

ISSN 1001-0742 CN 11-2629/X

2012

JOURNAL OF ENVIRONMENTAL SCIENCES

Sponsored by Research Center for Eco-Environmental Sciences Chinese Academy of Sciences

JOURNAL OF ENVIRONMENTAL SCIENCES

(http://www.jesc.ac.cn)

Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.

Copyright

© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

CONTENTS

Aquatic environment

Aquate environment	
Effect of periphyton community structure on heavy metal accumulation in mystery snail (Cipangopaludina chinensis): A case study of the Bai River	
Jingguo Cui, Baoqing Shan, Wenzhong Tang ·····	1723
Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism	
Liming Shao, Xiaoyi Wang, Huacheng Xu, Pinjing He	1731
Ammonia pollution characteristics of centralized drinking water sources in China	
Qing Fu, Binghui Zheng, Xingru Zhao, Lijing Wang, Changming Liu	1739
Bulking sludge for PHA production: Energy saving and comparative storage capacity with well-settled sludge	
Qinxue Wen, Zhiqiang Chen, Changyong Wang, Nanqi Ren	1744
Atmospheric environment	
Heterogeneous reaction of NO2 on the surface of montmorillonite particles	
Zefeng Zhang, Jing Shang, Tong Zhu, Hongjun Li, Defeng Zhao, Yingju Liu, Chunxiang Ye	1753
Heterogeneous uptake of NO2 on soils under variable temperature and relative humidity conditions	
Lei Wang, Weigang Wang, Maofa Ge ·····	1759
Diurnal variation of nitrated polycyclic aromatic hydrocarbons in PM ₁₀ at a roadside site in Xiamen, China	
Shuiping Wu, Bingyu Yang, Xinhong Wang, Huasheng Hong, Chungshin Yuan	1767
Conversion characteristics and mechanism analysis of gaseous dichloromethane degraded by a VUV	
light in different reaction media	
Jianming Yu, Wenji Cai, Jianmeng Chen, Li Feng, Yifeng Jiang, Zhuowei Cheng	1777
Characteristics of odorous carbonyl compounds in the ambient air around a fishery industrial complex of Yeosu, Korea	
Zhongkun Ma, Junmin Jeon, Sangchai Kim, Sangchul Jung, Woobum Lee, Seonggyu Seo	1785
Terrestrial environment	
Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron,	
zinc, nickel and manganese	
Bing Li, Xun Wang, Xiaoli Qi, Lu Huang, Zhihong Ye	1790
In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite	
Yuebing Sun, Guohong Sun, Yingming Xu, Lin Wang, Dasong Lin, Xuefeng Liang, Xin Shi	1799
Environmental biology	
Kinetic analysis and bacterium metabolization of α -pinene by a novel identified <i>Pseudomonas</i> sp. strain	
Zhuowei Cheng, Pengfei Sun, Yifeng Jiang, Lili Zhang, Jianmeng Chen	1806
Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. USTB-05	
Hai Yan, Huasheng Wang, Junfeng Wang, Chunhua Yin, Song Ma, Xiaolu Liu, Xueyao Yin	1816
Isolation, identification and characterization of an algicidal bacterium from Lake Taihu and preliminary studies on its algicidal compounds	
Chuan Tian, Xianglong Liu, Jing Tan, Shengqin Lin, Daotang Li, Hong Yang	
Spatial heterogeneity of cyanobacterial communities and genetic variation of Microcystis populations within large,	
shallow eutrophic lakes (Lake Taihu and Lake Chaohu, China)	
Yuanfeng Cai, Fanxiang Kong, Limei Shi, Yang Yu ·····	1832
Environmental health and toxicology	
Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil	
Chunyan Yin, Ying Teng, Yongming Luo, Peter Christie	1843
Pollution level and human health risk assessment of some pesticides and polychlorinated biphenyls in Nantong of Southeast China	
Na Wang, Li Yi, Lili Shi, Deyang Kong, Daoji Cai, Donghua Wang, Zhengjun Shan	1854
Cytotoxicity and genotoxicity evaluation of urban surface waters using freshwater luminescent bacteria	
Vibrio-qinghaiensis spQ67 and Vicia faba root tip	
Xiaoyan Ma, Xiaochang Wang, Yongjun Liu ·····	1861
Environmental catalysis and materials	
Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO ₂ /TiO ₂ nanostructured fibers	
Yu Liu, Hongbing Yu, Zhenning Lv, Sihui Zhan, Jiangyao Yang, Xinhong Peng, Yixuan Ren, Xiaoyan Wu ·····	1867
TiO ₂ /Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal	
Eshraq Ahmed Abdullah, Abdul Halim Abdullah, Zulkarnain Zainal, Mohd Zobir Hussein, Tan Kar Ban	1876

Serial parameter: CN 11-2629/X*1989*m*162*en*P*20*2012-10

Available online at www.sciencedirect.com

JOURNAL OF ENVIRONMENTAL SCIENCES ISSN 1001-0742 CN 11-2629/X

Journal of Environmental Sciences 2012, 24(10) 1759-1766

www.jesc.ac.cn

Heterogeneous uptake of NO₂ on soils under variable temperature and relative humidity conditions

Lei Wang^{1,2}, Weigang Wang^{1,*}, Maofa Ge^{1,*}

1. Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: wanglei@iccas.ac.cn

2. Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing 100871, China

Received 21 December 2011; revised 27 February 2012; accepted 29 February 2012

Abstract

Heterogeneous reactions of nitrogen dioxide (NO₂) on soils collected from Dalian (S1) and Changsha (S2) were investigated over the relative humidity (RH) range of 5%–80% and temperature range of 278–328 K using a horizontal coated-wall flow tube. The initial uptake coefficients of NO₂ on S2 exhibited a decreasing trend from $(10 \pm 1.3) \times 10^{-8}$ to $(3.1 \pm 0.5) \times 10^{-8}$ with the relative humidity increasing from 5% to 80%. In the temperature effect studies, the initial uptake coefficients of S1 and S2 decreased from $(10 \pm 1.2) \times 10^{-8}$ to $(3.8 \pm 0.5) \times 10^{-8}$ and from $(16 \pm 2.2) \times 10^{-8}$ to $(3.8 \pm 0.4) \times 10^{-8}$ when temperature increased from 278 to 288 K for S1 and from 278 to 308 K for S2, respectively. As the temperature continued to increase, the initial uptake coefficients of S1 and S2 returned to $(7.9 \pm 1.1) \times 10^{-8}$ and $(20 \pm 3.1) \times 10^{-8}$ at 313 and 328 K, respectively. This study shows that relative humidity could influence the uptake kinetics of NO₂ on soil and temperature would impact the heterogeneous chemistry of NO₂.

