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Abstract
As an important precursor of hydroxyl radical, nitrous acid (HONO) plays a key role in the chemistry of the lower atmosphere.
Recent atmospheric measurements and model calculations show strong enhancement for HONO formation during daytime, while
they are inconsistent with the known sources in the atmosphere, suggesting that current models are lacking important sources for
HONO. In this article, heterogeneous photochemical reactions of nitric acid/nitrate anion and nitrogen oxide on various aerosols were
reviewed and their potential contribution to HONO formation was also discussed. It is demonstrated that HONO can be formed by
photochemical reaction on surfaces with deposited HNO3, by photocatalytic reaction of NO2 on TiO2 or TiO2-containing materials, and
by photochemical reaction of NO2 on soot, humic acids or other photosensitized organic surfaces. Although significant uncertainties still
exist in the exact mechanisms and the yield of HONO, these additional sources might explain daytime observations in the atmosphere.

Key words: atmospheric particulate matter; NO2; HONO; heterogeneous photochemical reaction

DOI: 10.1016/S1001-0742(12)60093-X

Introduction

Hydroxyl radical (OH) is the primary oxidant in the
atmosphere, responsible for the oxidation and removal of
most natural and anthropogenic trace gases. In addition,
the chemistry of the OH radical leads to the formation of
harmful photo-oxidants, such as ozone and peroxyacetyl
nitrate (PAN) (Kleffmann, 2007). Therefore, the formation
of nitrous acid (HONO) in the atmosphere is of consid-
erable interest since HONO is a major precursor of OH.
Reaction (1) describes the main formation pathway of OH
in the lower layer of the troposphere (Harrison et al., 1996;
Alicke et al., 2002, 2003; Zhou et al., 2002a; Aumont et
al., 2003; Ren et al., 2003; Vogel et al., 2003; Kleffmann et
al., 2005; Acker et al., 2006).

HONO + hv (λ < 400 nm) −→ NO + OH (1)

This reaction contributes to 60% of the integrated OH
yield (Alicke et al., 2002, 2003; Zhou et al., 2002a;
Aumont et al., 2003; Ren et al., 2003; Vogel et al., 2003;
Kleffmann et al., 2005). Furthermore, HONO is an indoor
toxic chemical. It can also react with amines leading
to nitrosamines, which are known to be mutagenic and
carcinogenic (Pitts et al., 1978). Therefore, it is essential

* Corresponding author. E-mail: honghe@rcees.ac.cn

to understand and identify the sources of tropospheric
HONO.

However, the sources of HONO in the troposphere are
not yet well understood. It has been generally accepted
that HONO is formed predominantly by the heterogeneous
reduction of NO2 during nighttime, mainly through the
hydrolysis reaction (Finlayson-Pitts et al., 2003; Ramazan
et al., 2006, and references therein):

2NO2 + H2O
Surface−−−−−→ HONO + HNO3 (2)

This reaction was discussed in detail in a review article
of Finlayson-Pitts et al. (2003). It should be pointed out
that Reaction (2) is not photoenhanced (Ramazan et al.,
2004; George et al., 2005; Rohrer et al., 2005). The
heterogeneous reaction of NO2 on soot aerosol leading
to the formation of HONO has attracted attention as a
possible nighttime source of nitrous acid (Aumont et al.,
1999), whereas the soot surface for this reaction may
be rapidly deactivated via consumption of the reactive
species in the dark. On the other hand, Su et al. (2011)
found that the release of HONO from soil may also be
important in the natural environment. Field measurements
and model calculations (Staffelbach et al., 1997; Zhou et
al., 2001, 2002a, 2003; Honrath et al., 2002; Kleffmann
et al., 2003, 2005; Ren et al., 2003; Vogel et al., 2003;
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Acker et al., 2006) showed a strong enhancement for the
formation of HONO during daytime (60 times higher than
the nighttime sources (Kleffmann et al., 2005)). Zhou et
al. (2011) found that the concentration of HONO also
exhibited a significant diurnal variation pattern, with a
daytime maximum of 70 pptv around noontime and a
minimum of around 20 pptv around the time of sunset
on forest canopies at the University of Michigan Biolog-
ical Station. Unfortunately, direct emissions, gas phase
formation as well as the sources mentioned above cannot
explain the enhancement of HONO during daytime. Thus,
the role of heterogeneous photochemical reactions should
be considered. This article reviews the recent progress
in the heterogeneous photochemical reactions of nitric
acid/nitrate anion and nitrogen oxide on various aerosols.
The potential role for these reactions in the source of
HONO is discussed.

