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Abstract
Heterogeneous reactions of nitrogen dioxide (NO2) on soils collected from Dalian (S1) and Changsha (S2) were investigated over the
relative humidity (RH) range of 5%–80% and temperature range of 278–328 K using a horizontal coated-wall flow tube. The initial
uptake coefficients of NO2 on S2 exhibited a decreasing trend from (10 ± 1.3) × 10−8 to (3.1 ± 0.5) × 10−8 with the relative humidity
increasing from 5% to 80%. In the temperature effect studies, the initial uptake coefficients of S1 and S2 decreased from (10 ± 1.2) ×
10−8 to (3.8 ± 0.5) × 10−8 and from (16 ± 2.2) × 10−8 to (3.8 ± 0.4) × 10−8 when temperature increased from 278 to 288 K for S1 and
from 278 to 308 K for S2, respectively. As the temperature continued to increase, the initial uptake coefficients of S1 and S2 returned
to (7.9 ± 1.1) × 10−8 and (20 ± 3.1) × 10−8 at 313 and 328 K, respectively. This study shows that relative humidity could influence the
uptake kinetics of NO2 on soil and temperature would impact the heterogeneous chemistry of NO2.

Key words: heterogeneous reactions; soil particles; uptake coefficients; temperature dependence; relative humidity effect
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Introduction

As a major component of tropospheric aerosol, mineral
dust is injected into the troposphere with an annual amount
of 1000–3000 Tg (Li et al., 1996; Prospero, 1999). It can
provide a large reactive surface area for heterogeneous
reactions with various atmospheric trace gases. Heteroge-
neous surface chemistry on mineral dust is also potentially
catalytic, magnifying any potential impact on chemical
cycles and trace gas concentrations. Previous studies on
authentic and model mineral dust suggested that these
particles could play an important role in atmospheric
processes (Andreae and Crutzen, 1997; Molina et al.,
1996; Rudich, 2003). Modeling studies suggested that
approximately 40% of nitrate formation was associated
with mineral aerosols (Dentener et al., 1996). Aerosol
samples collected in East Asia showed a good correlation
between nitrate and calcium (Song et al., 2005; Sullivan
et al., 2007; Zhuang et al., 1999). A study by Tang et al.
(2004) simulated a 20% decline in near-surface ozone and
a 95% decrease in nitric acid levels in this region. Besides,
mineral dust particles can also scatter and absorb incoming
solar radiation (Sokolik and Toon, 1996) and act as cloud
condensation nuclei (CCN) (Levin et al., 1996; Yin et

* Corresponding author. E-mail: wangwg@iccas.ac.cn (Weigang Wang);
gemaofa@iccas.ac.cn (Maofa Ge)

al., 2002). Heterogeneous chemical reactions of mineral
dust with HNO3 and NO2 could influence photochemical
cycles in the troposphere (Dentener et al., 1996; Jacob,
2000). In addition, laboratory studies have demonstrated
that humic acid films and aerosols reduce NO2 to HONO,
an important precursor of the OH radical, providing a
potential pathway to explain a missing daytime source of
HONO (Stemmler et al., 2006; Stemmler et al., 2007). This
is of particular interest given the importance of humic and
fulvic acids in soils and the extent of humic-like substances
in the troposphere (George et al., 2005). The variability
in mineral dust surface properties and the composition of
particles results in a variable affinity for various trace gas
components.

Roughly half of the current atmospheric dust is es-
timated to be anthropogenic in origin, a result of soil
degradation by agriculture, overgrazing and deforestation
(Tegen and Fung, 1995; Tegen and Lacis, 1996). Dust
aerosols originate as soil particles lofted into the atmo-
sphere by wind erosion. The soil is most vulnerable to
erosion in dry regions, where particles are only loosely
bound to the surface by the low soil moisture. Larger parti-
cles fall out near the source region, but smaller particles
can be swept thousands of kilometers downwind. As a
result, the main components of mineral dust consist of
soil particles, including quartz, feldspar, carbonate (e.g.,
calcite, dolomite) and clay (Usher et al., 2003). Mineral
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dust and soils generally have similar chemical and min-
eralogical composition, which is a reflection of dominant
crustal materials in the source region.

