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Abstract
Ce-ZrO2 is a widely used three-way catalyst support. Because of the large surface area and excellent redox quality, Ce-ZrO2 may have
potential application in selective catalytic reduction (SCR) systems. In the present work, Ce-ZrO2 was introduced into a low-temperature
SCR system and CeO2 and ZrO2 supports were also introduced to make a contrastive study. Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 were
prepared by impregnating these supports with Mn(NO3)2 solution, and have been characterized by N2-BET, XRD, TPR, TPD, XPS,
FT-IR and TG. The activity and resistance to SO2 and H2O of the catalysts were investigated. Mn/Ce-ZrO2 and Mn/CeO2 were proved
to have better low-temperature activities than Mn/ZrO2, and yielded 98.6% and 96.8% NO conversion at 180°C, respectively. This
is mainly because Mn/Ce-ZrO2 and Mn/CeO2 had higher dispersion of manganese oxides, better redox properties and more weakly
adsorbed oxygen species than Mn/ZrO2. In addition, Mn/Ce-ZrO2 showed a good resistance to SO2 and H2O and presented 87.1% NO
conversion, even under SO2 and H2O treatment for 6 hours, and the activity of Mn/Ce-ZrO2 was almost restored to its original level
after cutting off the injection of SO2 and H2O. This was due to the weak water absorption and weak sulfation process on the surface of
the catalyst.

Key words: low temperature; selective catalytic reduction; manganese; Ce-ZrO2; SO2 poisoning
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Introduction

Selective catalytic reduction (SCR) of NO with NH3 in the
presence of oxygen is widely used to reduce NO produc-
tion in combustion processes due to its low cost and high
efficiency (Kašpar et al., 2003). The commonly adopted
commercial catalyst is V2O5-WO3(MoO3)/TiO2, and its
working temperature must be in the 300–400°C range
(Broer and Hammer, 2000; Choo et al., 2003) in order
to attain good catalytic activity and avoid pore plugging
from the deposition of ammonium sulfate on the catalyst
surface. Consequently, in order to avoid reheating the flue
gas, the SCR catalyst unit must be located upstream of
the desulfurizer and electrostatic precipitator. However, the
high concentration of dust reduces the performance and
longevity of catalysts. Therefore, it is necessary to devel-
op low-temperature SCR catalysts which can be located
downstream of the desulfurizer and electrostatic precipi-
tator. Most flue gas contains small amounts of SO2 even
after the desulfurizer. Catalysts for low-temperature SCR

* Corresponding author. E-mail: shenbx@nankai.edu.cn

are generally very sensitive to SO2 and can be deactivated
by direct reaction between SO2 and a component of the
catalyst or by deposition of ammonia sulfate on the catalyst
surface (Casapu et al., 2009; Zhu et al., 2000; Kijlstra et
al., 1998). Furthermore, the deactivation activity of SO2
will be more intense when H2O is present (Huang et al.,
2002). Catalyst deactivation by SO2 and H2O needs to be
considered.

Many transition metal oxides have been used to improve
the low-temperature activity. Among these metal oxides,
manganese oxides have attracted special attention, due to
their various types of labile oxygen which can complete
the catalytic cycle, resulting in a significant enhancement
of catalytic activity at low temperature (Wallin et al., 2004;
Smirniotis et al., 2001; Chen et al., 2012). Various Mn-
base catalysts such as MnOx/TiO2 (Qi and Yang, 2003;
Pena et al., 2004), MnOx/Al2O3 (Kijlstra et al., 1997) and
MnOx/AC (Marban and Fuertes, 2001; Tang et al., 2007)
have been prepared and tested, and they showed various
levels of catalytic activity under different conditions. In
some reports, CeO2 has been used to improve the SCR

http://www.jesc.ac.cn
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activity and the resistance to SO2 of catalysts (Reddy et
al., 2003; Baidya et al., 2009; Shen et al., 2011). However,
the surface area of CeO2 is not large enough and its redox
quality needs to be improved (Zhang et al., 2011). Ce-ZrO2
is a widely used three-way catalyst support (Fornasiero
et al., 1995). It has been reported that Zr can modify the
catalyst surface area (Chary et al., 2006) and the insertion
of Zr into the ceria lattice can improve the lattice oxygen
mobility, resulting in a better redox quality (Liu et al.,
2009). Therefore, there is reason to believe that Ce-ZrO2
supports may have good performance in SCR catalytic
systems.

