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Abstract
Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol
formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this
process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate
into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high
volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter
the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.%
and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for
a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the
different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the
calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid
plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the
troposphere.
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DOI: 10.1016/S1001-0742(11)61034-6

Introduction

Secondary organic aerosol (SOA) accounts for a signifi-
cant fraction of ambient tropospheric aerosol and receives
considerable attention due to its links to climate change
and adverse health effects (Pöschl, 2005; Rosenfeld, 2006;
Hallquist et al., 2009). SOA scatters and/or absorbs solar
and terrestrial radiation directly, and also influences cloud
formation indirectly as cloud condensation nuclei. As
a result, SOA markedly affects the radiative balance in
Earth’s atmosphere and plays a central role in climate
(IPCC, 2007). SOA also has an important impact on human
health and it is now well established that exposure to SOA
is associated with damaging effects on the respiratory and
cardiovascular systems (Harrison and Yin, 2000; Davidson
et al., 2005; Pope and Dockery, 2006). However, there are
uncertainties in the true impact of atmospheric aerosols on
climate and health because of a lack of information on the
kinetics and mechanism of SOA formation.

Field experiments showed a large amount of
2-methyltetrols was formed under high NOx conditions,
which could not be explained by the existing

* Corresponding author. E-mail: gemaofa@iccas.ac.cn (Maofa Ge);
wangwg@iccas.ac.cn (Weigang Wang)

photooxidation mechanism of isoprene (Claeys et al.,
2004a, 2004b). Thus, a new mechanism of multiphase
acid-catalyzed oxidation by hydrogen peroxide (H2O2)
was proposed by Claeys et al. (2004b) to support the
field results. They did a series of experiments by reacting
isoprene and its oxidation products with H2O2 in an
acidic aqueous solution and found 2-methyltetrols and
2,3-dihydroxymethacrylic acid to be produced. In the
troposphere the acidity of aerosols changes drastically,
ranging from 60 wt.% to 80 wt.% in the upper troposphere
to less than 1 wt.% in the lower troposphere (Cobourn
et al., 1980; Ferek et al., 1983; Curtius et al., 2001).
H2O2 in ambient air can enter aqueous aerosols and
exist with an appreciable concentration due to its high
gas-phase concentration and high solubility in water
(Hasson and Paulson, 2003). In addition, H2O2 can be
produced through aqueous-phase reactions (Anastasio
et al., 1994; Valverde-Canossa et al., 2005; Chen et
al., 2008). Therefore, it seems to be logical to assume
that such reactions may contribute to SOA formation.
However, the importance of this process in the atmosphere
cannot be evaluated due to the lack of kinetics data. The
formation of the 2-methyltetrols through this mechanism
was also observed in a subsequent aerosol chamber
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experiment, from which it was also difficult to estimate the
importance of the reaction for the real atmosphere (Böge
et al., 2006). Thus, it is necessary to study the kinetics of
this multiphase acid-catalyzed oxidation.

Isoprene, with a global emission of 500–750 Tg/yr, is the
most representative biogenic volatile organic compound
(Guenther et al., 2006). Because of its two double bonds,
isoprene is highly reactive and is readily oxidized in the
atmosphere by OH, NO3 and O3. In recent years, many
field (Claeys et al., 2004a; Edney et al., 2005; Kleindienst
et al., 2007) and laboratory (Kroll et al., 2005, 2006;
Kleindienst et al., 2006; Ng et al., 2008) studies have
indicated that isoprene oxidation may indeed contribute
to the formation of SOA in the atmosphere. Even if the
yield is minor, the overall contribution of isoprene to
SOA could be large owing to the large global source
strength. Methacrylic acid is a gas-phase product from the
ozonolysis of isoprene (Jacob and Wofsy, 1998; Chien et
al., 1998; Williams et al., 2001; Orzechowska and Paulson,
2005), and the mixing ratios are of the order of 100
pptv (Suzuki, 1997). Methyl methacrylate is widely used
in polymer and resin production, and the sources of its
emission are numerous such as manufacturing of plastics,
aircraft and electronic components (Graedel, 1978). In
this work we studied the uptake kinetics of isoprene,
methacrylic acid and methyl methacrylate into aqueous
solutions of sulfuric acid (H2SO4) and H2O2. The steady-
state uptake coefficients were determined for the first time,
and the atmospheric implication was discussed.