Key words: heterogeneous reactions; soil particles; uptake coefficients; temperature dependence; relative humidity effect **DOI**: 10.1016/S1001-0742(11)61015-2

Introduction

As a major component of tropospheric aerosol, mineral dust is injected into the troposphere with an annual amount of 1000-3000 Tg (Li et al., 1996; Prospero, 1999). It can provide a large reactive surface area for heterogeneous reactions with various atmospheric trace gases. Heterogeneous surface chemistry on mineral dust is also potentially catalytic, magnifying any potential impact on chemical cycles and trace gas concentrations. Previous studies on authentic and model mineral dust suggested that these particles could play an important role in atmospheric processes (Andreae and Crutzen, 1997; Molina et al., 1996; Rudich, 2003). Modeling studies suggested that approximately 40% of nitrate formation was associated with mineral aerosols (Dentener et al., 1996). Aerosol samples collected in East Asia showed a good correlation between nitrate and calcium (Song et al., 2005; Sullivan et al., 2007; Zhuang et al., 1999). A study by Tang et al. (2004) simulated a 20% decline in near-surface ozone and a 95% decrease in nitric acid levels in this region. Besides, mineral dust particles can also scatter and absorb incoming solar radiation (Sokolik and Toon, 1996) and act as cloud condensation nuclei (CCN) (Levin et al., 1996; Yin et al., 2002). Heterogeneous chemical reactions of mineral dust with HNO_3 and NO_2 could influence photochemical cycles in the troposphere (Dentener et al., 1996; Jacob, 2000). In addition, laboratory studies have demonstrated that humic acid films and aerosols reduce NO_2 to HONO, an important precursor of the OH radical, providing a potential pathway to explain a missing daytime source of HONO (Stemmler et al., 2006; Stemmler et al., 2007). This is of particular interest given the importance of humic and fulvic acids in soils and the extent of humic-like substances in the troposphere (George et al., 2005). The variability in mineral dust surface properties and the composition of particles results in a variable affinity for various trace gas components.

Roughly half of the current atmospheric dust is estimated to be anthropogenic in origin, a result of soil degradation by agriculture, overgrazing and deforestation (Tegen and Fung, 1995; Tegen and Lacis, 1996). Dust aerosols originate as soil particles lofted into the atmosphere by wind erosion. The soil is most vulnerable to erosion in dry regions, where particles are only loosely bound to the surface by the low soil moisture. Larger particles fall out near the source region, but smaller particles can be swept thousands of kilometers downwind. As a result, the main components of mineral dust consist of soil particles, including quartz, feldspar, carbonate (e.g. calcite, dolomite) and clay (Usher et al., 2003). Mineral

^{*} Corresponding author. E-mail: wangwg@iccas.ac.cn (Weigang Wang); gemaofa@iccas.ac.cn (Maofa Ge)

dust and soils generally have similar chemical and mineralogical composition, which is a reflection of dominant crustal materials in the source region.

Nitrogen oxides play a central role in tropospheric chemistry. NO₂ is directly produced in small quantities along with NO in the processes of fossil fuel combustion, biomass burning, and lightning and by microbial activity in soils. It is also formed in the atmosphere by the oxidation of NO with ozone and peroxy radicals. The latter reaction leads to ozone production, since the steady-state O3 concentration is proportional to the ratio of the concentrations of NO₂ and NO. The major chemical sink for nitrogen oxides is the reaction of NO₂ with OH radicals, followed by formation and precipitation of nitric acid. Another pathway to remove nitrogen oxides from the gas phase is heterogeneous processes, for example, the uptake of NO2 on mineral dust. As far as we know, there have been many laboratory investigations of the reactions of NO₂ on mineral dust (Angelini et al., 2007; Börensen et al., 2000; Finlayson-Pitts et al., 2003; Goodman et al., 1999; Miller and Grassian, 1998; Ullerstam et al., 2003; Underwood et al., 2000; Underwood et al., 1999, 2001). However, research on temperature and humidity effects in these heterogeneous processes is very limited (Li et al., 2010). No literature report concerning the temperature effects of the heterogeneous reaction of NO₂ with concentrations close to the actual atmospheric environment has been found.

In this study, initial uptake coefficient measurements of NO_2 on the surfaces of soils collected from Dalian and Changsha were investigated using a coated wall flow tube reactor equipped with a NO*x* chemiluminescence analyzer, in combination with scanning electron microscopy (SEM). Soils collected from these places provide a good opportunity to study the heterogeneous reactions that occur on the surfaces of dust aerosols from such ambient environments.

1 Materials and methods

1.1 Film preparation for the coated-wall experiments

In each experiment, 0.1–0.3 g soil was dissolved in 5 mL of water and dripped uniformly into a Pyrex tube (inner diameter of 2.1 cm, length 30 cm). In our experimental conditions, a soil loading density of $(0.97-2.9) \times 10^{-3}$ g/cm² and a film thickness of ca. 3–10 µm were calculated. Because the results may be sensitive to the relative humidity (RH), the Pyrex tube was dried in an oven at 423 K for more than 3 hr, which certainly left little water on the surface. Therefore, most of the adsorbed water during an experiment was deposited from the gas phase. The resulting film covered the entire inner area of the tube and, to the eye, was fairly uniform in thickness. These film-covered tubes were used as the reaction region for the uptake coefficient measurements.

