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Abstract
The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely
development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil
warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated
in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about
5°C higher than the ambient treatment as a control) was –0.71 µmol/(m2·sec), the ecosytem was a CO2 sink under soil warming
treatment, the lawn ecosystem under the control was a CO2 source (0.13 µmol/(m2·sec)), indicating that the lawn ecosystem would
provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem
respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much
lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about
100% increase of α (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of
photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.
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Introduction

With increasing atmospheric CO2 concentration, the glob-
al temperature would be predicted to rise at very high
confidence level (IPCC, 2007). Terrestrial ecosystems, as
one of the global largest carbon storages (IPCC, 2000),
could significantly regulate the atmospheric CO2 content
through net ecosystem exchange (NEE) of CO2. Not only
would the future climate change depend on anthropogenic
carbon emissions, but also on carbon emission in terrestrial
ecosystems. Since the photosynthesis and respiration re-
spond differently to change in temperature, there would be
strong feedback between global warming and carbon cycle
of terrestrial ecosystem (Delpierre et al., 2009; Huxman et
al., 2003; Lafleur and Humphreys, 2008).

The feedback of vegetation to climate in the changing
global climate is one of the important contents of the global
change studies (Yu et al., 2010). Previous studies have
reported that autotrophic respiration is more sensitive than
photosynthesis to increases in temperature (Ryan, 1991;
Amthor, 1994). Yin et al. (2008) reported that the photo-

* Corresponding author. E-mail: wangxk@rcees.ac.cn

synthetic capacity of Picea asperata and Abies faxoniana
seedlings was increased by warming, and the warming
was beneficial to the seedling growth and development
during the early growing season. Many models also predict
autotrophic respiration will increase at a greater rate than
photosynthesis, which implies a substantial increase in
temperature could stimulate carbon emission from ter-
restrial ecosystems or turn terrestrial ecosystems from
a carbon sink to a carbon source (Vemap et al., 1995;
Ryan et al., 1995, 1996; Goulden et al., 1998). However,
a recent study reported that there was not significant
changes in the rates of light-saturated net photosynthesis,
foliage respiration and stem respiration in boreal black
spruce ecosystem under heating treatments in a 3-years
experiment, which does not support the early investigation
and modeling results (Bronson and Gower, 2010). With
climate warming, ecosystem photosynthesis will start early
that would increase carbon uptake. Baldocchi and Wilson
(2001) have reported that, across a range of temperate
deciduous sites, a one-day increase in growing season
length (as defined by the number of days between source-
sink transition in the spring and sink-source transition in
the autumn) increased annual net ecosystem productivity
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(NEP) by 5.7 g C/m2. Therefore, more field experiments
are necessary to investigate the temporal variations in
photosynthesis and respiration of terrestrial ecosystem
under climate change, especially in period of ecosystem
recovery from the dormant period.

The measurements of NEE have mostly focused on the
growing season because of higher flux rates. Only a few
studies have been done during dormant or low temperature
periods. In last decade, some field measurements have
showed that small but continuous rates of ecosystem
respiration during the winter can significantly influence
the annual carbon balance in seasonal forests (Hubbard et
al., 2005). The NEE in the transition period from winter
to spring has also been paid to more attention in recent
years (Lafleur and Humphreys, 2008; Welker et al., 2004;
Keeling, 1996). Climate change in early spring could
determine the timing of carbon switch from source to sink.
For instance, soil thaw-freeze cycles in transition from
winter to spring influence ecosystem NEE due to rapid
changes in soil moisture condition. The climate change in
this transition period would exert an important control over
the seasonal variation of NEE (Law et al., 2000; Lloyd et
al., 2002; Monson et al., 2002; Huxman et al., 2003; Tanja
et al., 2003; Ensminger et al., 2004). Monson et al. (2005)
reported that interannual variation in the annual cumulative
NEE was mostly explained by variation in NEE during
the snow-melt period in subalpine forest. Therefor, it is
important to investigate the carbon cycle in the transition
period in response to climate change, including global
warming.

