RC
of LMW-PAHs, catalyst-temperature effect on some im-
portant PAH compounds, and finally BaP-based toxicity
analysis of PAHs were addressed in the study.

Phase-distributive analysis of PAHs with CRT revealed
an unmatched impact on the control of both PM-phase as
well as gas-phase PAHs, thus CR varied between 71.8%
and 90.7% for PM-phase and above 80% for gas-phase
PAHs under the ESC test. On the contrary, urea-SCR was
unable to serve the purpose of conversion/reduction of PM-
phase PAHs. However, it exhibited a strong impact on
the control of gas-phase PAHs. Relative to the baseline
engine, the CR of total PAHs were 67.5% and above
81% with SCR and CRT, respectively. LMW-PAHs were
predominant, whereas HMW compounds were lowest in
all three cases. The emission factors of LMW-, MMW-
and HMW-PAHs all decreased with CRT, while HMW-
PAHs were higher in the case of SCR compared with
the baseline engine. Naphthalene was the most abundant

compound in the LMW-PAHs of the baseline as well as
the retrofitted engine, while acenaphthene and anthracene
were the lowest contributors in the baseline and retrofit
cases, respectively. Also, naphthalene exhibited a strong
correlation with the catalyst temperature of SCR, and
increased with increasing temperature. Furthermore, the
BaPeq emission factor was greatly reduced with CRT, while
it increased with SCR as compared to the baseline engine.
Thus CRT demonstrated a marked control on the potential
carcinogenicity of emissions.
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