1.2 Coated-wall flow tube experiments

The measurements of heterogeneous uptake coefficients of NO_2 onto various soil samples were carried out in a hor-

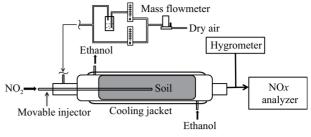
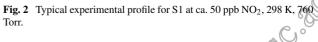


Fig. 1 Diagram of the flow tube reactor in this study.


izontal flow-tube coated with a soil sample. A schematic diagram is shown in Fig. 1. The reactor consisted of a Pyrex tube (1 m in length and 2.7 cm i.d.) with a jacket for the circulation of the thermostated liquid (ethanol). The experimental approach is based on measuring the reactant gas concentration, i.e., NO_2 gas, at the exit of a cylindrical flow reactor as a function of the contact distance (time) between NO_2 gas and the soil surface.

This method provides the possibility of carrying out measurements in the presence of water, which interferes negatively in several other techniques of trace gas measurements, such as IR or mass spectrometry. The amount of water in the gas phase is very crucial for the reactivity of dust aerosols, which influences the phase state of the particles and possibly the mechanism. These features allow experiments with dust aerosol particles at humidity, temperature and concentrations of trace gas relevant to the real atmosphere.

A typical experiment proceeded as follows. At first, a constant flow of NO_2 was established, with the injector placed at the end of the coated tube, such that none of the soil-coated surface was exposed to the gas flow. After the NO_2 concentration was steady, the injector was withdrawn a certain distance to expose some fraction of the soil to the gas. The NO_2 concentration difference between the initial region and bottom point yields the initial state loss under various conditions. After some time, the steps were reversed, pushing the injector forward to its original position. This procedure led to typical NO_2 concentration profiles as shown in Fig. 2. All the experimental conditions are summarized in Table 1.

60 Exposed to NO. 55 50 concentration (ppb) 45 40 35 ğ 30 25 20 200400 600 800 1000 1200 1400 1600 Time (sec)

The powder samples, Dalian soil (S1) and Changsha soil

No. 10

Table 1 Properties of the soil used in the experiment		
	S1	S2
Temperature (K)	278-313	288-328
Pressure (Torr)	760	760
RH (%)	-	5-80
NO ₂ concentration (ppb)	ca. 50	25-500
$S_{\rm BET} (m^2/g)$	33.6 ± 3.4	26.8 ± 2.7

S1 and S2 are powder samples of Dalian soil (S1) and Changsha soil (S2).

(S2), were obtained from the Institute of Environmental Reference Materials Ministry of Environmental Protection. The compositions of the soil samples are listed in Table 2. BET surface areas were determined for the samples by using an automated multipoint BET analysis (Autosorb-1, Quantachrome, USA) with N₂ as the adsorbate. The BET surface areas after coating and heating were measured to be (33.6 ± 3.4) m²/g for S1 and (26.8 ± 2.7) m²/g for S2, respectively. The morphology was observed using SEM (S-4300, Hitachi, Japan), as shown in Fig. 3.

The humidity of the gas flow was measured by means of a CENTER-310 hygrometer. The reactor was operated at a total flow (zero air for dilution and NO₂) of 1.0 L/min. The NO₂(g) (99.9%, Xian Heyu Trade Co. Ltd., China) loss in the flow tube as a function of injector position was measured using a NOx chemiluminescence analyzer (THERMO 42i, Thermo Scientific, USA) whose inlet was equipped with a carbonate denuder. The reactant gas passed the denuder coated with sodium carbonate in order to remove trace species such as HONO and HNO₃. The injector position was translated to gas-solid contact times using the known total flow velocity.

 Table 2
 Compositions of the soil samples in the experiments

	Composition of S1 (%)	Composition of S2 (%)
SiO ₂	65.64 ± 0.42	69.59 ± 0.43
Al_2O_3	14.95 ± 0.09	14.41 ± 0.07
Fe ₂ O ₃	6.51 ± 0.16	5.85 ± 0.08
FeO	0.54 ± 0.08	0.25 ± 0.06
CaO	0.84 ± 0.04	0.08 ± 0.03
MgO	1.23 ± 0.05	0.61 ± 0.03
K ₂ O	2.25 ± 0.06	1.7 ± 0.02
Na ₂ O	0.81 ± 0.02	0.1 ± 0.001

S1 and S2 are powder samples of Dalian soil (S1) and Changsha soil (S2).

2 Results and discussion

2.1 Uptake coefficient measurements

The measurements of uptake coefficients were performed by using the flow-tube reactor over the relative humidity range of 5%-80% and temperature range of 278-328 K. All the experiments were carried out in the dark.

Figure 2 shows the raw data under the typical conditions. The curve displays a pattern with a large initial NO₂ uptake followed by a decrease as the reaction proceeds. In the temperature effect studies, it was found that the decreasing trend became slower with increasing temperature. The result suggests that the uptake mechanism was influenced by temperature. Details of the mechanism will be discussed below. When the movable injector was pushed back to the start position after the initial exposure to soil, the NO₂ was no longer in contact with the soil surface and the NO₂ concentration returned to initial NO₂ concentration rapidly. The observed time dependence of the uptake rate and the saturation of the NO₂ uptake of soil particles may be explained by different uptake mechanisms as follows: (1) the uptake of NO_2 is reversible. With increasing NO_2 adsorption, the desorption rate increases which leads to a reduced net uptake. (2) The uptake of NO_2 is irreversible. Reactive sites for NO₂ adsorption are blocked by NO₂ molecules, which leads to a decrease in the adsorption. (3) (1) and (2) both exist. In this study, hypothesis (3) is discussed first and the results of the temperature dependence prove that the hypothesis is reasonable.

The initial uptake coefficient, γ_0 , was calculated by Eq. (1):

$$y_0 = \frac{4k_{\rm obs}V}{\omega S} \tag{1}$$

where, k_{obs} (sec⁻¹) is the first-order rate constant of NO₂ loss, ω is the average molecular speed, V is the volume of the reaction zone, and S is the surface area of the soil sample. To calculate the uptake coefficients, two parameters should be determined experimentally: the rate constant k_{obs} and the soil surface area S involved in the interaction with NO₂. The k_{obs} were observed to be linearly dependent on the mass of the sample deposited into the flow tube, strongly suggesting that the total internal surface was available for heterogeneous reactions involving NO₂.

