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Abstract
A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with
acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational
costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that,
in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy
significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250–
300 m3/day (solid retention time (SRT), 13–15 days) was appropriate for the enhancement of phosphorus removal without excessive
sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of “111100100” ( “1”
represents activation and “0” represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared
with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction
of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the
optimization of process operation and control.

Key words: activated sludge model; cost-performance analysis; oxidation ditch; nutrient removal
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Introduction

Nowadays, environmental deterioration and energy short-
age have become two major challenges. Biological
wastewater treatment has been considered as the most im-
portant technology for water pollution control. However,
its high energy input, which contributes significantly to op-
erational costs, has become a big concern (Wesner, 1978).
Environmental engineers and plant managers have been
pursuing a plant design and operational strategy permitting
efficient pollutant removal with minimal cost (Middleton
and Lawrence, 1974). In the past decades, model-based
optimization has been employed as an important approach
to improve the process performance (Alex et al., 1999;
Vanhooren et al., 2002; Gernaey et al., 2002; Abusam et
al., 2002, 2004; Gernaey and Jørgensen, 2004; Benedetti
et al., 2005, 2006). Process models, such as the activated
sludge model (ASM) developed by the task group of the In-
ternational Water Association (IWA) (Henze et al., 2000),
have provided a promising tool for process analysis and

* Corresponding author. E-mail: yangmin@rcees.ac.cn

decision making. Since the 1990s, a series of benchmark
simulation models (BSM) including BSM1, BSM1 LT and
BSM2 (Copp, 2002; Rosen et al., 2004; Jeppsson et al.,
2006, 2007) have been proposed and applied for the evalu-
ation and optimization of operational strategies for various
biological wastewater treatment processes (Ghermandi et
al., 2005; Devisscher et al., 2006; Yamanaka et al., 2006;
Holenda et al., 2008; Machado et al., 2009; Benedetti et
al., 2010; Guerrero et al., 2011).

The BSM series models have adopted several key cri-
teria to evaluate the operational strategies, which include
performance indicators such as effluent quality and viola-
tion, and economic ones such as aeration energy, pumping
energy and sludge production (Copp, 2002). To evaluate
the performance and economic criteria at the same scale,
previous studies have proposed to convert the effluent
quality into monetary units in terms of fines (Vanrolleghem
et al., 1996; Steffens and Lant, 1999; Copp, 2002; Vanrol-
leghem and Gillot, 2002; Stare et al., 2007; Volcke et al.,
2007). However, another important performance indicator,
effluent violation, which is considered with a top priority
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for the plant operators, remains difficult to integrate into
operational costs.

In this study, the economic indicators including aeration
energy and sludge production were first normalized based
on their maximum values, and then combined with the
effluent violations to generate a unified non-dimensional
cost index (CI), as the criterion for the evaluation of
biological wastewater treatment processes. The ASM2d
model developed by the IWA (Henze et al., 2000) was
used to simulate the ammonium and phosphorus removal
in a full-scale oxidation ditch process for treating sewage.
The aeration energy cost, effluent violation and sludge
production of the process were evaluated by scenario
analysis based on the long-term dynamic simulations to
produce an optimal operational strategy. The proposed
approach, which integrates the performance and economic
indicators, will be useful for process optimization.

1 Materials and methods

1.1 Process layout of the plant

The full-scale sewage treatment plant studied consists
of one cyclone grit chamber, one anaerobic tank, one
oxidation ditch, and one sedimentation tank as illustrated
in Fig. 1. The capacity of the entire plant is 15000 m3/day,
and the ditch has an effective volume of 7500 m3 with
separated anoxic and aerated zones. The ditch is equipped
with rotating disks for aeration and underwater propellers
for driving the flow in the channel. The pH, dissolved
oxygen (DO) and oxidation-reduction potential (ORP) in
the effluent are monitored online. During the study period,
all of the 9 rotating disks were activated, and the DO
in the ditch effluent varied over a range of 0.3–1 mg/L.
Daily operational data from April to November 2010 were
used for modeling. Detailed operational data are shown in
Table 1. The discharge standards of ammonium (NH4

+-N)
and total phosphorus (TP) required for the plant were 5
mg/L and 1 mg/L, respectively.