With the rapid urbanization, half of the world’s popula-
tion has lived on urban areas (World Resources Institute,
1996). Large area of forest, grassland and arable land
is annually being lost to the expansion of urban area.
Meanwhile, with urban development, urban lawn, a kind of
greenlands, is increasing in parks, communities, commer-
cial landscapes, recreational facilities, golf courses, and
other greenlands. For example, in Beijing and Shanghai
of China, about 115 km2 land is annually being changed
to lawn (Lao, 2002). Some studies had carried out to
investigate the CO2 exchange in urban greenland area
(Allaire et al., 2008).

Since vegetations are capable of providing multiple
ecological services for urban society, e.g., direct shading
and indirect evapotranspiration for alleviating heat island
effect, conservation of stormwater for reducing flooding,
biodiversity conservation, and aesthetic value, the effects
of climate change on urban vegetations need to be in-
vestigated (Teodorescu, 2010). For example, Mimet et al.
(2009) studied the response of flowering time of Platanus
acerifolia and Prunus cerasus to the temperature change
induced by the urbanization. Carbon sequestration, one of
important ecological service of urban vegetation, has been
receiving more attention with global concerning climate
change and carbon cycle. Qian and Follet (2002) estimated
the carbon sequestration rate in urban lawn was about 1
Mg/(ha·year). Ranajit (2008) suggested that well managed
lawns sequester, or store, significant amounts of carbon,
and the healthy turf grass can capture up to 1.49 Mg

C/(ha·year). In the future, urban land would be stressed
by global warming induced by the rise of atmospheric
greenhouse gases and intensified urban heat island. It is
still not clear how the carbon cycle of urban lawn would
respond to climate change.

In this study, NEE of urban lawn were measured by
automated chamber system in a paired comparison exper-
iment with heating and no heating treatments. The aims
are to investigate: (1) the changes in NEE of urban lawn
during the transition period from winter to spring, (2) the
feedback between NEE of urban lawn and soil warming,
(3) the different responses of ecosystem respiration and
photosynthesis to soil warming.

1 Materials and methods

1.1 Experimental site

The experiment was conducted in the Educational Ar-
boretum of Beijing, located in downtown area of Beijing
(116◦25′37′′E, 39◦52′28′′N). The climate belongs to the
temperate monsoon climate. The annual mean temperature
is 11°C with range of –20°C and 40°C, and the annual
precipitation is about 500 mm. Approximately 80% of the
precipitation occurred in summer and autumn.

The lawn of turf grass (Zoysia japonica Steud.) was lo-
cated in the center of the Educational Arboretum, managed
as normal practices without drought stress and fertilized
two times a year, one in middle of March (45 kg/ha
mineral N, 6 kg/ha phosphorus and 3 kg/ha potassium) and
another in November before the soil was frozen (40 kg/ha
mineral N, 6 kg/ha phosphorus and 2 kg/ha potassium).
The grass was mowed at interval of 2–3 weeks in summer
and early fall. The soils were sampled on 15-Dec-2009 to
measure the soil property. The soil organic carbon, nitrite
and ammonium nitrogen were 18.3 mg/g, 6.30 µg/g, 1.59
µg/g respectively, and pH was 7.2.

1.2 Experimental design

The soil warming was achieved by burying heating pipes at
50 cm depth of the lawn (soil warming). The neighboring
plot without soil warming was set as the control. The pipes
connected the heating system which supports office heat-
ing during 15-Jan-2010 to 30-Mar-2010. Four automated
chambers were installed in each plot as the replications.
The chambers were inserted 6 cm deep into soil to ensure
gas tightness.

1.3 CO2 flux measurement

The NEE was measured with an automated multi-channel
chamber system. The chambers were installed on 15-Dec-
2009. The automated chambers (50 cm × 50 cm × 50 cm,
length × width × height) had walls made from transparent
PVC glued and fixed to the aluminum alloy and had lids
hinged at the sidewalls. The high-density rubber gaskets
were glued to the upper edge of the chambers for tight
closing. A small fan within each chamber was used for
mixing the air when the lid was closed. A tube with inner
diameter of 4 mm and length of 1.5 m was inserted through
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the lid of each chamber to maintain the pressure inside the
chamber near the ambient air when chamber was closed
(Griffis et al., 2004). A cylinder was positioned within each
chamber and driven by high pressure from a compressor
to control the chamber lid open and close. Air sample
was pumped from one chamber closed to pass through a
multi-channel valve, the buffer tube, the desiccant tube,
the filter, the flow controller into IRGA (Li-820, Li-Cor
Inc., Lincoln, NE, USA) for measuring CO2 concentration
within the chamber, and then returned the chamber. A
Programmable Logical Controller (Master-K120S, LG,
Korea) was deployed to control a series of solenoid valves
to control the target chamber open and close, and air
gas sample from and return to the target chamber. Each
chamber was closed for 3 min (Drewitt et al., 2002) for
the measurement. The flow rate was controlled at 1 L/min.
The CO2 concentrations were monitored continuously by
the IRGA and recorded at the interval of 10 sec with a
data logger (CR1000, Campbell Scientific Inc., Logan, UT,
USA).