1 Photochemical reactions on inorganic
aerosol

In the past 30 years, heterogeneous reactions of total
reactive nitrogen (NOy) on mineral dust have been focused
mainly on the nighttime chemistry. Usher et al. (2003)
and Ma et al. (2011a) have reviewed the reaction mech-
anism and kinetics for this reaction system. It was well
recognized that adsorbed nitrate, nitrate coatings, and deli-
quesced nitrate layers can be formed on the surface of dust
particles by the heterogeneous reactions of gas-phase NO2
and HNO3 with mineral dust. These processes are therefore
considered as a sink for NO2 and HNO3 in the troposphere.
Additionally, the heterogeneous photochemistry of these
adsorbed species in the daytime becomes the concern
of atmospheric scientists because these photochemical
processes might generate other gaseous products.

1.1 Photolysis of adsorbed HNO3/nitrate

HNO3 deposited on ground surfaces or glass surfaces may
undergo effective photolysis to form HONO and NOx, and
this reaction is 1–2 orders of magnitude faster than that
in the gas phase and aqueous phase (Zhou et al., 2002b,
2003). The reaction proceeds via the following Eqs. (3)–
(5):

HNO3(ads) + hv −→ [HNO3]∗(ads) (3)

[HNO3]∗(ads) −→ HNO2(ads) + O
(

3P
)

(ads)
(4)

[HNO3]∗(ads) −→ NO2(ads) + OH(ads) (5)

Under humid conditions, the NO2(ads) produced on
the surface may further react with H2O(ads) to produce
HONO(ads), which then can be released into the gas phase
through Reaction (2). Modeling studies also suggested that
HNO3 photolysis was important for HONO production
during the 2001 Northeast Oxidant and Particle Study
(Sarwar et al., 2008). The heterogeneous photolysis of

HNO3 would supply the atmosphere with a new source of
photochemically reactive nitrogen species, i.e., HONO and
NOx, and would thus significantly impact the chemistry
of the remote low-NOx atmospheric boundary layer by
altering the radical pool, as illustrated in Fig. 1.

Ramazan et al. (2004) investigated the effect of 320–400
nm radiation on HONO formation during heterogeneous
NO2 hydrolysis in a borosilicate glass cell at 296 K.
It was found that heterogeneous hydrolysis of NO2 to
form HNO3 is not photoenhanced. However, there is clear
evidence in their experiments for the generation of gas
phase HONO by photolysis of adsorbed HNO3 formed
by the heterogeneous hydrolysis of NO2 (Reaction (2)).
Adsorbed HNO3 formed during the hydrolysis reaction
will likely be combined with water (HNO3·H2O(ads)) on
the borosilicate glass surface through hydrogen bonding
(Staikova and Donaldson, 2001; McCurdy et al., 2002;
Escribano et al., 2003; Fernández et al., 2003). Then,
photolysis of HNO3·H2O(ads) generates HONO and H2O2,
which is energetically possible with wavelengths of light
below 710 nm (Ramazan et al., 2006):

HNO3·H2O(ads)+hv (λ < 710 nm) −→ HONO(ads)+H2O2(ads)

(6)

The fate of the adsorbed HONO will depend in large part
on the water vapor concentration, as shown in Reaction
(7), in which HONO is released to the gas phase through
a competitive adsorption process (Syomin and Finlayson-
Pitts, 2003):

HONO(ads) + H2O(g) −→ HONO(g) + H2O(ads) (7)

As the relative humidity (RH) is lowered, the adsorbed
HONO increasingly reacts with other species such as
adsorbed nitric acid and/or its complex to form NO2 (the

