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Abstract
The understanding of organic phosphorus (P) dynamics in sediments requires information on their species at the molecular level, but
such information in sediment profiles is scarce. A sediment profile was selected from a large eutrophic lake, Lake Taihu (China), and
organic P species in the sediments were detected using solution phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR)
following extraction of the sediments with a mixture of 0.25 mol/L NaOH and 50 mmol/L EDTA (NaOH-EDTA) solution. The results
showed that P in the NaOH-EDTA extracts was mainly composed of orthophosphate, orthophosphate monoesters, phospholipids, DNA,
and pyrophosphate. Concentrations of the major organic P compound groups and pyrophosphate showed a decreasing trend with the
increase of depth. Their half-life times varied from 3 to 27 years, following the order of orthophosphate monoesters > phospholipids >
DNA > pyrophosphate. Principal component analysis revealed that the detected organic P species had binding phases similar to those
of humic acid-associated organic P (NaOH-NRPHA), a labile organic P pool that tends to transform to recalcitrant organic P pools as
the early diagenetic processes proceed. This demonstrated that the depth attenuation of the organic P species could be partly attributed
to their increasing immobilization by the sediment solids, while their degradation rates should be significantly lower than what were
suggested in previous studies.

Key words: organic phosphorus; sediment; half-life time; 31P NMR; Lake Taihu
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Introduction

Organic phosphorus (P) in natural aqueous environments
encompasses a wide variety of organic compounds con-
taining both P and carbon. Once organic P deposits on
the surface of sediments, it tends to be degraded into
small compounds by microbes, and may be released to
the overlaying water (Huang and Zhang, 2010). Further
degradation occurs in anoxic sediments originating from
diagenetic decomposition of organic matter. Contrary to
the degradation process, immobilization of organic P
compounds by sediment solids may occur and likely
prevent their degradation (Celi and Barberis, 2005). The
occurrence of the degradation and immobilization pro-
cesses depends on the molecular structures of organic P
compounds. Taking the critical role of P in regulating
lake trophic status into consideration (Schelske, 2009),

* Corresponding author. E-mail: smding@niglas.ac.cn

it is important to understand the species of organic P in
sediments at the molecular level.

Solution phosphorus-31 nuclear magnetic resonance
spectroscopy (31P NMR) is currently a direct and powerful
tool in the characterization of organic P forms at the
molecular level (Cade-Menun, 2005). This technique uses
the magnetic resonance of the 31P nucleus to identify
its chemical forms in solution samples originating from
alkaline extraction of P in sediments. Due to the advantage
that all P compounds of interest can be detected simulta-
neously with high resolution without complex preparation
(Paytan et al., 2003; Xu et al., 2012), applications of
this technique to aquatic systems have advanced rapidly
(Ahlgren et al., 2005; Bai et al., 2009; Reitzel et al., 2009).
A range of P compounds (or compound classes) have
been detected using solution 31P NMR in various surface
sediments from rivers, lakes, and marine areas, typically
including orthophosphate, pyrophosphate, polyphosphate,
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phosphonates, orthophosphate monoesters and orthophos-
phate diesters (DNA and phospholipids) (Cade-Menun,
2005). However, the changes of organic P species in
sediment profiles have only been reported in Lake Erken
(Sweden) (Ahlgren et al., 2005; Reitzel et al., 2007), the
Baltic Sea (Ahlgren et al., 2006), and an embayment in
Helsinki, Finland (Turner and Weckström, 2009).

Lake Taihu is a large, shallow, eutrophic lake in the
Changjiang (Yangtze) delta, the most industrialized area
in China. This lake has been receiving large inputs of agri-
cultural fertilizers and domestic and industrial wastewater
since the early 1980s, leading to the rapid appearance of
water eutrophication (Chen et al., 2003). The dynamics of
P in sediments and its relationship with water eutrophica-
tion have attracted great attention. Most of the previous
studies focused on inorganic P in the sediments of Lake
Taihu (Zhou et al., 2005; Zhu et al., 2006), while organic P
in the sediments has been paid much less attention (Zhang
et al., 2008, 2009; Bai et al., 2009). Bai et al. (2009) and
Zhang et al. (2009) have reported on organic P species in
surface sediments of Lake Taihu using solution 31P NMR
measurement. However, little is known about their changes
with sediment depth.