Nitrogen oxides play a central role in tropospheric
chemistry. NO2 is directly produced in small quantities
along with NO in the processes of fossil fuel combustion,
biomass burning, and lightning and by microbial activity in
soils. It is also formed in the atmosphere by the oxidation
of NO with ozone and peroxy radicals. The latter reaction
leads to ozone production, since the steady-state O3 con-
centration is proportional to the ratio of the concentrations
of NO2 and NO. The major chemical sink for nitrogen
oxides is the reaction of NO2 with OH radicals, followed
by formation and precipitation of nitric acid. Another
pathway to remove nitrogen oxides from the gas phase
is heterogeneous processes, for example, the uptake of
NO2 on mineral dust. As far as we know, there have been
many laboratory investigations of the reactions of NO2 on
mineral dust (Angelini et al., 2007; Börensen et al., 2000;
Finlayson-Pitts et al., 2003; Goodman et al., 1999; Miller
and Grassian, 1998; Ullerstam et al., 2003; Underwood
et al., 2000; Underwood et al., 1999, 2001). However,
research on temperature and humidity effects in these
heterogeneous processes is very limited (Li et al., 2010).
No literature report concerning the temperature effects of
the heterogeneous reaction of NO2 with concentrations
close to the actual atmospheric environment has been
found.

In this study, initial uptake coefficient measurements of
NO2 on the surfaces of soils collected from Dalian and
Changsha were investigated using a coated wall flow tube
reactor equipped with a NOx chemiluminescence analyzer,
in combination with scanning electron microscopy (SEM).
Soils collected from these places provide a good opportu-
nity to study the heterogeneous reactions that occur on the
surfaces of dust aerosols from such ambient environments.

1 Materials and methods

1.1 Film preparation for the coated-wall experiments

In each experiment, 0.1–0.3 g soil was dissolved in 5 mL
of water and dripped uniformly into a Pyrex tube (inner
diameter of 2.1 cm, length 30 cm). In our experimental
conditions, a soil loading density of (0.97–2.9) × 10−3

g/cm2 and a film thickness of ca. 3–10 µm were calcu-
lated. Because the results may be sensitive to the relative
humidity (RH), the Pyrex tube was dried in an oven at
423 K for more than 3 hr, which certainly left little water
on the surface. Therefore, most of the adsorbed water
during an experiment was deposited from the gas phase.
The resulting film covered the entire inner area of the tube
and, to the eye, was fairly uniform in thickness. These
film-covered tubes were used as the reaction region for the
uptake coefficient measurements.

1.2 Coated-wall flow tube experiments

The measurements of heterogeneous uptake coefficients of
NO2 onto various soil samples were carried out in a hor-

Mass flowmeter

NO2

Movable injector Cooling jacket

Ethanol

Ethanol
Hygrometer

NOx 

analyzer

Dry air

Soil

Fig. 1 Diagram of the flow tube reactor in this study.

izontal flow-tube coated with a soil sample. A schematic
diagram is shown in Fig. 1. The reactor consisted of a
Pyrex tube (1 m in length and 2.7 cm i.d.) with a jacket
for the circulation of the thermostated liquid (ethanol). The
experimental approach is based on measuring the reactant
gas concentration, i.e., NO2 gas, at the exit of a cylindrical
flow reactor as a function of the contact distance (time)
between NO2 gas and the soil surface.

This method provides the possibility of carrying out
measurements in the presence of water, which interferes
negatively in several other techniques of trace gas mea-
surements, such as IR or mass spectrometry. The amount
of water in the gas phase is very crucial for the reactivity
of dust aerosols, which influences the phase state of
the particles and possibly the mechanism. These features
allow experiments with dust aerosol particles at humidity,
temperature and concentrations of trace gas relevant to the
real atmosphere.