1.4 Environmental measurement

Copper-constantan thermocouples were used to measure
the soil temperature at the depth of 5 cm near each cham-
ber and air temperature inside chamber. Photosynthetic
photon flux density (PPFD, 400–700 nm wave bands)
was measured with Quantum Sensor (LI-190SA, Li-Cor
Inc., Lincoln, NE, USA). The air and soil temperatures
and photosynthetic active radiation (PAR) were recorded
at an interval of 3 min in the data logger. The ambient
air temperature and air pressure data were derived from
meteorological station 300 m south of the plots which was
managed by Beijing Urban Ecosystem Research Station.

1.5 Data processing and statistical analysis

Data were downloaded every day from the data logger.
The CO2 concentrations from 1 min after the chamber
closed and 20 sec before the chamber opening were used
to calculate the change in CO2 concentration, which is the
slope of the linear regression of CO2 concentration and
time when their correlation coefficient is larger than 0.95.
NEE was calculated by Eq. (1) (Davidson et al., 1998):

Fc = dc/dt × VP/S RT (1)

where, Fc (µmol/(m2·sec)) is the CO2 flux rate; c
(µmol/mol) is the CO2 content, dc/dt (µmol/(mol·sec) is
the change rate of CO2 concentrations; V (m3) is the vol-
ume of the chamber; P (kPa) is the atmospheric pressure

inside the chamber; S (m2) is the ground surface area
enclosed by the chamber; R (8.3×10−3 (m3·kPa)/(mol·K))
is the universal gas constant; T (K) is the air temperature
inside the chamber.

The NEE was averaged for four measurements of four
chambers. One way analysis of variance (ANOVA) was
used to assess the effects of heating treatment on NEE.
The statistical analyses were carried out using the SAS
8.0 software package (SAS Institute, Cary, North Carolina,
USA).

Nocturnal NEE (the NEE when the PPFD < 100
µmol/(m2·sec)) and diurnal NEE (the NEE when the PPFD
> 100 µmol/(m2·sec)) were separated to assess the NEE
response to air temperature and PPFD. The relationship
between the nocturnal NEE and soil temperature (T soil) is
modeled by the following exponential Eq. (2):

Fc = b0 × exp(b Tsoil) (2)

where, b0 and b are regression parameters. The temper-
ature sensitivity of ecosystem respiration (Q10) can be
estimated from parameter b by Eq. (3):

Q10 = exp(10b) (3)

The relationship between diurnal NEE and PPFD
(µmol/(m2·sec)) can be modeled by following hyperbola
Eq. (4):

Fc = Reco − (Amax × α × PPFD) ÷ (α × PPFD + Amax) (4)

where, Reco (mol/(m2·sec)) is ecosystem respiration in day-
time, Amax (µmol/(m2·sec)) is the maximum NEE at infinite
light, and α (µmol CO2/µmol photon) is the apparent
quantum yield.

The above regression relationships were parameterized
by bivariate regression analyses, including linear, hyperbo-
la and exponential models using SigmaPlot 10.0 (Systat,
San Jose, CA, USA).

2 Results

2.1 Air and soil temperature

In the period of the experiment, the average, maximum and
minimum air temperature were 1.69°C, 16.67°C (21-Feb-
2010), and –9.06°C (17-Jan-2010), respectively (Table 1).
The variation of air temperature is shown in Fig. 1.

