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Montserrat Filella, Juan Carlos Rodrı́guez-Murillo, Francçis Quentel · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 114

Atmospheric environment
Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons

Jitong Wang, Huichao Chen, Huanhuan Zhou, Xiaojun Liu, Wenming Qiao, Donghui Long, Licheng Ling · · · · · · · · · · · · · · · · · · · · · 124
Simultaneous monitoring of PCB profiles in the urban air of Dalian, China with active and passive samplings

Qian Xu, Xiuhua Zhu, Bernhard Henkelmann, Karl-Werner Schramm, Jiping Chen, Yuwen Ni, Wei Wang,
Gerd Pfister, Jun Mu, Songtao Qin, Yan Li · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 133

Terrestrial environment
Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China

Gang Li, Luis Nunes, Yijie Wang, Paul N. Williams, Maozhong Zheng, Qiufang Zhang, Yongguan Zhu · · · · · · · · · · · · · · · · · · · · · · · · 144
Environmental biology
Effects of solution conditions on the physicochemical properties of stratification components of extracellular

polymeric substances in anaerobic digested sludge
Dongqin Yuan, Yili Wang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 155



Environmental health and toxicology
In vitro cytotoxicity of CdSe/ZnS quantum dots with different surface coatings to human keratinocytes HaCaT cells

Kavitha Pathakoti, Huey-Min Hwang, Hong Xu, Zoraida P. Aguilar, Andrew Wang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 163
Effect of heavy metals and phenol on bacterial decolourisation and COD reduction of sucrose-aspartic acid Maillard product

Sangeeta Yadav, Ram Chandra · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 172
Environmental catalysis and materials
Mesoporous silicas synthesis and application for lignin peroxidase immobilization by covalent binding method

Zunfang Hu, Longqian Xu, Xianghua Wen· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 181
Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin

Qianqian Shi, Aimin Li, Zhaolian Zhu, Bing Liu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 188
Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents:

Kinetics, isotherms and thermodynamics
Fei Yu, Yanqing Wu, Jie Ma, Chi Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 195

Environmental analytical methods
Application of comprehensive two-dimensional gas chromatography with mass spectrometric detection for the analysis of

selected drug residues in wastewater and surface water
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Abstract
The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular
polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by
the cation exchange resin method. Another EPS extraction method, the centrifugation and sonication technique was employed to stratify
the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic
digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances
were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the
corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of
protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several
EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide
ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide
ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed
a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for
LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant
without charge reversal. In addition, as the temperature increased (< 40°C), the apparent viscosity of the EPS decreased monotonically
and then gradually became stable between 40 and 60°C.

Key words: anaerobic digested sludge; extracellular polymeric substances; stratification components; physicochemical properties;
solution conditions
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Introduction

In biological wastewater treatment systems, extracellular
polymeric substances (EPS) are high-molecular weight
compounds originating from bacterial secretion, cell lysis
and hydrolysis, leakage of exocellular constituents, and
adsorbed organic matter from the surrounding wastewater
(Urbain et al., 1993; Frølund et al., 1996; Wingender et
al., 1999). In recent years, the stratification components
of EPS have generated great research interest. Figure 1
presents the evolution of the understanding of the strat-
ification components of the EPS. Nielsen et al. (1997)
subdivided EPS into bound and soluble fractions. Ac-
cording to Rosenberger and Krume (2003), EPS can be

* Corresponding author. E-mail: wangyilimail@126.com

divided into extractable EPS and soluble EPS (also called
slime polymers). Lansky (2003) thought that EPS could
be differentiated into slime and sheath by centrifugation.
Ramesh et al. (2006) and Li and Yang (2007) observed that
bound EPS exhibit a dynamic double-layered structure,
composed of loosely bound EPS (LB-EPS) and tightly
bound EPS (TB-EPS). After EPS are extracted, the resid-
ual cells are recognized as the pellet (Yu et al., 2008a).
Hence, on the basis of the aforementioned findings, Yu
et al. (2008b) further separated EPS into slime, LB-EPS,
and TB-EPS. The EPS fractions and the pellet together
comprise the multi-fractioned structure of the sludge from
the outer surfaces to the cores of the granules.