1 Materials and methods

1.1 Chemicals

Isoprene (95%, Alfa Aesar), methacrylic acid (95%,
Alfa Aesar), methyl methacrylate (95%, Alfa Aesar),
H2SO4 (> 96 wt.%, Beijing Chemical Reagents Company)
and H2O2 (30 wt.% aqueous solution, Beijing Chemical
Reagents Company) were used as purchased. The reactant
gases were prepared individually. Isoprene was injected
into an evacuated 15 L glass flask to 7.6 Torr and pres-
surized with pure helium to 2 atm. For methacrylic acid
or methyl methacrylate, the vapor was entrained by a
small helium flow and introduced into the main flow. The
aqueous solutions of H2SO4 and H2O2 were prepared by
mixing ultrapure water (with resistivity of 18 MΩ·cm) with
H2SO4 and H2O2. The solution was replaced after each
experiment.

1.2 Apparatus

All the uptake measurements were performed by using
a rotated wetted wall reactor (RWWR) coupled to a
single-photon ionization time of flight mass spectrometer
(SPI-TOFMS). This equipment had been built and used
in our previous work (Liu et al., 2010, 2011), here is a
brief description. The RWWR consisted of a horizontal
glass flow reactor and a rotating inner cylinder (length L
= 30 cm, inner radius R = 1.25 cm). A small volume of
solution (ca. 3.5 mL, corresponding to a film thickness of

ca. 0.15 mm) was placed in the inner cylinder, which was
rotated at 10–15 r/min to maintain an even liquid film on
the wall. A glass stirring bar rested on the bottom of the
inner cylinder to make sure that the solution was mixed
and spread sufficiently. A mixture of helium and water
vapor in equilibrium with the solution was used as carrier
gas so that the change of solution composition could be
avoided during one experimental period of time. Reactant
gas was introduced into the main flow at a small flow rate
(ten percent or less of the carrier gas) through a movable
injector. The movable injector centered in the RWWR
allowed for the variation of the contact distance between
reactant gas and solution. Typically, the total pressure
was 15–65 Torr and the temperature was 298 K. In this
work, the measurements were operated under approximate
laminar flow conditions.

The variation of reactant gas concentration during up-
take was monitored by SPI-TOFMS. The reactant gas was
ionized by a 118 nm vacuum ultraviolet (VUV) laser,
which is a soft ionization technique with single-photon
energy of 10.5 eV. The VUV laser was generated by
focusing the third harmonic (355 nm, ca. 30 mJ per pulse)
of a Nd:YAG laser in a tripling cell that contained about a
250 Torr argon/xenon (10/1) gas mixture. To separate the
VUV laser beam from the 355 nm fundamental beam, a
magnesium fluoride prism (apex angle = 6◦) was inserted
in the laser beams. In this case, one is quite sure that the
mass signal was generated by ionization purely through
the VUV laser radiation with gentle power (ca. 1 µJ per
pulse, pulse duration ≈ 5 nsec). For each of the three
reactant gases, only the molecular ion peak was observed.
The intensity of the molecular ion peak was recorded to
investigate the uptake kinetics.

1.3 Calculation of steady-state uptake coefficients

To quantify the uptake kinetics, the steady-state uptake
coefficient (γss), defined as the probability that the gas-
phase molecule will be taken up irreversibly by the
liquid (Howard, 1979), was calculated when an irreversible
component was observed in the uptake experiment. The
calculation method was described as follows:

As an uptake experiment began, the movable injector
was placed at its maximum position downstream. In that
situation the solution was unexposed, and the unperturbed
concentration of reactant gas could be obtained as the
original signal, S 0. Then the injector was pulled upstream
to expose the solution to the reactant gas. The steady-
state uptake was indicated by a constant offset between
the original signal and the steady-state uptake signal with
time, S . The observed first-order rate constant for removal
of the reactant gas from the gas phase, kobs (sec−1), was
calculated from Eq. (1):

ln(
S
S 0

) = −kobs
L

vave
(1)

where, L (cm) is the contact distance of the reactant gas
and the solution, and vave (cm/sec) is the average gas flow
velocity of the reactant gas. kobs was determined more
accurately by placing the injector at various positions in the
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reactor to change the contact distance. The rate constant for
removal of the reactant gas, k (sec−1), can be determined
by correcting kobs for diffusion (Murphy and Fahey, 1987;
Hanson et al., 1992; Gershenzon et al., 1995):

1
k
=

1
kobs
− 1

kdiff
(2)

kdiff =
3.66Di

R2 (3)

where, R (cm) is the inner radius of the rotating cylinder,
Di (cm2/sec) is the diffusion coefficient which can be cal-
culated from the Huller-Schettler-Gidding method (Fuller
et al., 1966), and kdiff is the diffusion-limited rate (sec−1).
Finally, γss can be determined from

γss =
4kV
ωA

(4)

where, ω (m/sec) is the mean molecular speed of the
reactant gas, V (cm3) is the volume of the reaction zone,
and A (cm2) is the geometric area of the exposed solution.