A typical experiment proceeded as follows. At first, a
constant flow of NO2 was established, with the injector
placed at the end of the coated tube, such that none
of the soil-coated surface was exposed to the gas flow.
After the NO2 concentration was steady, the injector was
withdrawn a certain distance to expose some fraction of the
soil to the gas. The NO2 concentration difference between
the initial region and bottom point yields the initial state
loss under various conditions. After some time, the steps
were reversed, pushing the injector forward to its original
position. This procedure led to typical NO2 concentration
profiles as shown in Fig. 2. All the experimental conditions
are summarized in Table 1.

The powder samples, Dalian soil (S1) and Changsha soil
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Fig. 2 Typical experimental profile for S1 at ca. 50 ppb NO2, 298 K, 760
Torr.
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Table 1 Properties of the soil used in the experiment

S1 S2

Temperature (K) 278–313 288–328
Pressure (Torr) 760 760
RH (%) – 5–80
NO2 concentration (ppb) ca. 50 25–500
S BET (m2/g) 33.6 ± 3.4 26.8 ± 2.7

S1 and S2 are powder samples of Dalian soil (S1) and Changsha soil (S2).

(S2), were obtained from the Institute of Environmental
Reference Materials Ministry of Environmental Protection.
The compositions of the soil samples are listed in Table 2.
BET surface areas were determined for the samples by
using an automated multipoint BET analysis (Autosorb-1,
Quantachrome, USA) with N2 as the adsorbate. The BET
surface areas after coating and heating were measured to
be (33.6 ± 3.4) m2/g for S1 and (26.8 ± 2.7) m2/g for S2,
respectively. The morphology was observed using SEM
(S-4300, Hitachi, Japan), as shown in Fig. 3.

The humidity of the gas flow was measured by means
of a CENTER-310 hygrometer. The reactor was operated
at a total flow (zero air for dilution and NO2) of 1.0
L/min. The NO2(g) (99.9%, Xian Heyu Trade Co. Ltd.,
China) loss in the flow tube as a function of injector
position was measured using a NOx chemiluminescence
analyzer (THERMO 42i, Thermo Scientific, USA) whose
inlet was equipped with a carbonate denuder. The reactant
gas passed the denuder coated with sodium carbonate in
order to remove trace species such as HONO and HNO3.
The injector position was translated to gas-solid contact
times using the known total flow velocity.

Table 2 Compositions of the soil samples in the experiments

Composition of S1 (%) Composition of S2 (%)

SiO2 65.64 ± 0.42 69.59 ± 0.43
Al2O3 14.95 ± 0.09 14.41 ± 0.07
Fe2O3 6.51 ± 0.16 5.85 ± 0.08
FeO 0.54 ± 0.08 0.25 ± 0.06
CaO 0.84 ± 0.04 0.08 ± 0.03
MgO 1.23 ± 0.05 0.61 ± 0.03
K2O 2.25 ± 0.06 1.7 ± 0.02
Na2O 0.81 ± 0.02 0.1 ± 0.001

S1 and S2 are powder samples of Dalian soil (S1) and Changsha soil (S2).

2 Results and discussion

2.1 Uptake coefficient measurements

The measurements of uptake coefficients were performed
by using the flow-tube reactor over the relative humidity
range of 5%–80% and temperature range of 278–328 K.
All the experiments were carried out in the dark.

Figure 2 shows the raw data under the typical conditions.
The curve displays a pattern with a large initial NO2 uptake
followed by a decrease as the reaction proceeds. In the
temperature effect studies, it was found that the decreasing
trend became slower with increasing temperature. The
result suggests that the uptake mechanism was influenced
by temperature. Details of the mechanism will be discussed
below. When the movable injector was pushed back to the
start position after the initial exposure to soil, the NO2
was no longer in contact with the soil surface and the
NO2 concentration returned to initial NO2 concentration
rapidly. The observed time dependence of the uptake rate
and the saturation of the NO2 uptake of soil particles may
be explained by different uptake mechanisms as follows:
(1) the uptake of NO2 is reversible. With increasing NO2
adsorption, the desorption rate increases which leads to a
reduced net uptake. (2) The uptake of NO2 is irreversible.
Reactive sites for NO2 adsorption are blocked by NO2
molecules, which leads to a decrease in the adsorption. (3)
(1) and (2) both exist. In this study, hypothesis (3) is dis-
cussed first and the results of the temperature dependence
prove that the hypothesis is reasonable.