Table 1 Operational data of the oxidation ditch process

Parameter Value Parameter Value
Influent Effluent

COD (mg/L) 154 ± 41 35 ± 12 Temp. (°C) 20 ± 4
SS (mg/L) 116 ± 70 8.1 ± 5.3 MLSS (g/L) 4.7 ± 1.4
NH4

+-N (mg/L) 34 ± 12 1.9 ± 3.0 MLVSS (g/L) 1.3 ± 0.5
TP (mg/L) 2.8 ± 0.9 1.2 ± 0.6 HRTOD (hr) 11.0 ± 8.6
pH 7.4 ± 0.1 7.2 ± 0.1 SRT (day) 24 ± 11

HRTOD: hydraulic retention time of the ditch, SRT: solid retention time.
Data are expressed as mean ± SD.

1.2 Simulation model

The oxidation ditch evaluated in this study was modeled as
a combination of an aerated and non-aerated compartment.
It is important to set up an appropriate hydraulic model for
the simulation of oxidation ditch processes. The tank-in-
series approach is one of the prevailing hydraulic models
to simulate the plug-flow behavior of oxidation ditch
processes (Abusam and Kessman, 1999; De Clerq et al.,
1999; Glover et al., 2006). In this study, the non-aerated
compartment of the ditch was modeled as a continuous
stirred tank reactor (CSTR), and the aerated one was
modeled as 12 CSTR units in series to represent the plug-
flow hydraulics. Considering that there is actually bacterial
activity in the sludge layer of the sedimentation tank, we
split the sedimentation tank into two compartments. The
settling compartment was set as a location for solid-liquid
separation, while the sludge zone compartment was set as a
virtual CSTR reactor to account for the possible biological
processes.

The ASM2d model developed by the IWA (Henze et al.,
2000), without the chemical precipitation of phosphorus,
was employed to simulate the biochemical reactions in
the process. The effluent from the grit chamber was ana-
lyzed and fractionated into model components according
to the physical-chemical method suggested by Stichting
Toegepast Onderzoek Waterbeheer (STOWA) (Roeleveld
and van Loosdrecht, 2002). The dynamic simulation was
performed using AQUASIM (Reichert, 1994, 1998) and
the model parameters were calibrated to fit the ammonium
and TP in the effluent. The dataset of 2010.4–2010.8 was
used for calibration and the dataset of 2010.9–2010.11 for

Anaerobic

Sludge zone

Anoxic Aerated

Outflow from

grit chamber 

Effluent

Excess 
Sludge

Internal circulation flow

Recycling sludge

Oxidation ditch

Sedimentation

tank

Fig. 1 Layout of the oxidation ditch process.
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validation of the model. Finally the calibrated model was
used for the evaluation of different operational strategies.
The simulation results of the calibrated model for ammo-
nium and phosphorus are shown in Fig. 2. The calibrated
model was able to fit the measured data well (Fig. S1).

1.3 Evaluation criteria

1.3.1 Performance and economical indicators
Indicators used for the evaluation of the oxidation ditch
process were selected by referring to the COST Simulation
Benchmark (Copp, 2002), which included aeration energy,
sludge production, and effluent violations of ammonium
and phosphorus. The effluent violations of ammonium
and phosphorus (EVN, % and EVP, %) were defined as
the percentage of the time that the effluent ammonium
and total phosphorus were above the discharge limits (5
mg/L and 1 mg/L respectively). The sludge production (SP,
kg/day) was defined to reflect the total sludge produced for
disposal:

SP = [∆M(TSS system) +M(TSSw)]/T (1)

where, ∆M (TSS system) is the change of sludge mass in
the reactors and settler during the evaluation period and
M(TSSw) is the discharged excess sludge mass and T is
the evaluation period (3 months):

∆M(TSS system) = M(TSS system)t0+T−M(TSS system)t0

(2)

M(TSS system) = M(TSS reactors) +M(TSS settler) (3)

M(TSSw) =
∫ t0+T

t0
XTSSw(t)Qw(t)dt (4)

where, XTSSw (g/L) is the concentration of total suspended
solid in the excess sludge, and Qw (m3/day) is the discharge
flow.