Air

Interface

Surface

Fig. 1 Effects of the photolytic remobilization of HNO3 (“re-NOx-
ification”) on ground surfaces on the chemistry of the overlying
atmosphere. Solid arrows are processes responsible for surface HNO3
remobilization, dashed arrows indicate removal of oxidized nitrogen from
the atmosphere to ground surfaces by deposition, and dotted arrows are
gas-phase reactions leading to formation of O3 and OH radicals (in
circles) (Zhou et al., 2003).
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reverse of Reaction (2)):

HONO(ads) + HNO3(ads) −→ 2NO2 + H2O (8)

It was also found that HONO generation from the
photolysis of HNO3 on glass surfaces requires the presence
of water, but the production rate of HONO is relatively
insensitive to RH between 20% and 80% RH (Zhou et al.,
2003). This can be explained by the fact that high RH is
favorable to the desorption of HONO(ads) to the gas phase
(Reaction (7)), while it is unfavorable to the formation of
HNO3·H2O(ads) (Dubowski et al., 2004).

Several papers have found that surface nitrate can be
formed on Al2O3 through heterogeneous reactions with
NOx and HNO3, photolysis of adsorbed nitrate yields only
NO2, NO and N2O (Schuttlefield et al., 2008; Rubas-
inghege and Grassian, 2009; Chen et al., 2011). However,
the formation of adsorbed HNO3 on SiO2 was observed
when gaseous NOx reacts with SiO2 (Goodman et al.,
1999; Liu et al., 2012; Ma et al., 2011b). Considering the
abundance of SiO2 (approximately 60%) in mineral dust
(Usher et al., 2003), therefore, the photolysis of adsorbed
nitric acid on mineral dust or glass surfaces may be a
source of HONO in the atmosphere. Additionally, field
campaigns found HONO was produced by the photolysis
of NO3

− in the snowpack and diffuses out into the air (Dibb
et al., 2002, 2004; Honrath et al., 2002).

1.2 Photochemistry of NO2 on TiO2-containing sur-
faces

Although being a relatively minor component of tro-
pospheric mineral aerosols, TiO2 may be of paramount
importance for tropospheric daytime chemistry due to its
well-known photocatalytic properties (Beaumont et al.,
2009). On the other hand, TiO2 nanoparticles have been
used in self-cleaning window glass, building materials, and
on roads in Europe, Japan and the USA. Gustafsson et
al. (2006) and Beaumont et al. (2009) have investigated
the heterogeneous photochemical reaction of NO2 on UV-
illuminated TiO2 surfaces. They found that HONO and
H2O2 were formed from NO2 and H2O under conditions
pertinent to the daytime troposphere. Figure 2 illustrates
the proposed mechanism. Under UV illumination, valence
electrons in TiO2 are excited to the conduction band, cre-
ating valence band holes that diffuse to the surface where
they split water. This process can produce OH radicals,
which then combine to form H2O2. At the same time,
adsorbed NO2 traps the released electrons, subsequently
forming HONO. The overall reaction of the proposed
mechanism has been described as:

2NO2 + 2H2O −→ 2HONO + H2O2 (9)

The OH source strength of 1.9 ppbv/hr could be sus-
tained from the TiO2 self-cleaning window glass-mediated
photo conversion of NO2 to HONO (Langridge et al.,
2009). This rate is comparable to primary OH production

Fig. 2 Proposed mechanism for the photocatalytic formation of nitrous
acid on UV-illuminated TiO2 (Beaumont et al., 2009).

from the O(1D) + H2O reaction on summer days, which
is typically of 1.5 ppbv/hr (Ren et al., 2003). This finding
suggests that negative environmental effects, such as gen-
eration of HONO, from the use of these TiO2-containing
materials in urban areas should be evaluated systemati-
cally. It also suggests the need for field measurements
of NOy levels in locations where self-cleaning materials
are already being used, as well as the need for further
investigation concerning these new materials.