The initial uptake coefficient, γ0, was calculated by
Eq. (1):

γ0 =
4kobsV
ωS

(1)

where, kobs (sec−1) is the first-order rate constant of NO2
loss, ω is the average molecular speed, V is the volume
of the reaction zone, and S is the surface area of the
soil sample. To calculate the uptake coefficients, two
parameters should be determined experimentally: the rate
constant kobs and the soil surface area S involved in the
interaction with NO2. The kobs were observed to be linearly
dependent on the mass of the sample deposited into the
flow tube, strongly suggesting that the total internal surface
was available for heterogeneous reactions involving NO2.

a b

10 μm 10 μm

Fig. 3 SEM pictures of S1 (a) and S2 (b). The scale is 10 µm. The size of the soil particles is in the range of 0.5–7 µm.
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Fig. 4 Uptake kinetics of NO2 as a function of the reaction time on S1.
The experimental conditions are as follows: RH < 5%, 760 Torr, 298 K,
NO2 initial mixing ratio of 50 ppb.

Therefore, the surface area used in this study was the
BET surface area, which took into account the internal
surface of our sample and represented an upper limit on
the reactive surface area available for each powder sample.

The first-order loss approximation can be used for
determining kobs from NO2 loss kinetics. The kinetics of
NO2 loss on soil at a given exposure time can be treated as
the first-order kinetic formalism and the rate constant can
be determined by using Eq. (2):

ln
(C0

C

)
= kobst (2)

where, C0 and C give the NO2 concentrations in the
absence and presence of reaction, and kobs and t are the
first-order rate constant of NO2 loss and the reaction
time, respectively. As shown in Fig. 4, the variations of
ln(C0/C) as a function of exposure time can be best fit,
assuming a first-order process with respect to the gas phase
concentration of NO2. In addition, the measured uptake
coefficients were observed to be strongly dependent on the
NO2 gas phase concentrations, in the range from 25 to 500
ppb, as shown in Fig. 5. This behavior can be explained via
a Langmuir-Hinshelwood mechanism.

The uptake coefficient is a phenomenological quantity,
defined as the fraction of collisions a gas-phase reagent
makes with the surface, resulting in the net loss of that
reagent from the gas phase. Eqs. (1) and (2) do not account
for the possible diffusion limitations caused by a radial
gradient in the gas concentrations, which could occur if
the loss at the surface is faster than gas-phase diffusion
replenishes the near-surface regime. Therefore, the rate
constant for removal of NO2, k (sec−1), can be determined
by correcting kobs for diffusion (Gershenzon et al., 1995)
by Eqs. (3) and (4):

1
k
=

1
kobs
− 1

kdiff
(3)

k =
3.66Di

r2 (4)

where, r (cm) is the inner radius of the coated tube and
Di is the diffusion coefficient which can be calculated
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Fig. 5 Dependence of the uptake coefficients (γ) of NO2 on S2 as a
function of the NO2 gas phase concentration. All experimental were con-
ducted at 298 K, RH < 5%. Each point was obtained from measurements
on fresh samples.

using the formula proposed by Fuller et al. (1966). The
quoted uncertainties represent 2σ + 10%, which represents
a combination of statistical, estimated systematic errors.

2.2 Relative humidity effects

The uptake coefficients measured under different experi-
mental conditions are all summarized in Table 3.