The soil warming increased the soil temperature sig-
nificantly (p < 0.0001). Soil temperature was increased

Table 1 Mean and range of air and soil temperature, photosynthetic photon flux density (PPFD), and diurnal, nocturnal and daily net ecosystem
exchange (NEE) under heating treatment and control

Heating treatment Control
Mean Range Mean Range

Air temperature (°C) 1.69 –9.06∼16.67 1.69 –9.06∼16.67
Soil temperature (°C) 8.41 16.22–2.65 3.87 –0.73∼16.19
PPFD (mol/(m2·day)) 13.43 31.16–1.63 13.43 31.16–1.63
Diurnal NEE (µmol/(m2·sec)) –3.15 –7.57∼0.09 –1.63 –6.27∼0.65
Nocturnal NEE (µmol/(m2·sec)) 0.81 0.34–1.91 1.08 0.31–2.97
Daily NEE (µmol/(m2·sec)) –0.71 –3.48∼1.78 0.13 –2.39∼2.87
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Fig. 1 Hourly averaged (a) and daily averaged (b) air temperature during the experiment period.
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Fig. 2 Hourly soil temperature under control and soil warming regimes, the break (//) stands for the data missing period during DOY (day of year)
38–DOY 52.

by 4.7°C in average, 8.8°C in maximum and 0.02°C in
minimum. The enhanced temperature declined with the air
temperature rise (Fig. 2).

2.2 Soil warming effect on NEE

In the experimental period, significant diurnal variation in
NEE occurred for both control and soil warming treat-
ment and there were negative NEE in daytime, indicating
carbon uptake by lawn regardless of soil warming or not
(Fig. 3). On daily scale, nearly all NEE under soil warming
treatment were negative except few cloud or raining days
while NEE under control transformed from source to sink
on DOY (the day of year) 74 (15-Mar-2010) (Fig. 4a). In
either diurnal (Fig. 4b), or nocturnal (Fig. 4c) scale, NEE
under soil warming treatment were lower than that under
control significantly (p < 0.0001).

The average daily NEE and diurnal NEE were sig-
nificantly decreased by the soil warming treatment (p
< 0.0001). The average NEE under the soil warming
treatment was –0.71 µmol/(m2·sec), it indicated that the
lawn ecosystem was a CO2 sink under the warming
treatment. The lawn ecosystem under the control was
a CO2 source (0.13 µmol/(m2·sec)) (Table 1). The av-
erage diurnal NEE under heating treatment was –3.15
µmol/(m2·sec), which was about two times of control
(–1.63 µmol/(m2·sec)) (Table 1), indicated that heating
treatment increased the CO2 uptake. The average nocturnal
NEE was 0.81 µmol/(m2·sec) under heating treatment, the
average nocturnal NEE was 1.08 µmol/(m2·sec) under the
control, The difference between the nocturnal NEE under
the soil warming treatment and control was not significant
(Table 1).
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2.3 Relationships of NEE to soil temperature and PPFD

There were significant exponential relationships between
nocturnal NEE and soil temperature under both heating
treatment (R2 = 0.43, P < 0.0001) and the control (R2

= 0.35, P < 0.0001) (Fig. 5). The soil temperature sen-
sitivities of nocturnal NEE (Q10) was 3.86 under heating
treatment, which only 54% of that under the control (Q10
= 7.03).

The diurnal NEE decreased with the increased PPFD
under both heating treatment and the control during the
study period (Fig. 6). Although the correlations between
diurnal NEE and PPFD were well fit with the rectangu-
lar hyperbola functions, the correlation coefficient under
heating treatment (R2 = 0.68) was larger than that under
the control (R2 = 0.44), the parameters α and Amax under
heating treatment were 0.05 µmol CO2/µmol photon and
7.21 µmol/(m2·sec), respectively, and nearly doubled that
of control (α = 0.03 µmol CO2/µmol photon, Amax = 3.50
µmol/(m2·sec)).