The reaction mechanism of NO2 on irradiated
TiO2(x%)/SiO2 films as proxies for NOx de-polluting
materials were studied by Monge et al. (2010a). NO,
HONO, and nitrate anions are produced as a consequence
of the NO2 loss on UV-illuminated TiO2 films. The
proposed mechanism for the obtained gas phase products
is proposed as the following:

TiO2 + hv −→ h+vb + e−cb (10)
H2O + h+vb −→ H+ + HO• (11)
NO2 + e− −→ NO−2 (12)
NO2 + HO• −→ HNO3 (13)
NO−2 + H+ ⇐⇒ HONO (14)
NO−2 + hv −→ NO + O− (15)

In the presence of molecular oxygen, an electron transfer
to O2, which acts as the primary electron acceptor, leads to
oxygen activated species which can participate in reactions
as follows:

O2 + e− −→ O−2 (16)
NO2 + O−2 −→ NO−2 + O2 (17)
H+ + O−2 −→ HO•2 (18)
HO•2 + NO −→ NO2 + HO• (19)

These pathways explain the higher HONO yield and
lower NO yield for the heterogeneous reaction between
NO2 and illuminated TiO2 films when O2 is present in the
carrier gas.

However, no gaseous HONO was formed when com-
mercial TiO2-doped facade paints were exposed to NOx
and light in a flow tube photoreactor under simulated
atmospheric conditions (Laufs et al., 2010). As the main
final products, adsorbed nitric acid and nitrate anions
(HNO3 + NO3

−) were observed with near unity yield.
Thus, it was concluded that photocatalytic paint should not
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Conduction band

Reduction

Oxidation

Valence band

Fig. 3 Postulated mechanism for the photocatalytic reaction of NO,
NO2, and HONO on TiO2-containing photoactive paint surfaces (Laufs
et al., 2010).

contribute to the daytime source of HONO. These results
were opposite to the studies aforementioned. Figure 3
shows the mechanism proposed by Laufs et al. (2010).

Not gas phase HONO but the solution of NO2
− in a film

of adsorbed water was proposed:

HONO + H2O⇐⇒ NO−2 + H3O+ (20)

Soluble NO2
− is further oxidized by electron holes to

NO3
−:

NO−2 + 2h+ + H2O −→ NO−3 + 2H+ (21)

All studied nitrogen species (NO, NO2, HONO) are
photocatalytically oxidized leading to NO3

−, while O2 is
photochemically reduced. The near unity yield of NO3

−

can be well explained by the mechanism and the following
net reaction of nitrogen oxides on paint surfaces is pro-
posed:

NO + NO2 + O2 + H2O
TiO2+hv−−−−−−→ 2HNO3 (22)

Since Reaction (20) is strongly dependent on pH, the
lack of gaseous HONO formation can be explained by
the alkaline surface properties (pH: 8–8.5) of the paints
used by Laufs et al. (2010). Strongly photocatalytic HONO
formation was observed on pure TiO2 (Gustafsson et al.,
2006), TiO2/SiO2 mixtures (Ndour et al., 2008; Monge et
al., 2010a) and self-cleaning window glass (Langridge et
al., 2009), respectively. This may be explained by the more
acidic surface properties of pure TiO2 and glass materials
compared to the paints used by Laufs et al. (2010), which
will shift Reaction (20) to the left side, leading to low de-
composition of HONO. Therefore, alkaline photocatalytic
materials should be more environmentally friendly toward
the removal of NOx.

Photochemical HONO formation was also observed on
real atmospheric particles (Saharan dust and Arizona test
dust) and this fact was also attributed to the presence of
TiO2 (Ndour et al., 2008). Although the amounts of TiO2

were small (6 1%) in these samples, it is worthwhile
emphasizing that this quantity is sufficient to make these
sands photochemically active. It was also found that the
heterogeneous conversion of NO2 into HONO on ice
films containing humic acid was significantly enhanced by
visible light (Bartels-Rausch et al., 2010).