The uptake coefficients of NO2 on S2 particles were
investigated as a function of RH (Fig. 6). As shown in
Fig. 6, the uptake coefficient decreased from (10 ± 1.3)
× 10−8 to (3.1 ± 0.5) × 10−8 with RH increasing from 5%
to 80%. This result indicates water vapor could influence
the uptake kinetics of NO2 on soil particles. Under dry
conditions (RH < 5%), there was still some water vapor
remaining and the surface adsorbed water on the soils
equilibrated with water vapor. With increasing RH, water

Table 3 Values of initial uptake coefficients (γ0) of NO2 on two soil
samples under different conditions for this work

RH (%) Temp. (K) γ0 (S1) (× 10−8) γ0 (S2) (× 10−8)

< 5 278 10 ± 1.2 16 ± 2.2
< 5 283 7.0 ± 1 –
< 5 288 3.8 ± 0.5 11 ± 1.3
< 5 298 5.3 ± 0.7 10 ± 1.3
< 5 303 6.5 ± 0.8 –
< 5 308 – 3.8 ± 0.4
< 5 313 7.9 ± 1.1 –
< 5 318 – 9.7 ± 1.2
< 5 328 – 20 ± 3.1

Temp. (K) RH (%) γ0 (S1) (× 10−8) γ0 (S2) (× 10−8)

298 < 5 5.3 ± 0.7 10 ± 1.3
298 20 – 4.9 ± 0.7
298 40 – 4.4 ± 0.5
298 60 – 4.3± 0.6
298 80 – 3.1 ± 0.5

Temp. (K); NO2 concen- γ0 (S1) γ0 (S2)
RH (%) tration (ppb) (× 10−8) (× 10−8)

298; RH < 5 25 – 18± 2.1
298; RH < 5 50 5.3 ± 0.7 10 ± 1.3
298; RH < 5 100 – 9.1 ± 1.1
298; RH < 5 200 – 5.3 ± 0.8
298; RH < 5 500 – 4.5 ± 0.5
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Fig. 6 Initial uptake coefficients (γ0) of NO2 on S2 as a function of RH.

starts to compete with NO2 for active sites and the uptake
coefficient decreases with the increasing of RH. Therefore,
the reasonable explanation of the water dependence is
probably the Langmuir-Hinshelwood mechanism with co-
adsorption of water and NO2 on the active sites of soil
particles. The following reactions likely occur on the soil
surface during adsorption:

H2O (g)
soil

GGGGGGBFGGGGGG H2O (a) (5)

NO2 (g)
soil

GGGGGGBFGGGGGG NO2(a) (6)

2NO2 (a) + H2O (a) + soil −→ soil-HNO3 + HONO (g)
(7)

This system has been studied extensively (Angelini et
al., 2007; Börensen et al., 2000; Finlayson-Pitts et al.,
2003; Goodman et al., 1999; Miller and Grassian, 1998;
Ndour et al., 2008; Ullerstam et al., 2003; Underwood
et al., 1999, 2000, 2001) and many studies observed the
formation of HONO, when water was present (Finlayson-
Pitts et al., 2003; Goodman et al., 1999). But Underwood
et al. (1999, 2001) did not observe gaseous HONO or
HNO3, only NO and N2O. It was found that chelating
nitrite surface species were formed at the lowest pressure
(5 mTorr) and monodentate, bidentate and bridging nitrate
species were formed at higher pressure (30 mTorr). Thus,
the adsorption of water would be especially important in

the chemistry of atmospheric gases on mineral dust that
can easily ionize, e.g., the heterogeneous chemistry of NO2
and HNO3 (Börensen et al., 2000; Miller and Grassian,
1998). The humidity dependence in our experiments is
different from that proposed by Finlayson-Pitts et al.
(2003). This may be related with the low concentration
of NO2 and the composition and properties of the soil
particles, which will be discussed below.