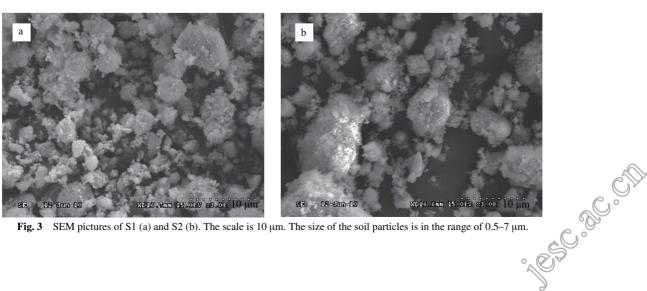


Fig. 3 SEM pictures of S1 (a) and S2 (b). The scale is 10 µm. The size of the soil particles is in the range of 0.5–7 µm.

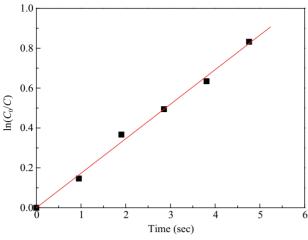


Fig. 4 Uptake kinetics of NO_2 as a function of the reaction time on S1. The experimental conditions are as follows: RH < 5%, 760 Torr, 298 K, NO₂ initial mixing ratio of 50 ppb.

Therefore, the surface area used in this study was the BET surface area, which took into account the internal surface of our sample and represented an upper limit on the reactive surface area available for each powder sample.

The first-order loss approximation can be used for determining k_{obs} from NO₂ loss kinetics. The kinetics of NO₂ loss on soil at a given exposure time can be treated as the first-order kinetic formalism and the rate constant can be determined by using Eq. (2):

$$\ln\left(\frac{C_0}{C}\right) = k_{\rm obs}t\tag{2}$$

where, C_0 and C give the NO₂ concentrations in the absence and presence of reaction, and k_{obs} and t are the first-order rate constant of NO₂ loss and the reaction time, respectively. As shown in Fig. 4, the variations of $\ln(C_0/C)$ as a function of exposure time can be best fit, assuming a first-order process with respect to the gas phase concentration of NO₂. In addition, the measured uptake coefficients were observed to be strongly dependent on the NO₂ gas phase concentrations, in the range from 25 to 500 ppb, as shown in Fig. 5. This behavior can be explained via a Langmuir-Hinshelwood mechanism.

The uptake coefficient is a phenomenological quantity, defined as the fraction of collisions a gas-phase reagent makes with the surface, resulting in the net loss of that reagent from the gas phase. Eqs. (1) and (2) do not account for the possible diffusion limitations caused by a radial gradient in the gas concentrations, which could occur if the loss at the surface is faster than gas-phase diffusion replenishes the near-surface regime. Therefore, the rate constant for removal of NO₂, k (sec⁻¹), can be determined by correcting k_{obs} for diffusion (Gershenzon et al., 1995) by Eqs. (3) and (4):

$$\frac{1}{k} = \frac{1}{k_{\rm obs}} - \frac{1}{k_{\rm diff}}$$
(3)

$$k = \frac{3.66D_i}{r^2} \tag{4}$$

where, r (cm) is the inner radius of the coated tube and D_i is the diffusion coefficient which can be calculated

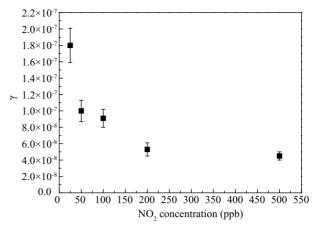
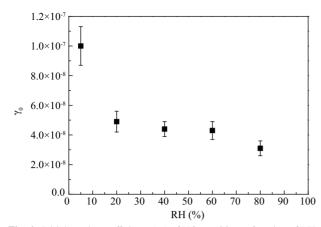


Fig. 5 Dependence of the uptake coefficients (γ) of NO₂ on S2 as a function of the NO₂ gas phase concentration. All experimental were conducted at 298 K, RH < 5%. Each point was obtained from measurements on fresh samples.

using the formula proposed by Fuller et al. (1966). The quoted uncertainties represent $2\sigma + 10\%$, which represents a combination of statistical, estimated systematic errors.


2.2 Relative humidity effects

The uptake coefficients measured under different experimental conditions are all summarized in Table 3.

The uptake coefficients of NO₂ on S2 particles were investigated as a function of RH (Fig. 6). As shown in Fig. 6, the uptake coefficient decreased from (10 ± 1.3) × 10⁻⁸ to $(3.1 \pm 0.5) \times 10^{-8}$ with RH increasing from 5% to 80%. This result indicates water vapor could influence the uptake kinetics of NO₂ on soil particles. Under dry conditions (RH < 5%), there was still some water vapor remaining and the surface adsorbed water on the soils equilibrated with water vapor. With increasing RH, water

 Table 3
 Values of initial uptake coefficients (γ_0) of NO₂ on two soil samples under different conditions for this work

RH (%)	Temp. (K)	$\gamma_0 (S1) (\times 10^{-8})$	γ_0 (S2) (× 10 ⁻⁸)
< 5	278	10 ± 1.2	16 ± 2.2
< 5	283	7.0 ± 1	-
< 5	288	3.8 ± 0.5	11 ± 1.3
< 5	298	5.3 ± 0.7	10 ± 1.3
< 5	303	6.5 ± 0.8	-
< 5	308	-	3.8 ± 0.4
< 5	313	7.9 ± 1.1	-
< 5	318	-	9.7 ± 1.2
< 5	328	-	20 ± 3.1
Temp. (K)	RH (%)	$\gamma_0 (S1) (\times 10^{-8})$	γ_0 (S2) (× 10 ⁻⁸
298	< 5	5.3 ± 0.7	10 ± 1.3
298	20	-	4.9 ± 0.7
298	40	-	4.4 ± 0.5
298	60	-	4.3 ± 0.6
298	80	-	3.1 ± 0.5
Temp. (K);	NO ₂ concen-	γ_0 (S1)	γ_0 (S2)
RH (%)	tration (ppb)	$(\times 10^{-8})$	$(\times 10^{-8})$
298; RH < 5	25	_	18± 2.1
298; RH < 5	50	5.3 ± 0.7	10 ± 1.3
298; RH < 5	100	-	9.1 ± 1.1
298; RH < 5	200	-	5.3 ± 0.8
298; RH < 5	500	-	4.5 ± 0.5 N
			Ciò