Over the past few decades, numerous studies have
indicated that EPS have a great influence on the biofloccu-
lation, settling, and dewatering of sludge (Jia et al., 1996;

http://www.jesc.ac.cn


jes
c.a

c.c
n

156 Journal of Environmental Sciences 2013, 25(1) 155–162 / Dongqin Yuan et al. Vol. 25

Nielsen et al., 1997

Ramesh et al., 2006  

Li and Yang, 2007

Rosenberger and Krume, 2003 Lansky, 2003 
Yu et al., 2008b 

Tightly bound-

EPS

 

 

 

Sheath (firmly bound EPS)

Slime (loosely bound EPS)

 

 

 

Extractable EPS

 

 

EPS

 

Soluble EPS Slime EPS (slime)

Bound EPS

 

 

Slime

Loosely bound-EPS

Tightly bound-EPS

 

Loosely bound-

EPS

Fig. 1 Evolution of the understanding of the stratification components of EPS.

Higgins and Novak, 1997; Houghton et al., 2001; Cetin
and Erdincler, 2004). Furthermore, considerable research
has been conducted on the effects of operating conditions
on components, contents, and physicochemical properties
of EPS in batch reactors for anaerobic digestion (Yu et al.,
2008a; Ramesh et al., 2006; Nielsen et al., 1996; Houghton
and Stephenson, 2002). However, few studies have focused
on the variations in physicochemical properties of EPS
with solution conditions. Liao et al. (2002) found that the
major source of surface charge of the sludge came from
EPS. Extremes of pH (acidity or alkalinity) can make
the proteins of EPS lose their natural shapes (Watson et
al., 1987). The different functional groups of EPS were
found to remain protonated at pH above the isoelectric
point after being in the deprotonated state at pH below
the isoelectric point (Braissant et al., 2007), which in turn
led to the decrease of the surface charge (Zheng et al.,
2007) and Zeta potentials (Wang et al., 2012) of EPS
with increasing pH. Accordingly, the Zeta potentials of
the sludge became more negative (Liu et al., 2010) and
other sludge characteristics changed as well (Zheng et
al., 2007). Wang et al. (2012) found that the EPS from
Bacillus megaterium TF10 presented a denser and compact
structure at lower pH, and released chains at higher pH.
The highest flocculation efficiency was achieved near
the isoelectric point. They also recognized that complex
and subtle intra/inter-actions among the EPS functional
groups, such as hydrophobicity, intermolecular hydrogen
bonds and coulombic forces, were responsible for the pH
dependence of flocculation. Their work gives insight into
the observation that microbial flocculation is dependent
heavily on pH in solution. In addition, ionic strength can
greatly affect the Zeta potentials (Liu et al., 2010) and the

stability of sludge (Zita and Hermansson, 1994). Hence,
solution conditions are the main contributors to changes
in the physicochemical properties of EPS and the sludge
characteristics. Nevertheless, the information regarding
the effects of solution conditions on the physicochemical
properties of EPS is still insufficient. Therefore, this study
attempts to investigate the effects of solution conditions
such as pH, ionic strength, and temperature on the physico-
chemical properties of different EPS in anaerobic digested
sludge. Variations in zeta potentials, conductivity, and
apparent viscosity of these EPS were identified. The results
are expected to provide preliminary data on the effects of
EPS on the physicochemical properties of sludge.

1 Materials and methods

1.1 Sludge samples

The anaerobic digested sludge samples were collected
from a municipal wastewater treatment plant in Beijing,
China. The collected samples were transported to the
laboratory within 2 hr after sampling and subsequently
filtered through a 1.2-mm sieve. Filtered samples were
then stored at 4°C. Table 1 shows the characteristics of
two sludge samples collected at two different times. As
indicated in Table 1, the total suspended solid (TSS) or
volatile suspended solid (VSS) contents of sample #1 were
about twice those of sample #2; the chemical oxygen
demand (COD), Zeta potential, and apparent viscosity of
sample #1 were also higher than those of sample #2. Other
characteristics, such as pH, conductivity, and soluble COD
(SCOD), were lower in sample #1 than in sample #2. All
experiments were carried out within a week after sampling.