The aeration energy cost (AE, kWh/day) in the BSM
models was calculated for air diffusers (Copp, 2002; Jepps-
son, 2005). In present work, the oxidation ditch adopted
mechanical aerators for aeration instead. Therefore, the
equation suggested by Abusam et al. (2001) was used for
the calculation of aeration energy as follows:

AE =
1

T N

∫ t0+T

t0

∑
i

Fiki(C*
S −CL,i)dt (5)

where, F is the average daily aeration capacity relative to
the aerator full capacity (F = 1 in this study). k (m3/day)
is the aeration constant, k = KLa×V, and V (m3) is the
aeration volume. KLa (day−1) is the coefficient of overall
oxygen transfer rate. CS

∗ (mg/L) is the oxygen saturation
concentration. CL (mg/L) is the oxygen concentration. i is
the number of the aerated compartment. N (kgO2/kWh) is
the efficiency of the aerator.

1.3.2 Unified index
Effluent quality and operational costs are the key factors to
evaluate the efficiency of wastewater treatment processes.
To develop a unified index involving the operational costs
and effluent violation, the aeration energy and sludge
production indicators were normalized based on their
maximum values, respectively, and then integrated into the
non-dimensional CI. With the weighted sum of the effluent
violations of nitrogen and phosphorus, the CI index can be
calculated as Eq. (6):

CI = 2 × AE/(AEmax + AE)×
2 × SP/(SPmax + SP)×
(α × EVN + β × EVP)

(6)

where, α and β are the weight factors subject to α ≥ 0, β ≥
0, α + β = 1. In this study, we defined α = β = 0.5 to use the
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Fig. 2 Simulation results of NH4
+-N and TP by the calibrated model for the period of 80 days.
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average effluent violation of ammonium and phosphorus.
The AEmax and SPmax are the maximum capacity of the
aeration energy and sludge production, respectively.

The unified CI index was used to assess the cost of
different operational strategies for the process.

1.4 Scenario analysis

The cost-performance analysis and optimization of the
operational strategies based on the five evaluation criteria
were performed for the evaluation period of three months,
which included different aeration and sludge discharge
strategies (Table S1). The evaluated aeration strategies
are shown in Table 2, which consisted of the number
of activated aerators and their combination modes. The
distribution between the anoxic and aerobic volumes in the
ditch will vary with the change in the number of activated
aerators, and hence affect the performance of nitrogen and
phosphorus removal. Furthermore, different combinations
of aerators lead to spatial differences in the oxygen supply,
and thus influence the aerobic biochemical conversions.
In addition, different sludge discharge flows from 100 to
400 m3/day were evaluated based on the proposed criteria
(Table S2).

Table 2 Scenario settings of different aeration strategies

ID Nae Mode Vax/Vae

a0 9 111111111 1:2.3
a1 7 111111100 1:1.2
a2 5 111110000 1.7:1
a3 5 111101000 1.7:1
a4 5 111100100 1.7:1
a5 4 011100100 2.1:1
a6 4 111000100 2.1:1
a7 3 010100100 3.0:1
a8 3 101000100 3.0:1

Nae: the number of activated aerators. Mode: “1” represents the activation
of aerators and “0” represents the inactivation of aerators. Vax/Vae: the
ratio of unaerated to aerated volume in the ditch.