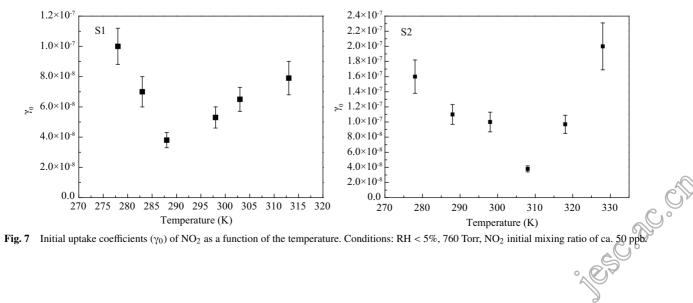
Fig. 6 Initial uptake coefficients (γ_0) of NO₂ on S2 as a function of RH.

starts to compete with NO₂ for active sites and the uptake coefficient decreases with the increasing of RH. Therefore, the reasonable explanation of the water dependence is probably the Langmuir-Hinshelwood mechanism with coadsorption of water and NO₂ on the active sites of soil particles. The following reactions likely occur on the soil surface during adsorption:

$$H_2O(g) \xrightarrow{\text{soil}} H_2O(a)$$
 (5)

$$NO_2(g) \xrightarrow{\text{soil}} NO_2(a)$$
 (6)

$$2NO_2(a) + H_2O(a) + soil \longrightarrow soil-HNO_3 + HONO(g)$$
(7)


This system has been studied extensively (Angelini et al., 2007; Börensen et al., 2000; Finlayson-Pitts et al., 2003; Goodman et al., 1999; Miller and Grassian, 1998; Ndour et al., 2008; Ullerstam et al., 2003; Underwood et al., 1999, 2000, 2001) and many studies observed the formation of HONO, when water was present (Finlayson-Pitts et al., 2003; Goodman et al., 1999). But Underwood et al. (1999, 2001) did not observe gaseous HONO or HNO₃, only NO and N₂O. It was found that chelating nitrite surface species were formed at the lowest pressure (5 mTorr) and monodentate, bidentate and bridging nitrate species were formed at higher pressure (30 mTorr). Thus, the adsorption of water would be especially important in the chemistry of atmospheric gases on mineral dust that can easily ionize, e.g., the heterogeneous chemistry of NO₂ and HNO₃ (Börensen et al., 2000; Miller and Grassian, 1998). The humidity dependence in our experiments is different from that proposed by Finlayson-Pitts et al. (2003). This may be related with the low concentration of NO₂ and the composition and properties of the soil particles, which will be discussed below.

Using DRIFTs (diffuse reflectance infrared Fourier transform spectroscopy), Li et al. (2010) investigated NO₂ uptake on CaCO₃ under dry and wet conditions. The uptake coefficients decreased initially with RH and then increased slightly with increasing RH. The result observed in this study is consistent with that of NO₂ on CaCO₃ at low RH conditions (RH < 52%). But over the RH range studied, the result of uptake coefficient increasing with increasing RH was not observed. The reason is that the composition of soil is more complicated and its properties are different from CaCO₃. Compared with CaCO₃, the soil is more hydrophilic and porous because of the clay in the soil. Therefore, water could occupy the active site more easily, which would inhibit the adsorption of NO₂. The results support the hypothesis of the reactions above. In the experiments, water could not form a liquid film on the surfaces of soil particles and the surface reactions would not transform from gas-solid to gas-liquid. Besides, the concentration of NO_2 in our experiment (ca. 50 ppb) is different from that (ca. 200 ppm) used by Li et al. (2010) Thus, over the RH range studied, water always plays a negative role in the heterogeneous reactions of NO₂ on soils, which leads to the uptake coefficient decreasing with increasing RH.

2.3 Temperature effects

Besides relative humidity, temperature is also an important factor for both homogeneous and heterogeneous reactions in the atmosphere. Therefore, it is of interest to study the temperature effect of the reaction of NO_2 on the soil particles.

As shown in Fig. 7 for S1, over the temperature range of 278-313 K, at 760 Torr and under dry conditions (RH < 5%), γ_0 first decreased from (10 ± 1.2) × 10⁻⁸ to (3.8 ± 0.5 × 10⁻⁸ with the temperature increasing from 278

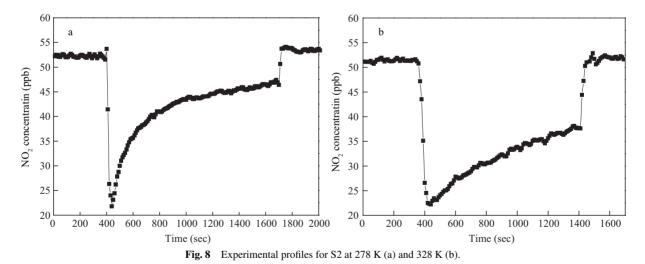
to 288 K. However, with the temperature increasing from 288 to 313 K, γ_0 increased from $(3.8 \pm 0.5) \times 10^{-8}$ to $(7.9 \pm 1.1) \times 10^{-8}$. Similar results were also observed for S2 with a different inflection point. For S2, γ_0 decreased from $(16 \pm 2.2) \times 10^{-8}$ to $(3.8 \pm 0.4) \times 10^{-8}$, when temperature increased from 278 to 308 K, and with the increasing of temperature from 308 to 328 K, γ_0 increased from $(3.8 \pm 0.4) \times 10^{-8}$ to $(20 \pm 3.1) \times 10^{-8}$. The different values of the inflection points may be related to the compositions and properties of the soil particles.