Table 1 Characteristics of the anaerobic digested sludge samples

Sample pH Conductivity TSS VSS VSS/TSS COD SCOD Zeta Apparent
(mS/cm) (g/L) (g/L) (%) (mg/L) (mg/L) potential viscosity

(mV) (mPa·s)

#1 6.90 ± 0.01 2.19 ± 0.03 23.32 ± 0.31 14.27 ± 0.18 61.20 ± 0.70 30124.0 ± 4.3 98.9 ± 0.6 –13.8 ± 0.6 1.74 ± 0.01
#2 7.12 ± 0.02 4.75 ± 0.01 12.00 ± 0.18 6.55 ± 0.03 54.60 ± 1.05 8964.0 ± 8.5 210.4 ± 0.7 –17.2 ± 0.7 1.25 ± 0.01
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Fig. 2 EPS extraction protocols: (a) total EPS; (b) different EPS
fractions. CER: cation exchange resin.

1.2 EPS extraction

Figure 2 displays the EPS extraction protocols for sludge.
As indicated in Fig. 2a, the total EPS were extracted
using the cation exchange resin technique according to the
procedure of Ni et al. (2009). The total EPS were dissolved
in 100 mmol/L NaCl solution. In Fig. 2b, the stratified
EPS of sludge samples were extracted by centrifugation
and sonication (Yu et al., 2007) in turn. The slime included
the organic matter obtained from the supernatant after low-
speed centrifugation. The LB-EPS and TB-EPS of the
sludge samples were dissolved in a pH 7 buffer solution
consisting of Na3PO4, NaH2PO4, NaCl, and KCl (molar
ration 2:4:9:1). The conductivities of the buffers were
adjusted with distilled water to match those of the sludge
samples listed in Table 1.

1.3 EPS and sludge characterization

Proteins and humic-like substances were determined using
the modified Lowry method (Frølund et al., 1995), with
bovine serum albumin (Beijing Aoboxing Biotechnology
Co., Ltd., China) and humic acid (Sigma, America) as stan-

dards, respectively. Polysaccharides were measured using
the anthrone method (Gaudy, 1962), with glucose as the
standard. DNA was determined using the diphenylamine
citric method (Sun et al., 1999) with 2-deoxy-D-ribose
(Beijing Ruibo Bitechnology Co., Ltd., China) as the
standard. The sum of the amounts of total proteins, humic-
like substances, polysaccharides, and DNA was considered
representative of the total amount of EPS.

COD and SCOD analyses were conducted using a COD
expedited testing apparatus (HATO CTL-12, Huatong En-
vironmental Protecting Instruments Co., Ltd., Chengde,
China). The pH was obtained using a pH meter (PB-
10, Sartorius Stedim Biotech Co., Ltd., Beijing, China).
Conductivity was determined using a conductivity meter
(EC215, Beijing Kanggaote Science and Technology Co.,
Ltd., China).

The Zeta potential was measured with a Malvern in-
strument, using a Zetasizer Nano Z system (Malvern Co.,
UK). The apparent viscosity of the sludge mixture and
the EPS was measured using a rotating torque cylinder
(ULA#0). The apparent viscosity was measured at a shear
rate of 60/sec to keep samples in suspension for 5 min;
the temperature was maintained at about 20°C. Sludge
samples were diluted 50 times with distilled water to
measure the Zeta potential and apparent viscosity. The
hydrophobicity of EPS was evaluated according to the
method reported by Jorand et al. (1998) and expressed as
the mass proportion of the hydrophobic part to the cor-
responding total components (proteins, polysaccharides,
humic-like substances, DNA) in the extracted EPS.

Other sludge parameters, including TSS and VSS, were
analyzed following standard methods (APHA et al., 1998).
All chemical analyses were carried out in duplicate using
chemicals of analytical grade.

1.4 Effect of solution conditions on physicochemical
properties of EPS

The pH or ionic strength was adjusted to investigate the
effects on the Zeta potentials, conductivity, and apparent
viscosity of EPS solutions. The pH of EPS solutions was
varied from 1 to 12 by adding either HCl or NaOH, and
NaCl was added to the EPS solutions to control their ionic
strength. Temperature was varied from about 20 to 60°C to
study the effect of temperature on the apparent viscosity of
EPS solutions.