In this article, a Ce-ZrO2 support is introduced into the
low-temperature SCR catalytic system to support man-
ganese oxides. CeO2 and ZrO2 supports are also used
to make a contrastive study. Mn/Ce-ZrO2 and Mn/CeO2
showed better activities than Mn/ZrO2; and Mn/Ce-ZrO2
showed better resistance to SO2 and H2O than Mn/CeO2
and Mn/ZrO2 in a 6-hr sulfur tolerance test. The reason for
the better resistance of Mn/Ce-ZrO2 toward SO2 and H2O
was also studied.

1 Materials and methods

1.1 Preparation of supports and catalysts

Ce-Zr hydroxide was prepared by a co-precipitation
method. Ce(NO3)3·6H2O and ZrO(NO3)2·2H2O were used
as precursors and were dissolved in distilled water with
the molar ratio of 1:1. An aqueous solution of ammonia
was used as the precipitator and was added dropwise in the
metal salt solution until the pH rose to 10. The resulting
precipitates were stirred for 3 hr and then aged for 1 hr,
and finally filtered, washed, and dried at 80°C overnight.
Ce and Zr hydroxides were prepared with the same pro-
cess, and used Ce(NO3)3·6H2O and ZrO(NO3)2·2H2O as
precursors, respectively.

Mn-base catalysts were prepared by impregnating the
support powders of Ce, Zr and Ce-Zr hydroxides with
Mn(NO3)2 solution for 12 hr, and the molar ratio of
Mn/(Ce+Zr) was 0.6:1. Then the samples were dried
at 80°C overnight and at 110°C for 6 hr, and finally
were calcined at 500°C for 6 hr. The catalysts included
Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2.

In order to obtain CeO2, ZrO2, and Ce-ZrO2, some of the
hydroxides of Ce, Zr and Ce-Zr were calcined at 500°C for
6 hr. All the chemicals used in the study were of analytic
grade.

1.2 Characterization of supports and catalysts

BET surface areas of the catalysts were measured by
nitrogen adsorption at –196°C using a NOVA 2000 au-
tomated gas sorption system (Quantachrome Instruments,
USA). The pore size distribution was calculated from the
desorption branch of the N2 adsorption isotherm using the
Barrett-Joyner- Halenda (BJH) formula.

Powder X-ray diffraction (XRD) measurements were
performed on a Rigaku D/Max 2500 system using Cu Kα
radiation (40 kV, 100 mA) (Rigaku Corporation, Japan).

X-ray photoelectron spectroscopy (XPS) was performed
using a Kratos Axis Ultra DLD spectrometer equipped
with monochromated Al Kα radiation (1486.6 eV) (Shi-
madzu, Japan). Sample charging effects were eliminated
by correcting the observed spectra with the C 1s binding
energy value of 284.6 eV. The normal operating pressure
in the analysis chamber was controlled to 10−9 Pa during
the measurement.

The temperature-programmed desorption of ammo-
nia (NH3-TPD) was performed on a tp-5080 automated
chemisorption analyzer using 0.1 g catalyst. The powder
catalyst was first pretreated in a flow of N2 (30 mL/min)
at 500°C for 1 hr. Subsequently, the sample was cooled
down to room temperature and saturated with a stream of
pure NH3 for 30 min (total flow rate = 1 mL/min (STP)).
After saturation, the sample was flushed in a pure N2 flow
for 30 min at 100°C. Finally, the sample was heated up
to 500°C with a heating rate of 10°C/min. The amount
of NH3 desorption from the catalysts was quantified by a
thermal conductivity detector (TCD).

Hydrogen temperature-programmed reduction (H2-
TPR) was performed in the same instrument as the
NH3-TPD using 0.1 g catalyst. The sample was first
pretreated in N2 (30 mL/min) at 500°C for 1 hr and then
cooled to room temperature. Subsequently, the sample was
heated up to 900°C at a rate of 10°C/min under 5 vol.%
H2/N2. The consumption of H2 was measured by a TCD.

FT-IR spectra were acquired with a Nicolet Magna-560
FT-IR spectrometer using a thin self-supporting sample
wafer accumulation of 100 scans running at 4 cm−1 res-
olution.

Thermo gravimetric analyses (TGA) were performed
on 0.01 g of sample with a NETZSCH Thermal Anal-
ysis System under a nitrogen flow of 20 mL/min, using
a heating rate of 10°C/min from room temperature to
900°C (NETZSCH Corporation, Germany).