From Eq. (1), the parameters related to temperature are $k_{\rm obs}$ and ω . In the temperature range of 278–328 K, ω would change from 357.7 to 388.5 m/sec. The influence of this change on the uptake coefficients is slight. Thus, $k_{\rm obs}$ plays the most important role in the temperature effect of uptake coefficients. According to the hypothesis of the uptake mechanisms above, the uptake mechanisms of NO_2 on the soil particles consist of (1) and (2) stages. That means the initial uptake of NO₂ on soil particles includes two parts: (1) adsorption process and (2) chemical reaction. Compared with Fig. 8a and b, the returning trend is slower accompanied with a smaller rate of desorption. That means the ratio of chemical reaction/adsorption increased with increasing temperature. The result suggests that the initial uptake process is controlled by chemical reaction at high temperature, while at low temperature, it is controlled by adsorption. It has been reported that the reversible adsorptions of gas phase NO₂ and water are exothermic (Bartels-Rausch et al., 2002; Majzlan et al., 2007). Therefore, it is reasonable to assume that ΔH_{ads} < 0. The fact that the chemical Reaction (7) with a positive

temperature dependence has been reported (England and Corcoran, 1974). In addition, the condensation point of NO_2 is 294 K, as the temperature decreases, which could facilitate the adsorption of gaseous NO_2 on the soil particles. Thus, in Fig. 7, the uptake coefficients decrease with increasing temperature initially and then display a negative temperature dependence.

3 Atmospheric implications

The rate of removal of NO₂ by uptake onto soil can be approximated in a simple model. We assume that the lifetime τ for removal of NO₂ by soil is given by Eq. (8),


$$\tau = \frac{4}{\gamma \bar{c}A} \tag{8}$$

where, $A (\text{cm}^2/\text{cm}^3)$ is the soil surface area density, \bar{c} is the mean molecular speed, and γ is the uptake coefficient.

An estimation of the gas-lifetime of NO_2 may be also obtained from the reaction rates at room temperature with tropospheric agents such as OH, O_3 and NO_3 , taking into account their average concentrations and the measured room temperature rate constants, by using the expression below:

$$\tau = \frac{1}{k[X]} \tag{9}$$

where, [X] is the typical atmospheric concentration of the oxidant (OH, O_3 and NO_3) and *k* is the rate coefficient of the reaction of between NO₂ and X. The values determined above are presented in Table 4.

Table 4 Atmospheric lifetimes of NO₂ (τ), for studied soils and typical atmospheric oxidants

	Concentrations (mol/cm ³)	Reference	$K (\text{cm}^3/(\text{mol·sec}))$	Reference	au (hr)
OH	1.0×10^{6}	Bloss et al., 2005	1.13×10^{-11}	D'Ottone et al., 2001	25
O ₃	7×10^{11}	Logan, 1985	4.52×10^{-17}	Verhees and Adema, 1985	8.8
NO ₃	5×10^{8}	Shu and Atkinson, 1995	1.67×10^{-12}	Orlando et al., 1991	0.33
	Surface area density (cm ² /cm ³)		γ ₀ (hr)		τ (day)
S1	$1.7 \times 10^{-6} - 51 \times 10^{-6} *$		5.3×10^{-8}	This work	> 462
S2	$1.3 \times 10^{-6} - 39 \times 10^{-6} *$		1.0×10^{-7}	This work	> 320

* We assume a conservatively low (i.e., background) dust loading of $5 \mu g/m^3$ to a high loading of $150 \mu g/m^3$ (Aymoz et al., 2004).

No. 10

From Table 4, it is found that, using the uptake coefficient deduced from the BET surface area, the corresponding lifetimes compared with the homogeneous loss of NO₂ are so long as to be negligible. These simple calculations show that heterogeneous reaction of NO₂ on soils would be not be of any importance for the NO*x* balance of the atmosphere, but that the products of the reaction, e.g., nitrous acid, may be important. The reaction and products may explain the formation of HONO in the atmosphere (Harrison and Kitto, 1994). In addition, when the soil particles deposited on the ground, they would also take part in the cycles of HONO and OH (Su et al., 2011).

4 Conclusions

In this study, heterogeneous reactions of NO₂ on soil particles collected from Dalian (S1) and Changsha (S2) were investigated under dark conditions over the relative humidity (RH) range of 5%-80% and temperature range of 278–328 K using a flow-tube equipped with an NOx chemiluminescence analyzer. The magnitude of γ_0 in this study is in good coincidence with the magnitude range of most uptake coefficients of NO2 on heterogeneous interfaces (Ndour et al., 2009). In our relative humidity effect research, γ_0 decreased from $(10 \pm 1.3) \times 10^{-8}$ to (3.1 ± 0.5) $\times 10^{-8}$ with increasing RH because water competes with NO₂ on the surfaces of soil particles and restrains the coadsorption of NO₂ on the surfaces. These results suggest that water and the properties of soil particles are important, and determine the reaction kinetics and mechanism. With the temperature increased, the dominant process of γ_0 changes from an adsorption process (exothermic) to chemical reaction (endothermic). So, with increasing temperature, the initial uptake coefficients first decreased and then displayed a negative dependence of temperature. It is suggested that temperature could alter the kinetics and mechanisms for the heterogeneous reaction of NO2 on soil particles. According to the results above, a reasonable Langmuir-Hinshelwood mechanism is proposed. Thus, the heterogeneous reactions of NO2 on soil or dust should not be neglected in the whole troposphere, especially for the formation of HONO. Furthermore, our results also suggest that the temperature and RH could affect the uptake coefficients so that the temperature and RH factors should be considered when uptake coefficients are used in modeling studies.

Acknowledgments

This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KJCX2-EW-H01), the National Basic Research Program (973) of China (No. 2011CB403401), and the National Natural Science Foundation of China (No. 21077109, 41005070).

References

Andreae M O, Crutzen P J, 1997. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276(5315): 1052-1058.