2 Results and discussion

2.1 Optimization of aeration strategy

Aeration strategies are crucial to the treatment efficiency
and operational cost. In the present study, the effect of the
number of activated aerators on the performance of ammo-
nium and phosphorus removal was investigated as shown
in Fig. 3. It was found that extensive aeration (baseline,
a0) could ensure a low ammonium violation (EVN < 2%),
but was detrimental for biological phosphorus removal
(EVP > 40%). Decreasing the number of running aerators
leads to the improvement of phosphorus removal perfor-
mance due to the reduced interference from nitrate on
phosphorus release (Henze et al., 2008), with the sacrifice
of ammonium removal due to the reduction of oxygen
supply. Consequently, proper aeration strategies are re-
quired to maintain a good balance between nitrification and
phosphorus removal. In addition, the number of activated
aerators determines the aeration energy input. Compared
with the baseline (all of the 9 aerators activated), up to
67.6% of aeration energy could be saved by activating only
3 rotating disks.

Variation of the unified index CI under different aeration
strategies is also presented in Fig. 3. The optimal CI can
be identified with the aeration strategies a4–a6, which
required activation of 4–5 aerators. It is interesting that
for a given number of activated aerators, the locations
of activated aerators could affect the performance sig-
nificantly. For example, aeration strategies a2–a4, which
employed 5 aerators in different modes, were remarkably
different in effluent violations and CI values. This result
was due to the DO distribution along the channel in the
ditch resulting from the different locations of the activated
aerators, which affected the spatial distribution of hydrol-
ysis, nitrification and denitrification kinetics, and hence
had a significant effect on the ammonium and phosphorus
removal performance. The effect of aeration mode on the
performance of an oxidation ditch was reported previously
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(Liu et al., 2007, 2008; Guo et al., 2012a, 2012b). Strategy
a4 appeared to be the most suitable option in terms of
minimal CI (0.131) with a violation of effluent ammonium
below 10%.

2.2 Optimization of sludge discharge strategy

It is known that the sludge discharge strategy, which is
directly related with the SRT, could affect not only the
ammonium and phosphorus removal but also the costs for
sludge treatment. The effect of different sludge discharge
strategies on process performance is shown in Fig. 4.
With the increase of sludge discharge flow from 100 to
400 m3/day, EVN increased from 0 to 24.2%, while EVP
decreased from 49.5% to 22.1%. A sludge discharge flow
of 300 m3/day (SRT of 13 day) permitted an effluent TP
violation of 27% while keeping a relatively low EVN
(below 10%). Further increasing the excess sludge flow to
350 m3/day (SRT < 11 day), however, could not improve
the phosphorus removal much, but lead to the deterioration
of nitrification performance (EVN > 10%) due to the
wash-out of biomass from the system (Henze et al., 2008)
(MLVSS < 1000 mg/L). Since phosphorus could be further
removed through subsequent chemical precipitation, it
is more important to control ammonium violation to a
low level. From the viewpoint of controlling ammonium
violation, the sludge discharge flow should be below 300
m3/day. As for the sludge production, in spite of the greatly
increased sludge discharge flow compared to the baseline

(189 ± 78 m3/day), the amount of sludge production had
no significant increment (< 5%) (Table S2).

The unified index CI for different sludge discharge
strategies is also shown in Fig. 4. The minimal CI (0.16)
was achieved at a sludge discharge flow of 250–300
m3/day (SRT of 13–15 days).

2.3 Optimization of the integrated control strategy

On the basis of scenario analysis, operational maps were
drawn (Fig. 5) to determine optimal operating points with
respect to the effluent violation and the unified index for
each combination of the aeration and sludge discharge
strategies. For strategies with an activated aerator number
of 3–5, those with the lowest CI values (a4, a6 and a8) were
selected for the analysis.

The effects of activated aerator number and sludge
discharge flow on the effluent ammonium and phosphorus
violations are shown in Fig. 5. At a fixed number of
activated aerators, it is necessary to decrease the sludge
discharge flow in order to prevent the ammonium vio-
lation from rising (Fig. 5a). When running 5 aerators,
for example, the sludge discharge flow should be below
200 m3/day to keep the EVN below 10%. Conversely,
increasing sludge discharge flow was required to keep a
low EVP for a given number of activated aerators (Fig. 5b).
Take 5 activated aerators for example, the sludge discharge
flow must be over 250 m3/day to keep the EVP below 20%.
Therefore, a compromise must be made to ensure that both
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the requirements for ammonium and phosphorus removal
are considered.