In this study, organic P species in a sediment profile of
Lake Taihu were detected by solution 31P NMR following
extraction of the sediments with an alkaline solution.
Their dynamic changes with sediment depth was analyzed
and compared to previous reports of other sediments.
The mechanisms involved were discussed in combination
with data from chemical fractionation of organic P in the
sediments.

1 Materials and methods

1.1 Sampling site and sediment collection

The sampling site and sediment collection for this study
have been reported elsewhere (Xu et al., 2012). The
sampling site was located in the northern part of Meiliang
Bay (120.19◦E and 31.51◦N), which is one of the most
eutrophied regions in Lake Taihu. It has a distance of
approximately 4 km from the outlet of the River Liangxi.
This site is representative of eutrophic and polluted regions
in Meiliang Bay.

The sediment samples were collected in November 2007
using a gravity core sampler. Six sediment cores were
collected, and each core was sliced into 0.5 cm sections
down to 10 cm and 2.5 cm sections down to 15 cm.
The sediment samples at the same depths were pooled
and homogenized to obtain a representative sample. After
transportation to the laboratory, the sediment samples were
lyophilized at –80°C, sieved to pass through a 100-mesh
sieve and then stored at 4°C until analysis.

1.2 Estimation of sediment age

Sediment age was estimated using dating methods in-
volving 210Pb. The lyophilized sediments were stored in
sealed containers to allow radioactive equilibration for 3
weeks. The 210Pb in the sediments was determined using an
EG&G Ortec Gamma Spectrometer via gamma emission at
46.5 keV, 226Ra emission at 295 keV and 352-keV gamma
rays emitted by its daughter isotope, 214Pb. The activity
of excess 210Pb (210Pbex) in each sample was obtained by
subtracting the 226Ra activity from the activity of total
210Pb. Sediment age was then obtained by exponential
fitting of the sediment depth versus activity of 210Pbex,
assuming that the deposition rate was stable (Appleby,
2001).

1.3 Sediment extraction and solution 31P NMR analysis

Organic P in the sediment was extracted using a solution
containing 0.25 mol/L NaOH and 50 mmol/L EDTA
(NaOH-EDTA) for 16 hr at 20°C. The solid:solution ratio
was 1:8 (m/V), which produced a concentration of P high
enough for 31P NMR analysis (Xu et al., 2012). An aliquot
of the extract was used to analyze total P. The remaining
solution was concentrated 10 times in a rotary vacuum
evaporator at 28°C. The concentrated extracts were stored
at –20°C until 31P NMR analysis.

Prior to 31P NMR analysis, all concentrated extracts (0.9
mL for each sample) were centrifuged at 10,000 r/min for
10 min to remove any possible particles. A 0.1 mL of
heavy water (D2O) was added to each solution for signal
lock. The 31P NMR spectra were measured at 161.98 MHz
on a Bruker AV400 spectrometer equipped with a 5-mm
broadband probe using a 45◦ pulse, a relaxation delay of
2.2 sec and an acquisition time of 0.4 sec. The use of a 45◦

pulse was to shorten the delay time required (Cade-Menun
et al., 2005). The pulse and delay times were similar to
those used by Turner and Weckström (2009). The scan
time for each sample was approximately 16 hr. Chemical
shifts were recorded relative to 85% H3PO4 via the signal
lock, and the orthophosphate peak for each sample was
standardized to 6 ppm in all spectra to simplify comparison
of samples (Cade-Menun, 2005). Peak area was quantified
through manual integration of significant peaks. The P
compounds were identified based on literature (Turner et
al., 2003; Cade-Menun et al., 2010; Jørgensen et al., 2011).
All spectral processing was carried out using NMR Utility
Transform Software for Windows (2000 edition; Acorn
NMR, Livermore, USA).