2 Results

For all three compounds, the uptake into both H2SO4
solutions and H2SO4/H2O2 mixed solutions was studied
to make sure that the steady-state uptake were caused
by multiphase acid-catalyzed oxidation. Each compound
exhibited different uptake behavior from the other two,
which is described here respectively.

2.1 Isoprene

Acid-catalyzed reactions with H2O2 can proceed for com-
pounds that contain a C=C double bond and/or an aldehyde
function. Isoprene, which has two C=C double bonds,
should be highly reactive. However, no uptake behavior
was observed in the uptake measurements over the acidity
range of 0 wt.% to 80 wt.%. Figure 1 shows the signal
intensity of isoprene during the uptake experiments into 80
wt.% H2SO4 solution (Fig. 1a) and 80 wt.%+1 wt.% H2O2
solution (Fig. 1b). After the first 90 sec, the injector was
pulled toward the upstream and the isoprene was exposed
to solution. The exposure was stopped at the 290 sec point
by pushing the injector back. The signal intensity stayed
constant, demonstrating that the uptake did not occur when
isoprene was exposed to the solutions.

2.2 Methacrylic acid

The uptake of methacrylic acid was very different from
that of isoprene. Only reversible uptake was observed for
the H2SO4 solution over the acidity range of 0 wt.% to
80 wt.%. Figure 2a depicts the experimental profile of
methacrylic acid into 60 wt.% H2SO4 solution. The signal
dropped instantly upon exposure and then returned to its
original level as the solution was saturated. Pushing the
injector back produced an opposite change in signal, corre-
sponding to desorption of methacrylic acid. The similarity
in shape and total area of the adsorption and desorption
curves means that methacrylic acid partitioned reversibly
into the solution.

The uptake of methacrylic acid into H2SO4/H2O2 mixed
solution was reversible for the acidity of 20 wt.%, but
had both reversible and steady-state components for the
acidity of 30 wt.%–80 wt.%. Figure 2b shows the typical
partially irreversible uptake curve into 60 wt.% H2SO4+1
wt.% H2O2 solution. Methacrylic acid was found to be
taken up and released at a later time, but in addition, a
constant offset in the signal was observed. This is due to
the occurrence of a chemical reaction, transforming some
of the dissolved methacrylic acid molecules to products
irreversibly.

To estimate the uptake kinetics, the steady-state up-
take coefficient (γss) was calculated when the irreversible
component was observed. Figure 3 shows the loss of
methacrylic acid as a function of injector position. The
variation of ln(S /S 0) was found to decrease linearly versus
the contact distance of methacrylic acid and the solution.
As all decays followed first-order kinetics, we obtained the
decay rates kobs from the slopes using a linear regression
method. The steady-state uptake coefficients calculated are
summarized in Table 1.

2.3 Methyl methacrylate

The uptake of methyl methacrylate into H2SO4 solution
was found to be reversible, which was similar to that of
methacrylic acid. However, the time that the signal needed
to return its original level was much shorter than that of
methylacrylic acid. For the H2SO4/H2O2 mixed solutions,
reversible uptake was observed up to the acidity of 60
wt.%. The steady-state component appeared with acidity
of 70 wt.% and 80 wt.%, and the steady-state uptake
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Fig. 1 Signal intensity profiles of isoprene during the uptake measurements into 80 wt.% H2SO4 solution (a) and 80 wt.% H2SO4+1 wt.% H2O2
solution (b).
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Fig. 2 Uptake profiles of methacrylic acid. (a) Reversible uptake into 60 wt.% H2SO4 solution; (b) Combined reversible and irreversible uptake into
60 wt.% H2SO4+1 wt.% H2O2 solution.

Table 1 Summarization of the experimental conditions and
steady-state uptake coefficients of methylacrylic acid

H2SO4 H2O2 Pressure Flow rate γa

(wt.%) (wt.%) (Torr) (STP cm3/min) (× 10−4)

30 1 64.3 330 0.415 ± 0.024
40 1 61.0 330 1.056 ± 0.028
50 1 56.0 330 1.130 ± 0.111
60 1 53.2 330 2.805 ± 0.042
70 1 19.6 330 6.162 ± 0.120
80 1 16.3 330 28.52 ± 1.980
a Each value is the average of three measurements, and the error
corresponds to one standard deviation (σ).