2 Results and discussion

2.1 Contents of chemical components in different EPS
fractions

Table 2 illustrates the different chemical components in
EPS from the two sludge samples. It was observed that
the DNA accounted for about 7% and 5% of the total EPS
in the samples. Liao et al. (2001) demonstrated that DNA
measurement can be used to determine whether or not bac-
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terial cells are ruptured during the EPS extraction process
and further showed that such cells are not destroyed when
the proportion of DNA in the extracted EPS ranges from
2% to 15% of the total EPS. Therefore, the aforementioned
DNA ratios of about 7% and 5% indicate that the cation
exchange resin technique did not lead to cell rupture during
the total EPS extraction. The ratios of proteins to poly-
saccharide for the two sludge samples were 3.7 and 2.7.
Moreover, the weight ratios of the total EPS to the TSS
of these two sludge samples were approximately 9.3% and
13.9%, similar to a report by Karapanagiotis et al. (1989).

In the different EPS fractions extracted from these
two sludge samples, proteins and polysaccharides were
dispersed evenly. humic-like substance were mainly found
in the slime fraction, and secondly in the TB-EPS fraction.
The corresponding weight ratios of humic-like substances
to slime were 68.3% and 66.4% for both sludge samples,
respectively; while such ratios of humic-like substances
to TB-EPS were 21.5% and 18.6%. Compared with other
fractions, the LB-EPS fraction had the lowest concentra-
tion of proteins, polysaccharides, humic-like substances,
and DNA. The humic-like substances contents were higher
in the slime than in other components. For both the
LB-EPS and TB-EPS, protein was the predominant com-
ponent, at quantities of 65.6% to 54.3%, followed by
polysaccharide at 15.9% to 21.6%, and humic-like sub-
stances accounted for a small proportion of EPS.

The total EPS content was not equal to the sum of the
slime, LB-EPS, and TB-EPS contents. Such a discrepancy
may probably be attributed to differences in the EPS
extraction methods employed. As listed in Table 2, protein,
polysaccharide, and humic-like substances were the major
constituents of EPS.

2.2 Hydrophobicity of EPS

The presence of hydrophilic and hydrophobic groups in
the EPS molecules indicates that the EPS are amphiphilic.
The hydrophobicity of the total EPS and EPS fractions
in sample #1 is shown in Fig. 3. For the total EPS,
the hydrophobicity values of protein and DNA fractions
were 73% and 55%, respectively. In the different EPS
fractions, the hydrophobicity values were all below 50%
for the slime, while a hydrophobic part of approximately
71% or 1% was observed in the corresponding protein or
polysaccharide component of the TB-EPS, respectively.
Variations in the results obtained may be due to the
different distributions of chemical components across the
three EPS fractions.

Total EPS Slime LB-EPS TB-EPS
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Fig. 3 Hydrophobicity of EPS.

As indicated in Fig. 3, compared with other components
of the same EPS fractions except the LB-EPS, protein
showed the highest hydrophobicity, whereas polysaccha-
ride presented the lowest hydrophobicity compared to the
other chemical components of all tested EPS. These results
suggest that the hydrophobic chemical components in EPS
were primarily composed of protein and DNA, and that
the hydrophilic ones mainly consisted of polysaccharide,
which is more or less in agreement with a report by
Jorand et al. (1998). Their previous study revealed that
the hydrophobic part accounted for about 7% in the corre-
sponding EPS component and mainly consisted of protein,
whereas the hydrophilic part mainly consisted of polysac-
charide. Dignac et al. (1998) found that approximately
24% of the amino acids in EPS were hydrophobic. How-
ever, some researchers have found that the alkyl groups
in polysaccharide have some hydrophobicity (Singh et al.,
1987). Long et al. (2008) indicated that the TB-EPS had a
higher hydrophobicity than the LB-EPS. Variations among
reports could be partly due to differences in the sludge
types and EPS extraction methods applied.