1.3 Catalytic activity test

The SCR activity measurement was performed in a fixed-
bed flow reactor. The concentrations of simulated gases
were as follows: 600 ppm NO, 660 ppm NH3, 6 vol.%
O2, 3 vol.% H2O (when used), 100 ppm SO2 (when used)
and N2 as balance gas. In all the runs, the total gas flow
rate was maintained at 300 mL/min over 0.5 g catalyst and
GHSV was about 45,000 hr−1. The feed gases were mixed
and preheated in a chamber before entering the reactor.
The water vapor was generated by passing N2 through a
gas-washing bottle containing deionized water at different
heating temperatures. During the measurements, the con-
centrations of NO at the inlet and outlet of the reactor were
monitored by a flue gas analyzer (KM900/KM9106, Kane
International Ltd., United Kingdom). The NO conversion
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was calculated using the following equation:

NO conversion =
NOin − NOout

NOin
× 100% (1)

where, NOin (ppm) is the inlet NOx concentration; NOout
(ppm) is the outlet NOx concentration.

2 Results and discussion

2.1 Catalyst characterization

The BET surface area, pore volume, and pore size of differ-
ent samples are summarized in Table 1. The BET surface
areas of CeO2, ZrO2 and Ce-ZrO2 were 49.85, 45.93 and
69.77 m2/g, respectively, which indicated that the mixture
of Ce and Zr could increase the surface area. This was
mainly because Zr4+ could improve the thermal stability
of CeO2 and inhibit the sintering of CeO2 during the
combustion process (Wu et al., 2008). The surface areas of
Mn/ZrO2 and Mn/Ce-ZrO2 were larger than those of ZrO2
and Ce-ZrO2. In some reports, surface areas of catalysts
were smaller than those of the supports (Zhang et al., 2011;
Ko et al., 2012) because the free pores of the support were
partially occupied during the impregnation process. In the
present work, hydroxides were used as catalyst supports,
and some interaction between hydroxides and Mn might
occur during the impregnation process. The BET surface
area of Mn/CeO2 was smaller than that of CeO2, which
indicated that the interaction between Mn and Ce could be
ignored.

The XRD patterns of the catalysts are shown in Fig. 1.
The diffraction peaks of Mn/ZrO2 were attributed to
Mn2O3 and ZrO2 and the diffraction peaks of Mn/CeO2
and Mn/Ce-ZrO2 were attributed to Mn2O3 and CeO2.
CeO2 diffraction peaks in Mn/Ce-ZrO2 were broader than
in Mn/CeO2 due to the poorer crystallinity of CeO2 in
Mn/Ce-ZrO2. Furthermore, ZrO2 diffraction peaks could
not be detected in Mn/Ce-ZrO2, which might be due to the
amorphous state of ZrO2, the strong background of CeO2
or the incorporation of Zr in the ceria lattice (Fornasiero et
al., 1995). In all of the three catalysts, Mn2O3 was the only
crystal phase of manganese oxides that could be detected.
The Scherrer Formula was used to calculate the grain size
of Mn2O3 in Mn/ZrO2, Mn/CeO2 and Mn/Ce-ZrO2, and
the results were 305, 212 and 180 Å, respectively. These
results suggested that Mn/Ce-ZrO2 had the best manganese

Table 1 BET analysis results of various catalysts

Sample BET surface Pore volume Pore size
area (m2/g) (cm3/g) (nm)

CeO2 49.85 0.0642 4.07
ZrO2 45.93 0.1127 7.43
Ce-ZrO2 69.77 0.0816 3.62
Mn/CeO2 38.20 0.0940 7.78
Mn/ZrO2 129.76 0.1976 4.66
Mn/Ce-ZrO2 96.50 0.1524 4.78
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Fig. 1 XRD patterns of different catalysts.

oxide dispersion. This was consistent with a report (Lee et
al., 2012) which pointed out that the introduction of Ce
into the catalyst improved the manganese dispersion.