Due to the time-consuming and expensive nature of 31P
NMR scans, replicate analyses were not performed. The
analytical errors from P extraction and the following 31P
NMR analysis were estimated as within 10% for large
signals (e.g., orthophosphate, orthophosphate monoesters
and DNA) and within 20% for small signals (e.g., phos-
pholipids and polyphosphate) (Ding et al., 2010a, 2010b;
Xu et al., 2012).
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2 Results and discussion

2.1 Sediment ages

The age of the sediments was obtained by exponential
fitting of the sediment depth versus activity of 210Pbex
(Fig. 1). The exponential equation was y = 277.6e−0.037x (r
= 0.74, p = 0.003), from which an average sedimentation
rate of 0.85 cm/yr was obtained. This rate is much higher
than 0.33 cm/yr as reported by Zhu et al. (2007) but is close
to 0.88 cm/yr reported by Wu et al. (2007) for two sites in
the Meiliang Bay. The high sedimentation rate in this site
reflects a high input and sedimentation of particles from the
River Liangxi. According to this rate, the sediment depth
of 15 cm represents a sedimentation period of 18 years.

2.2 Extraction of total P using NaOH-EDTA solution

As shown in Table 1, the concentrations of total P extract-
ed by NaOH-EDTA had a decreasing trend with sediment
depth which is similar to that of total P in sediments (Xu
et al., 2012). The values decreased from ∼440 mg/kg in
the uppermost layers to ∼240 mg/kg in the deepest layers.
The extracted total P accounted for 29%–43% of the total
P in the sediments. The recovery rate decreased from 43%
to 37% in the upper 2.0 cm, but below this it showed a
small fluctuation until a depth of 10.0 cm. After this depth,
it decreased sharply from 36% to ∼30%.

The single-step NaOH-EDTA extraction used in this
study is currently the most common preparation technique
for solution 31P NMR analysis of sediment organic P.

Its use can achieve a greater recovery and diversity of P
compared to the use of NaOH due to the chelating ability of
EDTA (Cade-Menun and Preston, 1996; Xu et al., 2012).
In this study, the recovery rates of total P were within the
reported rates based on investigation of 45 different lake
sediments and 7 artificial landscape lakes, where most of
the recovery rates were less than 50% (Liu et al., 2009;
Ding et al., 2010a). These low recovery rates demonstrat-
ed that the extraction and associated 31P NMR analysis
could only provide molecular information on a portion
of organic P in sediments. Larger decreases in extraction
rates were reported from NaOH-EDTA extraction of a
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Fig. 1 Concentrations of 210Pbex in the sediment profile investigated.

Table 1 Concentrations of individual P fractions and their sum in the sediment profile according to solution 31P NMR analysis

Depth Total Pa Extracted total Pb Individual P fraction (mg/kg)
(cm) (mg/kg) (%) (mg/kg) Orthophos- Orthophosphate Phospho- DNA Pyro- Poly- Phos-