3 Discussion

3.1 Lawn NEE during the transition period from win-
ter to spring

In the experiment period, the daily NEE under control
was 0.44–1.55 µmol/(m2·sec) before 1-Mar-2010, indi-
cating the lawn ecosystem was a carbon source with
0.37 µmol/(m2·sec) (1.41 g CO2/(m2·day)) in winter, even
though it absorbed CO2 at the daytime. This result was
well within the range of similar ecosystem, such as
humid-temperate pastures (2.88 g CO2/(m2·day); Skinner,
2007) and sagebrush-steppe ecosystems (0.68–1.31g CO2/

(m2·day); Gilmanov et al., 2004).
Regehr and Bazzaz (1976) suggested two possible

photosynthetic acclimation strategies for over-wintering
plants: limiting the photosynthesis with completely dor-
mancy during the winter months or keeping photosynthetic
capacity during winter time when the climate conditions
were favorable for CO2 uptake. The study of Kato et
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÷ (0.03 × PPFD + 3.50); R2 = 0.44; p < 0.0001.

al. (2005) has indicated that no photosynthesis could be
detected during winter under Kobresia meadow ecosys-
tem on the Qinghai-Tibetan plateau. Yang et al. (2008)
reported that the daytime NEE of the Stipa krylovii steppe
ecosystem in Inner Mongolia was positive and larger than
night in winter period. The lawn ecosystem of this study
adapt to winter by the latter acclimation strategies of
Regehr and Bazzaz, which indicated by the negative NEE
detected during daytime irrespective of heating or not since
DOY 16 (Fig. 3). The similar result that photosynthesis
commenced 1.5 months before soil temperatures above
0°C in the boreal forest (Tanja et al., 2003). Different
ecosystems have different minimum air temperatures for
photosynthesis. Pisek (1973) reported that the range for
air temperate evergreen tree species varied from –4 to
–8°C. Skinner (2007) reported that the photosynthesis
could occur in temperate grasses at the air temperature
about –4°C, even the grasses underwent the night low air
temperature about –11°C. Larsen et al. (2007) reported that
subarctic heath ecosystem kept photosynthetic capacity
during whole winter. In this study, the lawn ecosystem
kept photosynthetic capacity during whole experiment
period, with the minimum air temperature –9.1°C. The
CO2 uptake is mainly controlled by PPFD, which have

been extensively confirmed. In our study, the correlations
between diurnal NEE and PPFD were well fit using
the rectangular hyperbola functions, and the regressive
parameters α and Amax were increased with increasing
temperature and development of the lawn.

The nocturnal NEE, i.e., ecosystem respiration, were
averaged to be 1.08 µmol/(m2·sec), which was lower than
soil respirations of urban lawn reported in Shanghai (1.16–
5.95 µmol/(m2·sec)) and Fuzhou (0.85–7.4 µmol/(m2·sec);
Sun et al., 2009). This discrepancy may be due to the
higher temperature in those Chinese cities than that in
Beijing.

The transition from winter to spring has been con-
sidered as critical period influencing ecosystem carbon
cycle, especially for soil respiration, when the soil was in
daily freeze-thaw cycle. In this study, the nocturnal NEE
increased significantly in later period of the experiment,
especially after March 15, due to soil freeze-thaw cycle.
The rapid increase of CO2 efflux during freeze-thaw cycle
has also been found in tundra heath ecosystem (Elberling
et al., 2003) and forest ecosystem (Hubbard et al., 2005;
Schindlbacher et al., 2007). The increase of root and mi-
crobial activity resulted from the soil temperature rise and
free water availability would stimulate the rapid increase
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of CO2 effluxes (Ostroumov and Siegert, 1996; Hanson et
al., 2003).

The temperature was the most important factor that
drives NEE of ecosystem. There were significant ex-
ponential relationships between nocturnal NEE and soil
temperature considering whole experiment period (R2 =

0.35, P < 0.0001) (Fig. 5), however, the further analysis
indicated that no obvious relationship occurred between
winter soil CO2 efflux and soil temperature when soil tem-
perature lower than –0.5°C (data not showed here). This
result was consistent with the report that soil temperature
had no direct effect on soil respiration in winter (Wang et
al., 2010).