2.3 Effect of solution conditions on physicochemical
properties of EPS

2.3.1 Effect of pH and ionic strength on Zeta potentials
of EPS

Figure 4a demonstrates the effects of pH on the Zeta
potentials of EPS in sample #1. The EPS extracted from
the original sludge were negatively charged under neutral
conditions, and the corresponding Zeta potentials were
–19.6 mV for total EPS, –15.1 mV for slime, –22.8 mV
for LB-EPS, and –20.1 mV for TB-EPS.

As seen in Fig. 4a, the Zeta potentials of EPS solutions

Table 2 Contents of different EPS fractions

Sample #1 Sample #2

Total EPS Slime LB-EPS TB-EPS Total EPS Slime LB-EPS TB-EPS

Protein (mg/g VSS) 91.31 ± 2.06 16.99 ± 1.73 16.65 ± 1.05 20.42 ± 1.11 126.08 ± 4.78 34.19 ± 2.34 33.56 ± 1.85 45.42 ±2.15
Polysaccharide (mg/g VSS) 24.71 ± 0.12 13.84 ± 0.19 4.04 ± 0.11 8.14 ± 0.21 46.81 ± 2.78 20.41 ± 0.61 17.18 ± 0.36 26.04 ± 0.24
Humic-like substances (mg/g VSS) 24.69 ± 2.40 19.42 ± 1.11 2.90 ± 0.21 6.11 ± 0.34 67.89 ± 3.54 36.78 ± 1.09 8.26 ± 0.36 10.32 ± 0.11
DNA (mg/g VSS) 11.10 ± 1.03 2.61 ± 0.00 1.79 ± 0.23 2.94 ± 0.04 13.63 ± 2.35 5.30 ± 0.35 1.55 ± 0.12 2.36 ± 0.12
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Fig. 4 Effect of pH (a) and ionic strength (b) on Zeta potentials of EPS.

decreased with increasing pH, and the corresponding iso-
electric point values were in the range of acidic pH values;
the corresponding order was pHtotal EPS (2.8) > pHLB-EPS
(2.7) > pHTB-EPS (2.6) > pHslime (2.2), consistent with
the order of protein/polysaccharide ratios of EPS in the
original sludge: total EPS (3.7) > LB-EPS (2.5) > TB-
EPS (2.1) > slime (1.2). EPS carried increasingly positive
charges less than 11 mV as pH decreased below the
isoelectric point. In contrast, the Zeta potential values were
negative and the maximum absolute value approached 37
mV at pH values above the isoelectric point. Tenney and
Stumm (1965) reported that the isoelectric point (pH) of
bacteria ranged from 2 to 4. The isoelectric point (pH)
values obtained in this study were within this reported
range. However, in contrast to our findings, Liu et al.
(2010) observed that the isoelectric point (pH) values of
the LB-EPS and TB-EPS contained in anaerobic sludge
were 2.02 and 2.00, respectively.

Moreover, the Zeta potential values showed significant
decreases for the total EPS and EPS fractions as pH values
increased from 2 to 3 or from 10 to 12, but they changed
only slightly at other pH values. When the pH was over
3.0, the LB-EPS showed the lowest Zeta potential values
whereas the slime presented the highest.

The effects of ionic strength on the Zeta potentials of

EPS in sample #2 were determined and are presented
in Fig. 4b, where the horizontal ordinate is expressed
as the concentration of NaCl which was added in the
EPS solutions for ionic strength adjustment. The Zeta
potentials of EPS in the raw sludge were –16.7 mV for
total EPS, –15.5 mV for slime, –17.3 mV for LB-EPS, and
–16.9 mV for TB-EPS. The Zeta potentials became less
negative with increasing ionic strength. A sharp increase
was observed when the ionic strength was increased to 10
mmol/L. Afterwards, as more and more NaCl was added
to the system, the Zeta potentials of the total EPS began
to produce fewer responses and changed minimally; for
the EPS fractions, the rate of increase also slowed down.
These findings are consistent with the compression of the
electrical double layer of Na+, that is, by increasing the
ionic strength of EPS samples, the Zeta potentials of the
system first increase and then remain stable without charge
reversal after exceeding a certain concentration.