0 2 4 6 8 10
-1.5

-1.0

-0.5

0.0

ln
(S

/S
0
)

Distance (cm)

40 wt.%

60 wt.%

80 wt.%

Fig. 3 Methacrylic acid signal loss as a function of exposed distance for
H2SO4/H2O2 mixed solution with acidity of 40 wt.%, 60 wt.%, and 80
wt.%.

coefficient was calculated to be (0.103 ± 0.007) × 10−4

and (1.266 ± 0.067) ×10−4, respectively. This means that
methyl methacrylate can partition into the solution and
then react with H2O2, but the reaction rate is much slower
than the reaction rate of methacrylic acid.

3 Discussion

The uptake of gas by solution is a complex interaction
that can be divided into a series of processes, including
gas-phase diffusion, adsorption/desorption at the surface,
reaction at the surface, solvation, liquid-phase diffusion
and reaction in the bulk liquid (Davidovits et al., 2006).
The uptake was governed by some or all of these processes.
In this work, reaction at the surface and liquid-phase

diffusion is not considered because the solution in the
RWWR was mixed sufficiently and continually. So in
sum, the uptake is influenced mainly by four processes:
gas-phase diffusion, adsorption/desorption, solvation and
reaction.

For these three compounds, no irreversible uptake was
observed during the uptake measurements into H2SO4
solution, thus the reaction process can be ignored here.
Gas-phase diffusion cannot be the factor leading to the
different uptake behaviors of these compounds because
of the similar experimental conditions. Thus, the uptake
was determined by adsorption/desorption and solvation
processes, that is, by the volatility and solubility of these
compounds. Table 2 lists the vapor pressure and Henry’s
law constant data in water of these three compounds at 298
K.

Its high volatility and low solubility hindered the up-
take of isoprene into the solution, so a constant signal
intensity was observed during the uptake measurements.
The partitioning of isoprene into the aqueous phase was
considered to be enhanced under acidic conditions due to
the effects of hydration (Claeys et al., 2004b), but this was
not observed below the acidity of 80 wt.% in our work.
Limbeck et al. (2003) found that the formation of polymers
occurred during the heterogeneous reaction of isoprene
with H2SO4, but in that study the isoprene was forced to
go through an acid impregnated filter and interacted with
H2SO4. Liggio et al. (2007) found isoprene can be taken up
and polymerize in acidic sulfate aerosols, but the acidity
of aerosols was very high (pH = –1.45). In addition, the
uptake of isoprene was depressed and even not observed
with increasing relative humidity. This is in agreement with
our experimental results.

Table 2 Vapor pressure and Henry’s law constant data of isoprene,
methacrylic acid and methyl methacrylate

Vapor pressure Henry’s law
(torr)a constant (M/atm)

Isoprene 550a 0.013b

Methacrylic acid 0.99a 2600c

Methyl methacrylate 38.5a 3.125a

a The data were acquired from WebWISER: http://webwiser.
nlm.nih.gov/.
b Mackay and Shiu, 1981.
c Khan et al., 1992.
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According to the data in Table 2, methacrylic acid
should be taken up readily into solution. This hypothesis
is proved by our results. The signal of methacrylic acid
dropped sharply to the one-third of the original level when
the exposure first started. After that, it took about 700 sec
to return back to its original value due to the fact that
the extremely high solubility led to a long time to reach
equilibrium. Methyl methacrylate, which has moderate
volatility and solubility, can partition into H2SO4 solution,
but the time needed to reach equilibrium is much shorter
than that of methacrylic acid.

For the H2SO4/H2O2 mixed solution, these compounds
with C=C double bonds can be oxidized in the liquid
phase once they enter the solution, so the reaction may
play a role in determining the uptake process. Because the
acid-catalyzed oxidation is irreversible, steady-state uptake
should be observed if the reaction is not too slow. Due to its
high volatility and low solubility, isoprene can hardly touch
the liquid surface or enter the solution. So isoprene was
not oxidized by H2O2 in the solution although it has been
proved that isoprene can indeed be oxidized by H2O2 in the
liquid phase (Claeys et al., 2004b). Thus, an unchanging
real-time signal is observed in Fig. 1b.