- Angelini M M, Garrard R J, Rosen S J, Hinrichs R Z, 2007. Heterogeneous reactions of gaseous HNO₃ and NO₂ on the clay minerals kaolinite and pyrophyllite. *Journal of Physical Chemistry A*, 111(17): 3326–3335.
- Aymoz G, Jaffrezo J L, Jacob V, Colomb A, George C, 2004. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps. *Atmospheric Chemistry and Physics*, 4(11-12): 2499–2512.
- Bartels T, Eichler B, Zimmermann P, Gäggeler H W, Ammann M, 2002. The adsorption of nitrogen oxides on crystalline ice. Atmospheric Chemistry and Physics, 2(3): 235–247.
- Bloss W J, Evans M J, Lee J D, Sommariva R, Heard D E, Pilling M J, 2005. The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model. *Faraday Discussions*, 130: 425–436.
- Börensen C, Kirchner U, Scheer V, Vogt R, Zellner R, 2000. Mechanism and kinetics of the reactions of NO₂ or HNO₃ with alumina as a mineral dust model compound. *Journal* of Physical Chemistry A, 104(21): 5036–5045.
- Dentener F J, Carmichael G R, Zhang Y, Lelieveld J, Crutzen P J, 1996. Role of mineral aerosol as a reactive surface in the global troposphere. *Journal of Geophysical Research Atmospheres*, 101(D17): 22869–22889.
- D'Ottone L, Campuzano-Jost P, Bauer D, Hynes A J, 2001. A pulsed laser photolysis-pulsed laser induced fluorescence study of the kinetics of the gas-phase reaction of OH with NO₂. Journal of Physical Chemistry A, 105(46): 10538– 10543.
- England C, Corcoran W H, 1974. Kinetics and mechanisms of the gas-phase reaction of water-vapor and nitrogen dioxide. *Industrial & Engineering Chemistry Fundamentals*, 13(4): 373–384.
- Finlayson-Pitts B J, Wingen L M, Sumner A L, Syomin D, Ramazan K A, 2003. The heterogeneous hydrolysis of NO₂ in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. *Physical Chemistry Chemical Physics*, 5(2): 223–242.
- Fuller E N, Schettle Pd, Giddings J C, 1966. A new method for prediction of binary gas-phase diffusion coeffecients. *Industrial and Engineering Chemistry*, 58(5): 18–27.
- George C, Strekowski R S, Kleffmann J, Stemmler K, Ammann M, 2005. Photoenhanced uptake of gaseous NO₂ on solidorganic compounds: a photochemical source of HONO? *Faraday Discussions*, 130: 195–210.
- Gershenzon Y M, Grigorieva V M, Ivanov A V, Remorov R G, 1995. O₃ and OH sensitivity to heterogeneous sinks of HO*x* and CH₃O₂ on aerosol particles. *Faraday Discussions*, 100: 83–100.
- Goodman A L, Underwood G M, Grassian V H, 1999. Heterogeneous reaction of NO₂: Characterization of gas-phase and adsorbed products from the reaction, 2NO₂(g)+H₂O(a)→HONO(g)+HNO₃(a) on hydrated silica particles. *Journal of Physical Chemistry A*, 103(36): 7217– 7223.
- Harrison R M, Kitto A M N, 1994. Evidence for a surface source of atmospheric nitrous acid. *Atmospheric Environment*, 28(6): 1089–1094.
- Jacob D J, 2000. Heterogeneous chemistry and tropospheric ozone. *Atmospheric Environment*, 34(12-14): 2131–2159.
- Levin Z, Ganor E, Gladstein V, 1996. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. *Journal of Applied Meteorology*, 35(9): 1511–1523.

- Li H J, Zhu T, Zhao D F, Zhang Z F, Che Z M, 2010. Kinetics and mechanisms of heterogeneous reaction of NO₂ on CaCO₃ surfaces under dry and wet conditions. *Atmospheric Chemistry and Physics*, 10(2): 463–474.
- Li X, Maring H, Savoie D, Voss K, Prospero J M, 1996. Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. *Nature*, 380(6578): 416–419.
- Logan J A, 1985. Tropospheric ozone seasonal behavior, trends, and anthropogenic influence. *Journal of Geophysical Research-Atmospheres*, 90(D6): 10463–10482.
- Majzlan J, Mazeina L, Navrotsky A, 2007. Enthalpy of water adsorption and surface enthalpy of lepidocrocite (gamma-FeOOH). *Geochimica Et Cosmochimica Acta*, 71(3): 615– 623.
- Miller T M, Grassian V H, 1998. Heterogeneous chemistry of NO₂ on mineral oxide particles: Spectroscopic evidence for oxide-coordinated and water-solvated surface nitrate. *Geophysical Research Letters*, 25(20): 3835–3838.
- Molina M J, Molina L T, Kolb C E, 1996. Gas-phase and heterogeneous chemical kinetics of the troposphere and stratosphere. *Annual Review of Physical Chemistry*, 47(1): 327–367.
- Ndour M, D'Anna B, George C, Ka O, Balkanski Y, Kleffmann J et al., 2008. Photoenhanced uptake of NO₂ on mineral dust: Laboratory experiments and model simulations. *Geophysical Research Letters*, 35(5): L05812. DOI: 10.1029/2007GL032006.
- Ndour M, Nicolas M, D'Anna B, Ka O, George C, 2009. Photoreactivity of NO₂ on mineral dusts originating from different locations of the Sahara desert. *Physical Chemistry Chemical Physics*, 11(9): 1312–1319.
- Orlando J J, Tyndall G S, Cantrell C A, Calvert J G, 1991. Temperature and pressure dependence of the rate coefficient for the reaction $NO_3 + NO_2 + N_2 \rightarrow N_2O_5 + N_2$. Journal of the Chemical Society-Faraday Transactions, 87(15): 2345– 2349.
- Prospero J M, 1999. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. *Proceedings* of the National Academy of Sciences of the United States of America, 96(7): 3396–3403.
- Rudich Y, 2003. Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. *Chemical Reviews*, 103(12): 5097–5124.
- Shu Y H, Atkinson R, 1995. Atmospheric lifetimes and fates of a series of sesquiterpenes. *Journal of Geophysical Research-Atmospheres*, 100(D4): 7275–7281.
- Sokolik I N, Toon O B, 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols. *Nature*, 381(6584): 681–683.
- Song C H, Maxwell-Meier K, Weber R J, Kapustin V, Clarke A, 2005. Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight #6. Atmospheric Environment, 39(2): 359–369.
- Stemmler K, Ammann M, Donders C, Kleffmann J, George C, 2006. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. *Nature*, 440(7081):

195-198.