H2-TPR analysis was conducted in the present study to
investigate the redox behavior of the three catalysts. As
shown in Fig. 2, three reduction peaks were detected in
every sample, and the number in the figure represents the
temperature at the peak center. The reduction temperatures
of Mn/CeO2 shifted towards lower temperature compared
to those of Mn/ZrO2 and Mn/Ce-ZrO2, indicating that
Mn/CeO2 was more easily reduced. The low temperature
peak area of Mn/Ce-ZrO2 was much larger than that of
Mn/ZrO2 and Mn/CeO2, suggesting that Mn/Ce-ZrO2 had
more reductive species at low temperature. Therefore,
Mn/CeO2 and Mn/Ce-ZrO2 have better redox properties.

According to the previous reports (Ko et al., 2012;
Azalim et al., 2011; Wei et al., 2012), the reduction
peak positions of CeO2, ZrO2 and Ce-ZrO2 were differ-
ent from those of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2.
Furthermore, it was reported that the reduction peaks
of MnOx in Mn/TiO2 were centered at 303, 392 and
463°C (Thirupathi and Smirniotis, 2011; 2011) and they
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Fig. 2 Temperature-programmed reduction profiles of different catalysts.
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Fig. 3 Temperature-programmed desorption profiles of different cata-
lysts.

were also different from those of Mn/CeO2, Mn/ZrO2 and
Mn/Ce-ZrO2. These results indicated that there might be
interaction between the catalyst support and the active
component. Due to the interaction of different components
in the catalysts, the reduction peaks could not be attributed
to the reduction of a single component but the combined
reduction of different components.

NH3-TPD analysis was carried out to measure the
surface acidity of the three catalysts. As shown in Fig. 3,
the shapes of the NH3-TPD patterns of the three samples
were similar. Only one broad desorption peak was detected
in the experiment, which spanned the temperature range
from 100 to 450°C. The peak could be assigned to the
successive desorption of ammonia physically adsorbed to
weak acid sites (100–220°C) and strong acid sites (220–
440°C, which was similar to a previous report (Mhamdi
et al., 2009). The NH3 desorption peak of Mn/CeO2 was
very weak, because cerium oxides could hardly give any
contribution to NH3 adsorption (Shen et al., 2009). With
the introduction of Zr into the support, the bound NH3
uptake increased significantly, suggesting that Zr gave rise
to more acid sites for the catalysts.

XPS analyses were carried out to investigate the chem-
ical states and atom concentration on the surface of
catalysts. Figure 4 shows the Mn 2p, O 1s, Zr 3d and Ce 3d
photoelectron peaks of the catalysts measured by XPS. The
Mn 2p photoelectron peaks of Mn/CeO2 were very broad.
A significant increase in the intensity and sharpening of
Mn 2p peaks could be noted when Zr was introduced in
Mn/Ce-ZrO2, and Mn/ZrO2 had the most intense Mn 2p

peaks. This suggested that the surface atom concentration
of Mn for Mn/ZrO2 was higher than that for the other two
catalysts. Mn 2p3/2 spectra of the catalysts were composed
of two overlapping peaks around the BE of 643.5 and
641.2 eV due to Mn4+ and Mn3+, respectively (Qi and
Yang, 2004; Thirupathi and Smirniotis, 2012). All peaks
of the catalysts around 641.2 eV were sharper than those
around 643.5 eV, indicating that Mn2O3 was a major phase
and MnO2 was a minor phase in the catalysts. Only the
crystal pattern of Mn2O3 could be detected in the catalysts
from the XRD analysis, but the XPS analysis showed the
co-existence of Mn2O3 and MnO2 on the surface of the
catalysts. Thus the MnO2 in the three catalysts might be
amorphous.

O 1s spectra of the samples were composed of two
overlapping peaks. The first peak in the range of 529.5–
530.5 eV (Oβ) was due to the lattice oxygen (Larachi et
al., 2002; Carja et al., 2007; Yu et al., 2010) and the second
peak in the range of 531.3–531.7 eV (Oα) corresponded to
the weakly surface-adsorbed oxygen (Tejuca and Fierro,
1989; Qin et al., 2007). Oβ shifted towards higher BE
when Zr was introduced. This might due to the higher BE
of lattice oxygen in ZrO2 than that in CeO2. Meanwhile,
the Oα area of Mn/CeO2 and Mn/Ce-ZrO2 was larger than
that of Mn/ZrO2 due to more weakly adsorbed species on
the surface of Mn/CeO2 and Mn/Ce-ZrO2. As reported
previously, gas phase oxygen participated in the SCR
reaction by filling the oxygen vacancies over the catalyst
surface (Ettireddy et al., 2012), and the surface-adsorbed
oxygen favored SCR activity (Wu et al., 2008). The BE of
Zr 3d was similar in Mn/Ce-ZrO2 and Mn/ZrO2 and the
BE of Ce 3d was similar in Mn/Ce-ZrO2 and Mn/CeO2.
Therefore, it could be concluded that the mixture of Zr and
Ce in Mn/Ce-ZrO2 did not change the BE of Zr and Ce
very much.