phate monoesters lipids phosphate phosphate phonates

0–0.5 1036 443.8 (42.8) 297.9 79.9 10.14 14.59 27.13 6.74 7.37
0.5–1 1004 425.4 (42.4) 307.0 69.1 8.46 16.11 23.76 n.d. 1.02
1–1.5 1051 427.7 (40.7) 326.4 60.3 9.68 10.20 17.30 3.78 n.d.
1.5–2 1085 399.6 (36.9) 325.1 48.0 8.22 5.59 12.72 n.d. n.d.
2–2.5 1061 408.3 (38.5) 332.8 51.6 6.13 6.95 10.80 n.d. n.d.
2.5–3 1008 382.2 (37.9) 314.6 48.1 6.52 5.27 7.73 n.d. n.d.
3–3.5 994 362.5 (36.5) 308.0 41.4 3.62 6.81 2.65 n.d. n.d.
3.5–4 946 308.1 (32.6) 250.4 42.4 4.44 5.98 2.94 n.d. 1.89
4–4.5 950 342.3 (36.0) 265.7 53.5 8.25 6.06 8.30 n.d. 0.47
4.5–5 968 327.8 (33.9) 254.8 51.7 9.50 8.52 3.23 n.d. n.d.
5–5.5 892 301.9 (33.8) 244.6 45.0 4.94 7.43 n.d. n.d. n.d.
5.5–6 927 296.9 (32.0) 236.3 44.5 7.38 7.42 1.37 n.d. n.d.
6–6.5 844 276.8 (32.8) 215.5 43.9 7.49 8.21 n.d. n.d. 1.70
6.5–7 853 311.6 (36.5) 247.1 47.0 5.25 10.10 2.21 n.d. n.d.
7–7.5 865 314.0 (36.3) 240.0 54.6 8.97 9.14 1.26 n.d. n.d.
7.5–8 850 291.6 (34.3) 244.2 33.7 6.44 7.29 n.d. n.d. n.d.
8–8.5 814 286.1 (35.1) 224.3 49.8 7.28 4.72 n.d. n.d. n.d.
8.5–9 835 298.9 (35.8) 233.5 50.8 7.17 7.46 n.d. n.d. n.d.
9–9.5 802 287.0 (35.8) 224.7 50.0 6.35 3.89 2.02 n.d. n.d.
9.5–10 817 295.9 (36.2) 226.7 47.4 7.37 12.45 1.96 n.d. n.d.
10–12.5 772 221.2 (28.6) 182.8 35.0 1.44 1.96 n.d. n.d. n.d.
12.5–15 792 244.7 (30.9) 195.9 40.8 3.92 4.06 n.d. n.d. n.d.

a Cited from previous publication of Xu et al. (2012); b extraction rate based on total P in sediments.
n.d.: not detected.
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Fig. 2 31P NMR spectra of NaOH-EDTA extracts from the sediment profile investigated.

sediment profile in the Baltic Sea (Ahlgren et al., 2006),
and NaOH extractions of two sediment profiles in Lake
Erken (Ahlgren et al., 2005). Since an extraction with an
alkaline solution (e.g., 0.1 mol/L NaOH) could recover
the labile P fraction (especially labile organic P fractions)
in sediments (Rydin, 2000), the decrease in extraction
rates reflected the fact that P in the sediments became
increasingly recalcitrant as the early diagenetic processes
proceeded. This change agreed with the transformation
of organic P from labile to recalcitrant forms as revealed

previously (Xu et al., 2012).

2.3 Organic P species in sediments

Results from 31P NMR analyses are listed in Table 1
and Fig. 2. The results showed that P in the extracts was
composed of orthophosphate (6 to 7 ppm), orthophosphate
monoesters (4 to 6 ppm), phospholipids (1 to 3 ppm), DNA
(0 ppm), pyrophosphate (–3.5 to –4.5 ppm), polyphosphate
(–17 to –19 ppm) and phosphonates (18 to 20 ppm).
Polyphosphate and phosphonates were only detected in a
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few sediment layers. Orthophosphate was the dominant
fraction (on average 79%) of all P compound groups
detected, followed by orthophosphate monoesters (15%),
DNA (2.3%), pyrophosphate (2.1%) and phospholipids
(2.0%).

The diversity of P compound groups determined by
31P NMR was in accordance with a previous report on
surface sediments (1 cm) in Lake Taihu (Bai et al., 2009).
Orthophosphate monoesters constitute a dominant part
of organic P detected. Jørgensen et al. (2011) identified
that this P group was mainly composed of myo-inositol
hexakisphosphate, scyllo-inositol hexakisphosphate, α-
glycerophosphate and β-glycerophosphate, but the latter
two compounds were most likely degradation products of
phospholipids caused by the alkaline extraction. Inositol
hexakisphosphates were found to be highly stable in the
sediment profile. Taking their stability into consideration,
myo-inositol hexakisphosphate has been recommended as
a paleo-indicator to reflect historical changes in P inputs
to water bodies in brackish sediments (Turner and Weck-
ström, 2009).