The order of Zeta potentials of all EPS samples of
the same ionic strength was total EPS > LB-EPS >
TB-EPS > slime, and the order of the corresponding
protein/polysaccharide ratios was total EPS (2.7) > LB-
EPS (2.0) > TB-EPS (1.8) > slime (1.7), which was
consistent with the former. These findings indicate that
the greater the protein/polysaccharide ratio of EPS is, the
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Fig. 5 Effect of pH (a) and ionic strength (b) on the conductivity of EPS.
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greater the Zeta potential would be.

2.3.2 Effect of pH and ionic strength on conductivity of
EPS

Variations in the conductivity of EPS solutions in sample
#1 with varying pH are given in Fig. 5a. The total EPS
containing conducting substances was dissolved in 100
mmol/L NaCl solution, and the conductivity of the total
EPS was greater than that of the 100 mmol/L NaCl
solution. As pH increased from 1 to 3, the conductivity
of the total EPS fell drastically, which may be attributed to
the sharp decrease in H+ concentration. The conductivity
remained almost unchanged with further increases in pH.
In the pH range from 10 to 12, the increase in conductivity
observed is likely due to the increase in OH− concentra-
tion. Conductivities of the EPS fractions showed a trend
similar to that observed in the total EPS. In addition, the
EPS fractions showed slightly higher conductivity than the
buffer solution.

The conductivity of the total EPS in sample #2 and 100
mmol/L NaCl solution was found to increase linearly with
increasing ionic strength (Fig. 5b). The variation pattern
of the conductivity of the EPS fractions was similar to that
achieved in the total EPS. The similarity of conductivity
values between total EPS and its solvent-NaCl solution or
EPS fractions and their solvent-buffer solutions indicates
that addition of extra solvents mainly contributes to the
conductivity of the corresponding solutions.

2.3.3 Effects of pH, ionic strength, and temperature on
apparent viscosity

The apparent viscosity of EPS solutions in sample #1
showed no significant change around values of approxi-
mately 1.20 mPa·s under varying pH and ionic strength.

The apparent viscosity of EPS in sample #1 was great-
ly influenced by temperature changes. These results are
plotted in Fig. 6. The apparent viscosity of EPS declined
monotonically as the temperature increased from 20 to
40°C and then reached near-constant levels at temperatures
ranging from 40 to 60°C. It has been reported that at
temperatures of 50 to 70°C and 70 to 95°C, DNA and
protein started to rupture, respectively (Häner et al., 1994).
However, in this study the DNA accounted for little and
the operation temperature ranged from 20 to 60°C, so the
protein of EPS was not denatured and the temperature
reached in this work did not severely affect the components
of EPS. Generally, as the temperature increased, molecular
and molecular chain movements occurred, leading to the
decreased twisting of chains, increased intermolecular
distances, and reductions in apparent viscosity. Although
the thermal motion was intensified, the structure and dis-
tances of the molecules remained stable and the apparent
viscosity of the system gradually tended to level off when
the system was heated to higher temperatures. The total
EPS had the highest apparent viscosity, followed by the
slime, LB-EPS, and TB-EPS at temperatures ranging from
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Fig. 6 Effect of temperature on the apparent viscosity of EPS.

20 to 40°C. Variations in the apparent viscosity of the
EPS solutions are attributed to many factors, such as the
concentration of macromolecular substances, molecular
structure, and temperature (Hoffman, 1992).

3 Conclusions

Protein and polysaccharide were distributed uniformly
in the three EPS fractions. Humic-like substances were
mainly dispersed in the slime fraction, followed by the TB-
EPS, and found least in the LB-EPS fraction.

All Zeta potentials of EPS decreased with increasing
pH. The effects of ionic strength on Zeta potentials of the
EPS are consistent with the compression of the electrical
double layer. The greater the protein/polysaccharide ratio
of EPS, the greater the Zeta potential and the higher the
isoelectric point value were. The addition of H+/OH− and
extra solvents may mainly be responsible for the variations
in the conductivity of EPS with pH and ionic strength,
respectively.

Temperatures ranging from 20 to 40°C had a significant
influence on the apparent viscosity of EPS, and the ranking
order of the apparent viscosity of EPS was total EPS >
slime > LB-EPS > TB-EPS.
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