A steady-state component was observed during the
uptake measurements of methacrylic acid and methyl
methacrylate, and the steady-state uptake coefficients were
calculated after correcting for gas-phase diffusion. The
steady-state uptake of methacrylic acid appears for solu-
tions with acidity above 30 wt.%, while the steady-state
uptake of methyl methacrylate appears with acidity above
70 wt.%. In addition, the steady-state uptake coefficient
of methacrylic acid is one magnitude larger than that of
methyl methacrylate for the solution with same acidity.
Actually, the steady-state uptake coefficient was deter-
mined by the reaction because the reaction was slower
than absorption or solvation. Some molecules absorbed
or dissolved were depleted through the reaction while
others were released back into the gas phase. That is
why partially irreversible uptake can be observed. Thus,
these differences of steady-state uptake coefficients can be
explained by the different reactivity of methacrylic acid
and methyl methacrylate. It is well known that the C=C
double bond can be oxidized by H2O2 in acidic solution.
In this case, epoxidation occurs first followed by an acidic
hydrolysis to form diols (March, 1992). Due to the fact
that hydrolysis of epoxy compounds is very fast (Paulot
et al., 2009; Minerath et al., 2009; Wang et al., 2012),
epoxidation is the rate-limiting step, which is determined
by the electron density of the C=C double bond. The
electron-withdrawing conjugation of the carboxylic group
(–COOH) is less than that of the ester group (–COOCH3),
leading to the higher C=C electron density of methacrylic
acid compared to methyl methacrylate. Thus, methacrylic
acid exhibits higher steady-state uptake coefficients than
methyl methacrylate.

For methacrylic acid and methyl methacrylate, the at-
mospheric lifetimes of this process were estimated and
compared with that of homogeneous oxidation. Aerosols
are often neutralized by NH3 in the troposphere, but higher

aerosol acidity approaching that used in this article has
also been reported in the troposphere (Cobourn et al.,
1980; Ferek et al., 1983; Curtius et al., 2001). Hung and
Wang (2001) reported that the H2O2 concentration in the
aerosol phase was up to 63 ng/m3. Given that the typical
aerosol mass loadings at that site are in the range of 10–200
µg/m3 and the water generally comprises less than 50%
of aerosol mass loading, the concentration of H2O2 is a
little lower than that used in this study. The steady-state
uptake coefficients at 70 wt.%–80 wt.% acidity were used
to calculate the atmospheric lifetimes by the following
equation:

τ =
4
γssωσ

(5)

where ω is the mean molecular speed of the reactant, and σ
is the area density of atmospheric sulfate aerosol, about 2
× 10−7 cm2/cm3 (Godin and Poole, 1998). For methacrylic
acid, the lifetime is 3–12.9 days, which is comparable
to the lifetime of homogeneous oxidation by O3 (3.8
days estimated using the rate constant of 4.1 × 10−18

cm3/(molecule·sec) and O3 concentration of 7.4 × 1011

molecule/cm3) (Neeb et al., 1998; Weber et al., 1998). This
means that multiphase acid-catalyzed oxidation by H2O2 is
an effective loss pathway for methacrylic acid and plays a
role in SOA formation. However, the lifetime of methyl
methacrylate is more than 70 days or even 2 years, which
is very much longer than the homogeneous oxidation (a
few days) (Teruel et al., 2006). Thus, the multiphase acid-
catalyzed oxidation of methyl methacrylate by H2O2 is not
important in the troposphere.

4 Conclusions

Multiphase acid-catalyzed oxidation by H2O2 was sug-
gested to be a potential route to SOA formation, and the
importance of this process was determined by the parti-
tioning and reaction. In this work, uptake measurements
of isoprene, methacrylic acid and methyl methacrylate
into aqueous solutions of H2SO4 and H2O2 were carried
out to investigate in detail the kinetics of this multi-
phase acid-catalyzed oxidation. Isoprene cannot partition
appreciably into solution due to its high volatility and
low solubility, which hinders the following reaction in
the solution. Methacrylic acid and methyl methacrylate
can partition into the solution, and partially irreversible
uptake was observed for acidity above 30 wt.% and 70
wt.%, respectively. The steady-state uptake coefficient
of methacrylic acid is much larger than that of methyl
methacrylate for a solution with same acidity. This can
be explained by the different reactivity of these two com-
pounds. The atmospheric lifetimes were estimated based
on the calculated steady-state uptake coefficients. These
results demonstrate that the multiphase acid-catalyzed
oxidation of methacrylic acid by H2O2 plays a role in SOA
formation in the troposphere, while the loss of isoprene and
methyl methacrylate through this process is not significant.
However, more liquid-phase chemical mechanism research
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is needed to further explain how multiphase acid-catalyzed
oxidation contributes to SOA formation.
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