Both phospholipids and DNA belong to the group
orthophosphate diesters. This P group is much less stable
than that in orthophosphate monoesters because its P–O
bond is easily broken. Its lower charge density also reduced
its binding affinity with sediment solids and caused it to
be less resistant to microbiological degradation (Leytem et
al., 2002). Polyphosphates and phosphonates were rarely
detected in the sediments, which was attributed to their low
abundances (Bai et al., 2010). The two P compound groups
were also scarcely detected in other lakes in China (Zhang
et al., 2009; Ding et al., 2010a).

2.4 Changes of organic P species with sediment depth

Concentrations of the major organic P compound groups,
including orthophosphate monoesters, phospholipids and
DNA, showed a decreasing trend with the increase of
depth in the upper 2 cm layers (Table 1). Concentration
of pyrophosphate had a sharper decrease in the upper 3.5
cm layers. The depth attenuations of these P compound
groups have been observed in sediments of Lake Erken
(Ahlgren et al., 2005; Reitzel et al., 2007) and the Baltic
Sea (Ahlgren et al., 2006).

The attenuation rate of a P compound in sediments
can be described using its half-life time (Ahlgren et al.,
2005). The half-life time is determined by plotting the
concentration of the P compound versus sediment age.
Their relationship is fitted using an exponential regression
curve. The half-life time is then calculated using τ =
ln2/k, while k (yr−1) is the rate constant in the exponential
equation of the regression curve.

The half-life times of the major P compound groups
detected in this study were estimated using the method
mentioned above. They varied from 3 to 27 years,
following the order of orthophosphate monoesters > phos-

Table 2 Half-life time (yr) of P compound groups comparison

Species Lake Taihua Lake Baltic

Time p-Value Erkenb Seac

Orthophosphate monoesters 27 < 0.01 23 16
Phospholipids 14 < 0.01

21d
5

DNA 12 < 0.01 8
Pyrophosphate 3 < 0.001 13 3

a From this study; b from Ahlgren et al., 2005; c from Ahlgren et al., 2006;
d calculated based on orthophosphate diesters.

pholipids > DNA > pyrophosphate (Table 2). This order
was similar to those detected in sediments of Lake Erken
and the Baltic Sea (Ahlgren et al., 2005, 2006). The half-
life time of pyrophosphate found in this study was the same
as that in the Baltic Sea. Both were much shorter than
that in Lake Erken. The half-life time of orthophosphate
monoesters in Lake Taihu was longer than those in Lake
Erken and the Baltic Sea, while those of orthophosphate
diesters were intermediate between them. Taking the pos-
sibly large differences of the three benthic environments
into consideration, the half-life times of each P compound
group in these sediments were still comparable.

2.5 Relationship between 31P NMR-detected organic P
species and fractionated organic P forms

To understand the relationship between organic P fractions
measured at the solid-bound and molecular levels in the
sediments, principal component analysis (PCA) was per-
formed on the concentrations of each P fraction detected by
31P NMR and chemical fractionation techniques (Xu et al.,
2012). Three principal components (PC1, PC2 and PC3)
were extracted and accounted for 82% of the total varia-
tion (Fig. 3). Both orthophosphate and the major bound
forms of inorganic P (NaOH-RP and HCl-RP, referring to
organic matter- and reactive metal oxide-bound inorganic
P, respectively) were largely controlled by PC1 and could
be combined into a group. This behavior reflected the fact
that the two bound RP forms were mostly orthophosphate.
Orthophosphate monoesters, phospholipids and DNA were
controlled by both PC1 and PC2, and could be combined
into another group. This group represented the variation in
organic P fractions.