- Stemmler K, Ndour M, Elshorbany Y, Kleffmann J, D'Anna B, George C et al., 2007. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. *Atmospheric Chemistry and Physics*, 7(16): 4237–4248.
- Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X et al., 2011. Soil nitrite as a source of atmospheric HONO and OH radicals. *Science*, 333(6049): 1616–1618.
- Sullivan R C, Guazzotti S A, Sodeman D A, Prather K A, 2007. Direct observations of the atmospheric processing of Asian mineral dust. *Atmospheric Chemistry and Physics*, 7(5): 1213–1236.
- Tang Y H, Carmichael G R, Kurata G, Uno I, Weber R J, Song C H et al., 2004. Impacts of dust on regional tropospheric chemistry during the ACE-Asia experiment: A model study with observations. *Journal of Geophysical Research-Atmospheres*, 109: D19S21. DOI: 10.1029/2003JD003806.
- Tegen I, Fung I, 1995. Contribution to the atmospheric minera aerosol load from land-surface modification. *Journal* of Geophysical Research-Atmospheres, 100(D9): 18707– 18726.
- Tegen I, Lacis A A, 1996. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. *Journal of Geophysical Research-Atmospheres*, 101(D14): 19237–19244.
- Ullerstam M, Johnson M S, Vogt R, Ljungstrom E, 2003. DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO₂ and NO₂ on mineral dust. *Atmospheric Chemistry and Physics*, 3(6): 2043–2051.
- Underwood G M, Li P, Usher C R, Grassian V H, 2000. Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces with a Knudsen cell reactor. *Journal of Physical Chemistry A*, 104(4): 819–829.
- Underwood G M, Miller T M, Grassian V H, 1999. Transmission FT-IR and Knudsen cell study of the heterogeneous reactivity of gaseous nitrogen dioxide on mineral oxide particles. *Journal of Physical Chemistry A*, 103(31): 6184–6190.
- Underwood G M, Song C H, Phadnis M, Carmichael G R, Grassian V H, 2001. Heterogeneous reactions of NO₂ and HNO₃ on oxides and mineral dust: A combined laboratory and modeling study. *Journal of Geophysical Research-Atmospheres*, 106(D16): 18055–18066.
- Usher C R, Michel A E, Grassian V H, 2003. Reactions on mineral dust. *Chemical Reviews*, 103(12): 4883–4939.
- Verhees P W C, Adema E H, 1985. The NO₂-O₃ system at sub-ppm concentrations influence of temperature and relative-humidity. *Journal of Atmospheric Chemistry*, 2(4): 387–403.
- Yin Y, Wurzler S, Levin Z, Reisin T G, 2002. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. *Journal of Geophysical Research-Atmospheres*, 107(D23): 4724. DOI: 10.1029/2001JD001544.
- Zhuang H, Chan C K, Fang M, Wexler A S, 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. *Atmospheric Environment*, 33(26): 4223–4233.

· Jose . Ac . Ch

JOURNAL OF ENVIRONMENTAL SCIENCES

Editors-in-chief

Hongxiao Tang

Associate Editors-in-chief Nigel Bell Jiuhui Qu Shu	u Tao Po-Keung Wong	Yahui Zhuang	
Editorial board			
R. M. Atlas	Alan Baker	Nigel Bell	Tongbin Chen
University of Louisville	The University of Melbourne	Imperial College London	Chinese Academy of Sciences
USA	Australia	United Kingdom	China
Maohong Fan	Jingyun Fang	Lam Kin-Che	Pinjing He
University of Wyoming	Peking University	The Chinese University of	Tongji University
Wyoming, USA	China	Hong Kong, China	China
Chihpin Huang	Jan Japenga	David Jenkins	Guibin Jiang
"National" Chiao Tung University	Alterra Green World Research	University of California Berkeley	Chinese Academy of Sciences
Taiwan, China	The Netherlands	USA	China
K. W. Kim	Clark C. K. Liu	Anton Moser	Alex L. Murray
Gwangju Institute of Science and	University of Hawaii	Technical University Graz	University of York
Technology, Korea	USA	Austria	Canada
Yi Qian	Jiuhui Qu	Sheikh Raisuddin	Ian Singleton
Tsinghua University	Chinese Academy of Sciences	Hamdard University	University of Newcastle upon Tyne
China	China	India	United Kingdom
Hongxiao Tang	Shu Tao	Yasutake Teraoka	Chunxia Wang
Chinese Academy of Sciences	Peking University	Kyushu University	Chinese Academy of Sciences
China	China	Japan	China
Rusong Wang	Xuejun Wang	Brian A. Whitton	Po-Keung Wong
Chinese Academy of Sciences	Peking University	University of Durham	The Chinese University of
China	China	United Kingdom	Hong Kong, China
Min Yang	Zhifeng Yang	Hanqing Yu	Zhongtang Yu
Chinese Academy of Sciences	Beijing Normal University	University of Science and	Ohio State University
China	China	Technology of China	USA
Yongping Zeng	Qixing Zhou	Lizhong Zhu	Yahui Zhuang
Chinese Academy of Sciences	Chinese Academy of Sciences	Zhejiang University	Chinese Academy of Sciences
China	China	China	China
Editorial office Qingcai Feng (Executive Editor) Christine J Watts (English Editor)	Zixuan Wang (Editor)	Suqin Liu (Editor) Zhengang	Mao (Editor)

Journal of Environmental Sciences (Established in 1989) Vol. 24 No. 10 2012

CN 11-2629/X	Domestic postcode: 2-580		Domestic price per issue RMB ¥ 110.00
Editor-in-chief	Hongxiao Tang	Printed by	Beijing Beilin Printing House, 100083, China
	E-mail: jesc@263.net, jesc@rcees.ac.cn		http://www.elsevier.com/locate/jes
	Tel: 86-10-62920553; http://www.jesc.ac.cn	Foreign	Elsevier Limited
	P. O. Box 2871, Beijing 100085, China		Local Post Offices through China
	Environmental Sciences (JES)		North Street, Beijing 100717, China
Edited by	Editorial Office of Journal of	Domestic	Science Press, 16 Donghuangchenggen
	Sciences, Chinese Academy of Sciences	Distributed by	
Sponsored by	Research Center for Eco-Environmental		Elsevier Limited, The Netherlands
Supervised by	Chinese Academy of Sciences	Published by	Science Press, Beijing, China