From the studies reviewed here, it is concluded that
photolysis of adsorbed HNO3/nitrate and photoreaction of
NO2 on TiO2-containing surfaces is a possible source of
HONO in the daytime. However, more kinetic data which
can be used in the model studies should be measured in
future work. On the other hand, it is important to note that
the relative humidity, the amount of molecular oxygen, the
wavelength and intensity of the light, and the type of the
substrate have an important effect on the heterogeneous
photochemical reaction of NOx. Therefore, further kinetic
studies under atmospherically relevant conditions are nec-
essary to better understand the photochemistry of NOy in
the atmosphere.

2 Photochemical reactions on organic aerosol

The heterogeneous reaction of NO2 on soot aerosol has
attracted much attention because this reaction leads to
the formation of HONO and is considered as a possible
nighttime source of HONO (Aumont et al., 1999). Soot
aerosol, which consists primarily of elemental carbon with
a variable fraction of organic materials, is ubiquitous in
the atmosphere and comprises about 10%–50% of the total
tropospheric particulate matter (Ackerman et al., 2000;
Jacobson, 2001; Chameides and Bergin, 2002; Zhang et
al., 2008) and may provide a significant fraction of avail-
able aerosol reaction surface due to its fractal morphology.
Because of its atmospheric relevance, the heterogeneous
conversion of NO2 to HONO has been extensively studied
in the laboratory for a broad range of NO2 concentrations
on a variety of carbonaceous materials, including spark
discharge soot (Ammann et al., 1998; Kalberer et al.,
1999), hydrocarbon flame soot (Gerecke et al., 1998;
Kleffmann et al., 1999; Al-Abadleh and Grassian, 2000;
Stadler and Rossi, 2000; Salgado and Rossi, 2002; Lelièvre
et al., 2004; Kleffmann and Wiesen, 2005; Aubin and
Abbatt, 2007; Khalizov et al., 2010), commercial black
carbon (Kleffmann et al., 1999; Kleffmann and Wiesen,
2005), diesel soot (Arens et al., 2001), etc. Depending
on the measurement technique, type of soot, assumed
surface area, and initial concentration of NO2, the reported
uptake coefficients vary over 7 orders of magnitude, from
10−1 to 10−8, and HONO yields vary from a few percent
to about 100%. However, in the dark, soot surfaces are
rapidly deactivated under atmospheric conditions, leading
to the understanding that soot affects the tropospheric
concentration of HONO only in a minor way.

Recently, Monge et al. (2010b) found that the conver-
sion of NO2 to HONO on soot particles was dramatically
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enhanced in the presence of artificial solar radiation, and
led to persistent reactivity over time scales comparable
to the lifetime of soot in the atmosphere. Based on their
results, a HONO production rate of 25 pptv/hr would be
expected as a lower limit value for an urban environment
with soot deposited on urban surfaces. These results chal-
lenge the current view of the negligible importance of soot
chemistry with respect to the troposphere composition due
to its rapid surface deactivation in the dark. However, only
the interaction between soot and UV-A radiation has been
investigated so far while the effect of visible light has
not been quantified yet. Therefore, more studies on soot
photochemistry are needed in the future.

HONO was detected as a gas-phase product in the
heterogeneous reaction between gaseous NO2 and solid
pyrene/KNO2 films, which were used as a simplified proxy
of urban grime (Ammar et al., 2010). From this result, a
HONO production rate of 130 pptv/hr would be expected
as a conservative estimate assuming that only 1% of a street
canyon surface with 10 m street width and 20 m building

height is covered by pyrene/nitrate films. Brigante et al.
(2008) also deduced that photoexcited pyrene may reduce
NO2 to HONO and NO, with yields of ca. 15% and ca.
30%, respectively.

The reactivity and HONO yields for the reaction of
NO2 with organic films of different compositions in the
dark and under irradiation (light in the range 300–420 nm)
are shown in Table 1 (George et al., 2005). The uptake
coefficients observed here easily reach 10−6 or higher, with
HONO yields between 50% and close to 100% with an
artificial irradiance comparable to the solar irradiance in
the wavelength interval of 300–420 nm at the Earth surface
under 0◦ zenith angle.