The surface atom percentage of catalysts and atomic
ratio of Mn/(Ce+Zr) are shown in Table 2. The overall
ratio of Ce/Zr for Mn/Ce-ZrO2 was 1, but it was 7.5 on
the surface of Mn/Ce-ZrO2, which indicated that Ce was
more easily accumulated on the surface of Mn/Ce-ZrO2
than Zr. The Mn concentration on the surface of Mn/ZrO2
was much higher than that on the surface of Mn/CeO2 and
Mn/Ce-ZrO2, suggesting that Zr caused Mn to accumulate
on the surface of the catalysts. This might be the reason
for the sharp diffraction peaks of Mn2O3 in Mn/ZrO2
(Fig. 1). The enrichment of Mn and Ce on the surface of
the catalysts resulted in the higher ratio of Mn/(Ce+Zr) for
Mn/ZrO2 than that for Mn/CeO2 and Mn/Ce-ZrO2. This

Table 2 Surface atom percentage and the ratio of Mn/(Ce+Zr) of different catalysts determined from XPS

Sample Surface atom percentage (%) Mn/(Ce+Zr)
Ce Zr Mn3+ Mn4+ Oα Oβ

Mn/CeO2 24.14 0 3.39 2.98 56.61 12.88 0.26
Mn/Ce-ZrO2 21.41 2.84 4.69 3.52 43.57 23.97 0.34
Mn/ZrO2 0 9.47 14.48 8.18 14.65 53.22 2.39
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Fig. 4 XPS spectra of Mn 2p, O 1s, Zr 3d and Ce 3d for different catalysts.

was in agreement with the literature of Ettireddy et al.
(2007) which studied Mn-based TiO2-supported catalysts
and found that the surface atom ratio of Mn/Ti increased
significantly at higher Mn loading, due to the formation of
microcrystalline Mn oxide species on the catalyst surface.
Oα was much higher and Oβ was much lower in Mn/CeO2
and Mn/Ce-ZrO2 than that in Mn/ZrO2, suggesting that the
introduction of Ce increased the amount of Oα in Mn/Ce-
ZrO2.

2.2 SCR catalytic activity

The effect of manganese loading on SCR activity is shown
in Fig. 5a. The activity of the Ce-ZrO2 support was very
low (less than 25%, data not shown). After the addition
of Mn, the activities of the catalysts increased sharply,
which suggested that Mn species played a significant role
in this reaction. This was consistent with the report of
Qi and Yang (2003) concerning the MnOx/TiO2 catalyst.
With the increase of the loading amount of Mn, the
SCR activity increased first and then decreased, and the
maximum activity value occurred when the temperature
reached 180°C. At all of the reaction temperatures, the
optimal value for Mn/(Ce+Zr) was 0.6. Therefore, 0.6 was

chosen as the ratio of Mn/(Ce+Zr) in later experiments.
The catalytic activities of Mn/CeO2, Mn/Ce-ZrO2 and

Mn/ZrO2 for low-temperature SCR were measured in the
temperature range from 100 to 220°C and the results are
shown in Fig. 5b. The activity of Mn/CeO2 and Mn/Ce-
ZrO2 was higher than that of Mn/ZrO2. Characterization
results showed that Mn/ZrO2 had the largest BET surface
area and the strongest surface acidity, while Mn/ZrO2 had
the worst dispersion of manganese oxides, the weakest
reductive capability and the least adsorbed oxygen species
on its surface. Therefore, combined with the characteriza-
tion results and the results of the catalytic activities, the
dispersion of manganese oxides, the reductive capability
and the adsorbed oxygen species on the surface of the
catalysts were the determinants of catalytic activity. This
was consistent with previous reports. The reports pointed
out that the dispersion of the manganese oxide played
an important role in the formation of amorphous-phase
manganese oxide, which had good performance in the SCR
reaction (Kijlstra et al., 1997; Kapteijn et al., 1994; Huang
and Yang, 2001). In the meantime, a strong reductive
capability of catalysts and oxygen ions on the surface
of catalysts promoted the catalytic activity (Wu et al.,
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2008; Liu et al., 2007). For all of the three catalysts,
the maximum activity value appeared at 180°C, being
98.6%, 96.8% and 91.0% for Mn/Ce-ZrO2, Mn/CeO2 and
Mn/ZrO2, respectively.