Fulvic acid- and humic acid-associated organic P
(abbreviated as NaOH-NRPFA and NaOH-NRPHA respec-
tively) were adjacent to the orthophosphate and organic P
groups, respectively, in the component plot, demonstrating
that the two bound organic forms were dominated by
orthophosphate and organic P compounds. This result was
in accordance with the findings of Reitzel et al. (2006,
2007) based on solution 31P NMR analyses of the sedi-
ments of Lake Erken. The authors found that the precipitate
from NaOH extracts of the sediments was primarily com-
posed of organic P compounds, whereas the supernatant
contained a much higher proportion of orthophosphate.
This reflected an error of the fractionation technique in
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Fig. 3 Principal component analysis (PCA) of the individual P fractions
measured by chemical fractionation and solution 31P NMR.

differentiating organic P pools in sediments. The defined
NaOH-NRPFA should be rich in other P species, such as
polyphosphate and some inorganic phosphates associated
with organic macromolecules and mineral colloids (Turner
et al., 2006). HCl-NRP and residual organic P (Res-TP)
exhibited very different variations from the above two
groups, demonstrating that the two bound forms of organic
P had different sources compared to the 31P NMR-detected
fractions.

2.6 Mechanisms involved in the depth attenuation of
organic P species

The depth attenuation of organic P species in sediment
profiles was generally attributed to their degradation dur-
ing early diagenetic processes (Ahlgren et al., 2005, 2006;
Reitzel et al., 2007). However, the information from 31P
NMR measurement was limited to a portion of organic P
extracted from sediments as mentioned earlier. Since the
behaviors of organic P compounds in sediments are simul-
taneously controlled by degradation and immobilization
processes, a better understanding of organic P in sediments
requires the dynamical information at the solid-bound and
molecular levels.

In this study, the PCA showed that the composition of
NaOH-NRPHA was dominated by organic P compounds.
Since both the NaOH-NRPHA and the 31P NMR-detected
organic P fractions were extracted by alkaline solutions
(0.5 mol/L NaOH and 0.25 mol/L NaOH-50 mmol/L ED-
TA, respectively), they should have similar binding phases
in sediments. Consequently, the measurements with 31P
NMR provided the organic P species information for the
NaOH-NRPHA pool. Since a previous study on the same
sediment profile has revealed consistent transformations
of organic P from the labile NaOH-NRPHA pool to the
recalcitrant HCl-NRP and Res-TP pools (Xu et al., 2012),
transfers of organic P compounds should have occurred
among these binding phases, enabling them to be im-

 NaOH-NRPHA HCl-NRP and Res-TP

Organic P

compounds 

Inorganic P

Depth attenuation of organic P  

from 31P NMR measurement  

Degradation

Fig. 4 A schematic of the mechanisms involved in the depth attenuation
of organic P species in sediments detected by solution 31P NMR.

mobilized increasingly in sediments. This immobilization
process made the organic P compounds more recalcitrant
in sediments and resulted in the decrease in recovery rate
of total P from the NaOH-EDTA extraction (Table 2). This
hypothesis was strongly supported by the major decreases
in the concentrations of organic P species and the recovery
rate of NaOH-EDTA extraction at the same depths (0–
2 cm and 10–15 cm) (Table 1). Consequently, the depth
attenuation of the 31P NMR-detected organic P species was
to a considerable extent attributed to their increasing im-
mobilization by the sediment solids, while the degradation
rates of these organic P species in sediments should be
significantly lower than what were suggested in previous
studies (Fig. 4).

3 Conclusions

A single-step NaOH-EDTA extraction recovered 29%–
43% of the total P in the sediments. The recovery rate
had a decreasing trend with sediment depth. The solution
31P NMR analyses showed that P in the NaOH-EDTA
extracts was composed of orthophosphate, orthophos-
phate monoesters, phospholipids, DNA, pyrophosphate,
polyphosphate and phosphonates. Concentrations of the
major organic P compound groups and pyrophosphate
showed a decreasing trend with increasing depth. Their
half-life times varied from 3 to 27 years, following
the order orthophosphate monoesters > phospholipids >
DNA > pyrophosphate. The PCA showed that the 31P
NMR-detected organic P fractions had binding phases
in sediments similar to those of NaOH-NRPHA. Taking
the transformation of NaOH-NRPHA to the recalcitrant
HCl-NRP and Res-TP pools into consideration, the depth
attenuation of the organic P species was to a considerable
extent attributed to their increasing immobilization by the
sediment solids.
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