The stoichiometry of the formation of HONO from
NO2 in the 4-benzoylbenzoic acid (4-BBA) photosensi-
tized reaction (Table 1) with a HONO yield up to 100%
shows that this reaction cannot be explained as a catalyzed
disproportionation of NO2 on wet surfaces (Reaction (2),
see introduction). Therefore, the primary electron donor
must be a constituent of the organic films. The light is

Table 1 Reactivity and HONO yields of the reaction of NO2 with organic films of different compositions in the dark and under irradiation (300–420
nm) (George et al., 2005)

Type of organic coating and amount Removal of initial Yield of HONO per Removal of initial Yield of HONO per
of organic compound used [NO2] by dark reacted NO2 in [NO2] by light reacted NO2 in

reactionb (%) dark reaction (%) reactioncd (%) light reaction (%)

Sodium 4-benzoylbenzoate (1 mg) 4 7 20/17 45/48
4-Benzoylbenzoic acid (1 mg) 2 n.a. 12/12 68/71
3,7-Dihydroxy-2-napthoci acid (1 mg) 4 11 22/28/38e 67/74/77
Perylene (0.5 mg) 3 n.a. ∼0/0 n.a.
Syringic acid (1 mg) 6 6 7/7 36/43
3,4-Dihydroxyphenylacetic acid (1 mg) 6 n.a. 1/2 n.a.
Potassium iodide (1 mg) 53 100 ∼0/0 n.a.
External mixturea 4 4 36/36 61/70
Sodium 4-benzoylbenzoate (1 mg)
Syringic acid (0.5 mg)

External mixturea 2 n.a. 42/38 91/90
Sodium 4-benzoylbenzoate (1 mg)
3,4-Dihydroxyphenylacetic acid (1 mg)

External mixturea 14 n.a. 66/58 93/101
Sodium 4-benzoylbenzoate (1 mg)
Potassium iodide (1 mg)

External mixturea 2 n.a. 6/9 57/67
Perylene (0.5 mg)
3,4-Dihydroxyphenylacetic acid (1 mg)

External mixturea 20 > 80 7/10 n.a.
Perylene (0.5 mg)
Potassium iodide (1 mg)

Internal mixturea 16 n.a. 52/63 90/93
4-Benzoylbenzoic acid (1 mg)
3,4-Dihydroxyphenylacetic acid (0.5 mg)

Internal mixturea 7 n.a. 47/58 95/97
4-Benzoylbenzoic acid (1 mg)
3,4-Dihydroxyphenylacetic acid (1 mg)

a The term external mixture is used when the reactor surface was coated first by the absorber molecule and subsequently by the phenol or potassium
iodide. The term internal mixture is used when the reactor was coated from one solution containing both compounds.
b The removal of NO2 due to the dark reaction was measured by exposing the coated wall reactor to the NO2-mixture and measuring the decrease of the
NO2 concentration.
c The removal of NO2 due to the light reaction was measured by illuminating the NO2-mixture flowing through the coated wall reactor and comparing
the NO2 concentration before and during the irradiation.
d Values after 5 and 10 min of irradiation, respectively.
e Values after 5, 10 and 25 min of irradiation, respectively.
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Fig. 4 Proposed reaction mechanism for the photoreduction of NO2
to HONO in the presence of 4-BBA (absorbing photosensitizer) and a
substituted phenol (electron donor) (George et al., 2005).

primarily absorbed by 4-BBA and the proposed mecha-
nism is depicted in Fig. 4. Organic substrates containing
a combination of electron donors, such as phenols, and of
compounds yielding excited triplet states, such as aromatic
ketones, showed a high reactivity towards NO2.

Humic substances are the most abundant group of
organic species on the Earth surface (Batjes, 1996; Swift,
2001; Janzen, 2004). They stem from the degradation
of biological materials. As humic matter is ubiquitously
found on ground surfaces, it is likely that such materials
also exist in aerosols (due to soil abrasion or biomass
burning). On the other hand, atmospheric oxidation of
VOC is another source of humic-like substances (similar
polymeric particle-bound materials) present in aerosols
(Jang et al., 2002; Kalberer et al., 2004). More specifically,
aromatic compounds typically present in biomass burning
aerosols may undergo oxidation processes that lead to
products similar to humic acids (Gelencsèr et al., 2003).