2.3 Effect of H2O on SCR catalytic activity

In order to evaluate the resistance to H2O of all the
catalysts, the catalysts were subjected to a stream of 3
vol.% H2O at 180°C. As shown in Fig. 6, the activity of
Mn/CeO2 was almost unchanged when H2O was added.
Meanwhile, the activities of Mn/ZrO2 and Mn/Ce-ZrO2
slightly decreased from 89.5% and 98.6% to 82.9% and
95.3% with the addition of H2O, respectively. After the
removal of H2O, the activities of Mn/ZrO2 and Mn/Ce-
ZrO2 were restored to their original levels. These results
showed that these catalysts had good resistance to H2O
and the inhibitory effect of H2O was reversible for these
catalysts. The slight inhibitory effect on catalytic activity
could be contributed to the competitive adsorption of H2O,
which blocked active sites available for the adsorption of
NH3 and NO (Amiridis et al., 1996; Tufano and Turco,
1993).

2.4 Effect of H2O and SO2 on SCR catalytic activity

There are small amounts of SO2 remaining in flue gas even
after the desulfurizer. Thus it is necessary to investigate
the effect of SO2 + H2O on SCR activity. Before 3 vol.%
H2O and 100 ppm SO2 were added, the SCR reaction was
stabilized for 1 hr at 180°C. As shown in Fig. 7a, when
3 vol.% H2O and 100 ppm SO2 were added into the flue
gas, a sharp decline of the NO conversion for Mn/Ce-
ZrO2 from 98.5% to 91.2% was observed in the first hour,
and then it nearly stabilized. On the contrary, sustained
declines of NO conversions for Mn/CeO2 and Mn/ZrO2
were detected over 6 hr, from 96.8% to 61.5% and from
89.5% to 67.1%, respectively. After the removal of SO2
and H2O, the activity of Mn/Ce-ZrO2 almost returned to
the original level, from 87.1%, and the activity of Mn/ZrO2
returned to 79.7%, which was 10% lower than its original
level. But the activity of Mn/CeO2 was almost unchanged.
These results revealed that the mixed support of Ce-ZrO2
used in Mn/Ce-ZrO2 evidently improved the resistance of
the catalyst to SO2 and H2O.

The effect of SO2 and H2O on NO conversion over
Mn/Ce-ZrO2 at different temperatures (160, 180 and
200°C are shown in Fig. 7b). Similar NO conversion and
resistance to SO2 and H2O were observed at 180 and
200°C. The activity measured at 160°C had a faster decline
compared with that at 180 and 200°C. However, it still
showed a high level of activity for NO conversion (79.4%)
even at 160°C. These results showed that the resistance to
SO2 and H2O for Mn/Ce-ZrO2 increased with increasing
temperature.

2.5 FT-IR spectra and TGA for the catalysts

FT-IR analyses were performed in order to investigate
formation of sulfate on the catalysts, and the results are
shown in Fig. 8. Compared to the fresh catalysts, a new
peak appeared at 1104 or 1106 cm−1, which was attributed
to free SO4

2− for all the used catalysts of Mn/Ce-ZrO2,
Mn/ZrO2 and Mn/CeO2 (Huang et al., 2008). Meanwhile,
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the peaks at 1373, 1379 or 1382 cm−1 arising from the
nitrate species spectrum (Huang and Yang, 2001) were
clearly larger in the used catalysts than those in the fresh
ones. The peaks in the fresh catalysts could be attributed
to incompletely decomposed Mn(NO3)2. Previous reports
(Madia et al., 2002; Liu and He, 2010) have pointed out
that NH4NO3 can form on the surface of the catalysts dur-
ing the reaction process and it could exist stably, because
its decomposition temperature is about 200°C. Therefore,
the larger peaks in the used catalysts could be attributed
to NH4NO3 formation during the reaction process. After
reaction, Mn/CeO2 had the sharpest band around 1104
cm−1 but Mn/Ce-ZrO2 had the weakest band around 1106
cm−1. The result showed that Mn/Ce-ZrO2 had the weakest
sulfation during the reaction process. The poisoning effect
of SO2 on catalysts mainly took place via two approaches:
the deposition of ammonium sulfate on the catalyst surface
covering available active sites (Huang et al., 2002; Yu et
al., 2010; Zhu et al., 2001) and the sulfation of active
components resulting in their inactivation (Kijlstra et al.,
1997, 1998). Therefore, the weak sulfation of Mn/Ce-ZrO2
corresponded to its good resistance to SO2 poisoning.