3.2 Feedback of winter NEE to climate change

The positive feedback of terrestrial ecosystem to climate
warming means that the warming increased the carbon
release from ecosystem and the negative feedback means
that the warming increased the carbon storage in ecosys-
tems (Luo, 2007). The response of carbon flux to climate
warming varied and depended mainly on which climato-
logical factor was the limiting factor of plant growth to
the ecosystem (Boeck et al., 2007). The climate warming
could benefit to the plant metabolic activity that was
limited by the low temperatures in winter time and in polar
regions (Marchand et al., 2004), but aggravate the heat
and drought stress and then decrease the photosynthetic
capacity of the ecosystem in warmer and drier climate
condition (Arnone et al., 2008; Llorens et al., 2003). The
difference of the responses of the gross primary produc-
tivity (GPP) and ecosystem respiration to climate warming
resulted in the complexity of effect of climate warming on
NEE. Kharin and Zwiers (2000) reported that the increase
of air temperature at night was larger than day, this could
resulted in that the increase of ecosystem respiration was
larger than GPP, and the increase of GPP would be limited
by the lower PPFD in winter (Welp et al., 2007). However,
our results showed that CO2 uptake of lawn ecosystem
increased and the ecosystem respiration had less response
to warming, and the NEE showed a negative feedback on
climate change during the transition period from winter
to spring. Similar results were also observed in other
warming experiments. An analysis of a decade of eddy
covariance data from six European forests stands indicated
that the GPP was the maximum in a exceptionally warm
spring, the ecosystem respiration was less anomalous to
climate warming, and the net uptake in warm spring was
larger than the long term mean uptake (Delpierre et al.,
2009). Huxman et al. (2003) reported that climate warming
increased the photosynthesis of a subalpine, coniferous
forest during spring, but the ecosystem respiration was
not increased significantly leading to the increase of CO2
uptake. The similar result was observed in tundra during
spring in a low Arctic tundra (Lafleur and Humphreys,
2008). The GPP was increased by the climate warming
through increasing the photosynthetic capacity and the
lengthening the growing season (Welker et al., 2004;
Berninger, 1997; Randerson et al., 1999; Idso et al., 2000;
White et al., 2000; Saxe et al., 2001), which defined by the

first continuous 3-day period of net carbon uptake (Welp
et al., 2007), but the winter and spring climate warming
was not always increased the growing season, for example,
Yu et al. (2001) reported that the dormancy period of a
alpine meadow in Tibetan Plateau was lengthened by the
continued winter warming.

Our study indicated that warming increased the α and
Amax by about 2 times, which stimulate CO2 uptake of
the lawn. The onset of the growing season for the control
was on DOY 74, but the lawn ecosystem under warming
was net carbon uptake during almost the whole experiment
period. Welker et al. (2004) reported that the growing
season was increased by 2 weeks and the gross ecosystem
productivity was increased by the warming. Previous study
indicated that GPP was reduced by the climate warming
due to climate warming resulting in drought stress and
reduction in photosynthetic capacity, and ecosystem res-
piration was increased by climate warming (Zhou et al.,
2010). In our study, the lawn was irrigated before winter,
so no water stress was observed. The global warming
stimulated plant growth and increased the photosynthetic
capacity and GPP.

No significant ecosystem respiration difference was
found between the warming treatment and control. In
lawn, the biomass accumulation was moved away from
the ecosystem by grass mowing, which would decrease
the grass litter and soil labile carbon content (Luo et al.,
2009), this might be one of the reasons of no heating
effect on the ecosystem respiration. Bokhorst et al. (2010)
suggest that winter warming events do not affect fresh litter
decomposition in a sub-Arctic heath land. On the other
hand, the soil would undergo the froze-thaw cycle in later
winter, and induce more CO2 emission, but this would not
occur in heating treatment lawn. The Q10 was decreased
by heating treatment that would lead to the decrease of
ecosystem respiration.

4 Conclusions

The present study investigated the lawn NEE and its
response to climate warming during the transition period
from winter to spring. Lawn ecosystem provided a negative
feedback to climate warming. Lawn photosynthesis was
consistently stimulated by warming almost the whole
experiment period, Amax and α under the warming treat-
ment were about 2 times compared to the control. But
the ecosystem respiration had no significant difference in
response to heating treatment, which would be attributed
to less lawn litter and soil labile carbon content due to lawn
mowing. Heating treatment speeded up the lawn ecosystem
converting from a CO2 source to a CO2 sink in early spring
and lengthened the growing season of lawn ecosystem.
The daily NEE were negative under heating treatment in
winter, suggesting that the winter photosynthesis should
not be ignored, especially under climate warming. In urban
ecosystems, the compounding effects of management mea-
sures (irrigation, clipping, fertilization, etc.) and climate
change on ecosystem carbon cycle need more investigation
to provide more information for decision makers to achieve
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urban sustainable development.
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