The operational map for CI is illustrated in Fig. 5c. It is
clear that the minimal CI (< 0.12) could be identified at the
activated aerator number of 4–5 and sludge discharge flow
of 150–200 m3/day. Since phosphorus could be further
removed by subsequent chemical precipitation, it is more
important to suppress effluent violation of ammonium
at a reasonable cost. Therefore, the optimal operational
strategy should be a combination of 5 activated aerators
with a sludge discharge flow of 200 m3/day, which permits
an EVN below 10% and EVP below 30%.

The performance of the proposed optimal strategy is
shown in Fig. 6 and Table S3, which employs 5 rotating
disks operated with the mode “111100100” for aeration
(a4) and the sludge discharge flow of 200 m3/day. Com-
pared with the current status (baseline), this strategy could
achieve effluent violation of ammonium and TP below
10% and 30%, respectively, with substantial reduction of
aeration energy cost (46%) and minimal increment of
sludge production (<2%). The unified index CI was also
improved. The main reason for the effluent ammonium
violations was the sudden increase of ammonium load as
shown in Fig. S2. Thus the effluent ammonium violation
could be reduced effectively by increasing the number of
activated aerators temporarily to cope with the increased
load.

3 Conclusions

A unified index was introduced by integrating operational
costs (aeration energy and sludge production) with effluent
violations as the criteria for the evaluation of the process
performance of a full-scale oxidation ditch process treating
sewage. Scenario analysis based on the ASM2d model
showed that a strategy employing 5 rotating disks operated
with the mode “111100100” and a sludge discharge flow
of 200 m3/day was optimal. Compared with the current
status, this strategy could achieve ammonium violation
below 10% and TP violation below 30% with substantial

reduction of aeration energy cost (46%) and minimal
increment of sludge production (<2%).
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Supplementary material

Table S1 Performance and economical indicators with different aeration strategies

ID EVN EVP SP (kg/day) AE (kWh/day)*

a0 1.1% 42.1% 1839.9 3954.3
a1 3.2% 40.0% 1843.3 2868.8
a2 45% 15.8% 1854.6 2057.6
a3 26% 26.3% 1850.5 2030.3
a4 7.0% 34.7% 1846.4 2130.9
a5 37% 22.1% 1852.1 1711.6
a6 35% 22.1% 1851.3 1713.5
a7 59% 13.7% 1855.4 1335.8
a8 55% 16.8% 1854.4 1337.2

EVN: effluent ammonium violation; EVP: effluent phosphorous violation; SP: sludge production; AE aeration energy cost. * Average value for the
evaluation period of three months.

Table S2 Performance and economical indicators with different sludge discharge strategies (s1-s7)

ID Qes (m3/day) SRT (day)* VSSOD (mg/L)* EVN EVP SP (kg/day) AE (kWh/day)*

Baseline 189* 24 1489 1.1% 42.1% 1839.9 3954.3
s1 100 38 1946 0% 49.5% 1694.1 3954.7
s2 150 25 1594 1.1% 41.1% 1789.4 3954.4
s3 200 19 1351 1.1% 38.9% 1859.8 3954.2
s4 250 15 1176 2.1% 32.6% 1915.6 3953.9
s5 300 13 1044 6.3% 27.4% 1961.1 3953.5
s6 350 11 941 11.6% 24.2% 2000.1 3953.1
s7 400 10 858 24.2% 22.1% 2033.1 3952.8

Qes: excess sludge discharge. * Average value for the evaluation period of three months.

Table S3 Comparison of different operational strategies

Baseline Optimum

Number of activated aerators 9 5
SRT (day) 24 ± 11 19 ± 3
Qes (m3/day) 189* 200
NH4

+-N (mg/L)* 1.24 2.96
EVN 1.1% 9.5%
TP (mg/L)* 1.13 0.85
EVP 42.1% 26.2%
SP (kg/day) 1839.9 1864.7
AE (kWh/day)* 3954.3 2130.5
CI 0.193 0.116

* Average value for the evaluation period of three months.
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