TGA were performed to distinguish the species of
sulfate salts on the surfaces of the used catalysts, and
the results are shown in Fig. 9. It can be seen that the

weight losses of the used catalysts can be divided into four
phases according to the peaks from DTG: A (< 200°C), B
(200°C–400°C), C (400–750°C), and D (> 750°C). These
four phases can be attributed to the departure of water
molecules and hydration, the decomposition of ammonia
sulfate and ammonium bisulfate (Mao et al., 2011), the
decomposition of cerous sulfate and zirconium sulfate
(Strydom and Pretorius, 1993; Poston et al., 2003) and the
decomposition of manganese sulfate (Mao et al., 2011),
respectively. The weight losses in different phases are
shown in Table 3. It can be seen that the weight losses
corresponding to the dehydration process and the decom-
position of sulfates in Mn/Ce-ZrO2 were much lower than
those in Mn/CeO2. This indicated that there were fewer
water molecules and less hydration and sulfate forming on
Mn/Ce-ZrO2 than on Mn/CeO2. These results agreed well
with the outcomes of the resistance to SO2 and H2O of
Mn/Ce-ZrO2, Mn/ZrO2 and Mn/CeO2.

Table 3 Different weight losses for the used catalysts

Sample Weight loss Weight loss resulting from the
resulting from decomposition of sulfates (%)
the dehydration Ammonia Cerous and Manganese
process (%) sulfate zirconium sulfate

sulfate

Mn/Ce-ZrO2 1.5 0.5 1.2 0.9
Mn/ZrO2 3.2 1.0 1.2 0.8
Mn/CeO2 5.4 1.6 1.5 1.1

3 Conclusions

In this work, CeO2, ZrO2 and a mixture of Ce-ZrO2
were used to support manganese oxides. It was found that
Mn/Ce-ZrO2 and Mn/CeO2 have better low-temperature
activities than Mn/ZrO2. This was mainly due to the higher
dispersion of manganese oxides, better redox character
and more surface adsorbed oxygen of Mn/Ce-ZrO2 and
Mn/CeO2 compared to Mn/ZrO2. Furthermore, Mn/Ce-
ZrO2 had better resistance to SO2 and H2O due to the weak

http://www.jesc.ac.cn


jes
c.a

c.c
n

798 Journal of Environmental Sciences 2013, 25(4) 791–800 / Boxiong Shen et al. Vol. 25

0 500 1000 1500 2000 2500 3000 3500 4000

13731106

 

Mn/Ce-ZrO2 after reaction

A
b
so

rb
an

ce
 (

a.
u
.)

a

Mn/Ce-ZrO2 fresh

0 500 1000 1500 2000 2500 3000 3500 4000

13791104

 
A

b
so

rb
an

ce
 (

a.
u
.)

Mn/ZrO2 fresh

Mn/ZrO2 after reaction

b

0 500 1000 1500 2000 2500 3000 3500 4000

13821104

A
b
so

rb
an

ce
 (

a.
u
.)

 

 

Mn/CeO2 after reaction

Mn/CeO2 fresh

c

0 500 1000 1500 2000 2500 3000 3500 4000

A
b
so

rb
an

ce
 (

a.
u
.)

Mn/CeO2 after reaction

Mn/ZrO2 after reaction

Mn/Ce-ZrO2 after reaction

d

0 500 1000 1500 2000 2500 3000 3500 4000

13731106

 

Wavenumber (cm-1)

Wavenumber (cm-1)

Wavenumber (cm-1)

Wavenumber (cm-1)

0 500 1000 1500 2000 2500 3000 3500 4000

13791104

 

0 500 1000 1500 2000 2500 3000 3500 4000

 

 

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 8 FT-IR spectrum of the catalysts before and after 6 hr treatment with H2O and SO2.

water absorption and weak sulfation process on the surface
of the catalyst.
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