Using DRIFTs (diffuse reflectance infrared Fourier
transform spectroscopy), Li et al. (2010) investigated NO2
uptake on CaCO3 under dry and wet conditions. The
uptake coefficients decreased initially with RH and then
increased slightly with increasing RH. The result observed
in this study is consistent with that of NO2 on CaCO3 at
low RH conditions (RH < 52%). But over the RH range
studied, the result of uptake coefficient increasing with
increasing RH was not observed. The reason is that the
composition of soil is more complicated and its properties
are different from CaCO3. Compared with CaCO3, the soil
is more hydrophilic and porous because of the clay in the
soil. Therefore, water could occupy the active site more
easily, which would inhibit the adsorption of NO2. The
results support the hypothesis of the reactions above. In
the experiments, water could not form a liquid film on the
surfaces of soil particles and the surface reactions would
not transform from gas-solid to gas-liquid. Besides, the
concentration of NO2 in our experiment (ca. 50 ppb) is
different from that (ca. 200 ppm) used by Li et al. (2010)
Thus, over the RH range studied, water always plays a
negative role in the heterogeneous reactions of NO2 on
soils, which leads to the uptake coefficient decreasing with
increasing RH.

2.3 Temperature effects

Besides relative humidity, temperature is also an important
factor for both homogeneous and heterogeneous reactions
in the atmosphere. Therefore, it is of interest to study
the temperature effect of the reaction of NO2 on the soil
particles.

As shown in Fig. 7 for S1, over the temperature range
of 278–313 K, at 760 Torr and under dry conditions (RH
< 5%), γ0 first decreased from (10 ± 1.2) × 10−8 to (3.8
± 0.5) × 10−8 with the temperature increasing from 278
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Fig. 7 Initial uptake coefficients (γ0) of NO2 as a function of the temperature. Conditions: RH < 5%, 760 Torr, NO2 initial mixing ratio of ca. 50 ppb.
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to 288 K. However, with the temperature increasing from
288 to 313 K, γ0 increased from (3.8 ± 0.5) × 10−8 to (7.9
± 1.1) × 10−8. Similar results were also observed for S2
with a different inflection point. For S2, γ0 decreased from
(16 ± 2.2) × 10−8 to (3.8 ± 0.4) × 10−8, when temperature
increased from 278 to 308 K, and with the increasing of
temperature from 308 to 328 K, γ0 increased from (3.8 ±
0.4) × 10−8 to (20 ± 3.1) × 10−8. The different values of
the inflection points may be related to the compositions
and properties of the soil particles.

From Eq. (1), the parameters related to temperature are
kobs and ω. In the temperature range of 278–328 K, ω
would change from 357.7 to 388.5 m/sec. The influence
of this change on the uptake coefficients is slight. Thus,
kobs plays the most important role in the temperature effect
of uptake coefficients. According to the hypothesis of
the uptake mechanisms above, the uptake mechanisms of
NO2 on the soil particles consist of (1) and (2) stages.
That means the initial uptake of NO2 on soil particles
includes two parts: (1) adsorption process and (2) chemical
reaction. Compared with Fig. 8a and b, the returning trend
is slower accompanied with a smaller rate of desorption.
That means the ratio of chemical reaction/adsorption in-
creased with increasing temperature. The result suggests
that the initial uptake process is controlled by chemical
reaction at high temperature, while at low temperature, it
is controlled by adsorption. It has been reported that the
reversible adsorptions of gas phase NO2 and water are
exothermic (Bartels-Rausch et al., 2002; Majzlan et al.,
2007). Therefore, it is reasonable to assume that ∆Hads <
0. The fact that the chemical Reaction (7) with a positive

temperature dependence has been reported (England and
Corcoran, 1974). In addition, the condensation point of
NO2 is 294 K, as the temperature decreases, which could
facilitate the adsorption of gaseous NO2 on the soil parti-
cles. Thus, in Fig. 7, the uptake coefficients decrease with
increasing temperature initially and then display a negative
temperature dependence.