In the dark, the formation of HONO from the reaction
of NO2 with humic acid aerosols (Stemmler et al., 2007)
or secondary organic aerosol surfaces (Bröske et al., 2003)
was below the detection limit, corresponding to an uptake
coefficient γrxn < 10−7. Stemmler et al. (2006) found that
soil and other films containing humic acid (HA) exhibit
an organic surface photochemistry that produces reductive
surface species, which can react selectively with NO2 to
form HONO.

HA + hv −→ Ared + Xox (23)

Ared + Xox −→ HA’ (24)

Ared + NO2 −→ HA” + HONO (25)

where, Ared is photo-produced reductive centers, Xox is
photo-oxidants.

However, they cannot yet assign the exact chemical
nature of the reducing intermediates formed on the ir-
radiated HA film. The formation of HONO occurs not
only in the UV-A spectral region, but also in the visible
region under atmospheric conditions. The observed rate
of HONO formation could explain the recently observed

high daytime concentration of HONO in the boundary
layer and could be predicted to have a large contribution
(for example, 20%–30%) to the hydroxyl radical produc-
tion of the lowest hundred to a few hundred meters of
the atmosphere. However, Stemmler et al. (2007) also
found the formation of HONO on submicron humic acid
aerosol, but the measured uptake coefficients for the NO2
to HONO conversion are too low to explain the HONO
formation rates observed near the ground in rural and
urban environments by the conversion of NO2 to HONO
on organic aerosol surfaces, even if one assumes that all
aerosols consist of humic acid only. It should be pointed
out that the humic acid material used in these studies
may have a higher photo-reactivity than authentic humic
substances. Therefore, the values mentioned above should
be considered as upper limits. The kinetic data should be
measured under real atmospheric environment conditions
in the future. On the other hand, the reaction mechanism
of NO2 with organic materials needs to be confirmed.

3 Conclusions and outlook

Heterogeneous photochemical reactions of nitric
acid/nitrate anion or nitrogen oxide on various aerosols
as potential sources of HONO were reviewed in this
article. Three different new photochemical sources of
HONO have been discovered, that is, HONO formation
by photochemical reaction on surfaces with deposited
HNO3, by photocatalytic reaction of NO2 on TiO2
or TiO2-containing materials, and by photochemical
reaction on soot, humic acids or other photosensitized
organic surfaces. Although significant uncertainties still
exist concerning the exact mechanisms and the yield of
HONO, these previous results imply that heterogeneous
photoreactions on aerosol might explain the source of OH
in the daytime. Of course, further studies are still needed
and should include the following:

(1) Since HONO is a major precursor of atmospheric
hydroxyl radicals, it makes a high contribution to the
oxidation capacity of the atmosphere. The concentration of
HONO should be routinely measured in field observations.

(2) Further laboratory studies on the photochemical
formation of HONO are necessary to better understand and
to predict HONO formation in the atmosphere. The mech-
anism of the photochemical HONO formation on soot or
humic acid aerosols should be clarified. The contribution
of main sources to the concentration of HONO should also
be confirmed. For example, Sarwar et al. (2008) suggested
that heterogeneous reactions and surface photolysis reac-
tions accounted for about 86% of the predicted HONO,
while emissions and gas-phase reactions accounted for
only 14% of the predicted HONO using the Community
Multiscale Air Quality modeling system.

(3) Up to now, most climate models did not consider
the effect of light on the heterogeneous reactivity of atmo-
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spheric trace gases on aerosols. Therefore, the contribution
of atmospheric heterogeneous photochemistry should be
considered in these models.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (No. 21207145, 20937004) and the
Strategic Priority Research Program of the Chinese Acade-
my of Sciences (No. XDB05050600). This work was
also financially supported by the Special Co-construction
Project of the Beijing Municipal Commission of Educa-
tion.

References
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