3 Atmospheric implications

The rate of removal of NO2 by uptake onto soil can
be approximated in a simple model. We assume that the
lifetime τ for removal of NO2 by soil is given by Eq. (8),

τ =
4
γc̄A

(8)

where, A (cm2/cm3) is the soil surface area density, c̄ is the
mean molecular speed, and γ is the uptake coefficient.

An estimation of the gas-lifetime of NO2 may be also
obtained from the reaction rates at room temperature with
tropospheric agents such as OH, O3 and NO3, taking into
account their average concentrations and the measured
room temperature rate constants, by using the expression
below:

τ =
1

k[X]
(9)

where, [X] is the typical atmospheric concentration of the
oxidant (OH, O3 and NO3) and k is the rate coefficient of
the reaction of between NO2 and X. The values determined
above are presented in Table 4.
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Fig. 8 Experimental profiles for S2 at 278 K (a) and 328 K (b).

Table 4 Atmospheric lifetimes of NO2 (τ), for studied soils and typical atmospheric oxidants

Concentrations (mol/cm3) Reference K (cm3/(mol·sec)) Reference τ (hr)

OH 1.0 × 106 Bloss et al., 2005 1.13 × 10−11 D’Ottone et al., 2001 25
O3 7 × 1011 Logan, 1985 4.52 × 10−17 Verhees and Adema, 1985 8.8
NO3 5 × 108 Shu and Atkinson, 1995 1.67 × 10−12 Orlando et al., 1991 0.33

Surface area density (cm2/cm3) γ0 (hr) τ (day)

S1 1.7×10−6 – 51×10−6* 5.3 × 10−8 This work > 462
S2 1.3×10−6 – 39×10−6* 1.0 × 10−7 This work > 320

* We assume a conservatively low (i.e., background) dust loading of 5 µg/m3 to a high loading of 150 µg/m3 (Aymoz et al., 2004).
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From Table 4, it is found that, using the uptake
coefficient deduced from the BET surface area, the corre-
sponding lifetimes compared with the homogeneous loss
of NO2 are so long as to be negligible. These simple
calculations show that heterogeneous reaction of NO2 on
soils would be not be of any importance for the NOx
balance of the atmosphere, but that the products of the
reaction, e.g., nitrous acid, may be important. The reaction
and products may explain the formation of HONO in the
atmosphere (Harrison and Kitto, 1994). In addition, when
the soil particles deposited on the ground, they would also
take part in the cycles of HONO and OH (Su et al., 2011).

4 Conclusions

In this study, heterogeneous reactions of NO2 on soil
particles collected from Dalian (S1) and Changsha (S2)
were investigated under dark conditions over the relative
humidity (RH) range of 5%–80% and temperature range
of 278–328 K using a flow-tube equipped with an NOx
chemiluminescence analyzer. The magnitude of γ0 in this
study is in good coincidence with the magnitude range of
most uptake coefficients of NO2 on heterogeneous inter-
faces (Ndour et al., 2009). In our relative humidity effect
research, γ0 decreased from (10 ± 1.3) × 10−8 to (3.1 ± 0.5)
× 10−8 with increasing RH because water competes with
NO2 on the surfaces of soil particles and restrains the co-
adsorption of NO2 on the surfaces. These results suggest
that water and the properties of soil particles are impor-
tant, and determine the reaction kinetics and mechanism.
With the temperature increased, the dominant process
of γ0 changes from an adsorption process (exothermic)
to chemical reaction (endothermic). So, with increasing
temperature, the initial uptake coefficients first decreased
and then displayed a negative dependence of temperature.
It is suggested that temperature could alter the kinetics
and mechanisms for the heterogeneous reaction of NO2 on
soil particles. According to the results above, a reasonable
Langmuir-Hinshelwood mechanism is proposed. Thus, the
heterogeneous reactions of NO2 on soil or dust should
not be neglected in the whole troposphere, especially for
the formation of HONO. Furthermore, our results also
suggest that the temperature and RH could affect the
uptake coefficients so that the temperature and RH factors
should be considered when uptake coefficients are used in
modeling studies.
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