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Abstract
Enzymatic decolourization of the azo dye, Direct Yellow (DY106) by Cucurbita pepo (courgette) peroxidase (CP) is a complex process,
which is greatly affected by pH, temperature, enzyme activity and the concentrations of H2O2 and dye. Courgette peroxidase was
extracted and its performance was evaluated by using the free-CP (FCP) and immobilized-CP (ICP) forms in the decolourization of
DY106. Immobilization of peroxidase in calcium alginate beads was performed according to a strategy aiming to minimize enzyme
leakage and keep its activity at a maximum value by optimizing sodium alginate content, enzyme loading and calcium chloride
concentration. The initial conditions at which the highest DY106 decolourization yield was obtained were found at pH 2, temperature
20°C, H2O2 dose 1 mmol/L (FCP) and 100 mmol/L (ICP). The highest decolourization rates were obtained for dye concentrations 50
mg/L (FCP) and 80 mg/L (ICP). Under optimal conditions, the FCP was able to decolorize more than 87% of the dye within 2 min.
While with ICP, the decolourization yield was 75% within 15 min. The decolourization and removal of DY106 was proved by UV-Vis
analysis. Fourier transform infrared (FT-IR) spectroscopy analysis was also performed on DY106 and enzymatic treatment precipitated
byproduct.

Key words: Cucurbita pepo; peroxidase; immobilization; decolourization; azo dye
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Introduction

Wastewater effluents from different industries including
dyeing, textile, dye manufacturing, leather, cosmetics, food
processing and paper are considered as main sources of dye
pollution (Bhatnagar and Jian, 2005). There are more than
105 kinds of commercially available dyes with over 8 ×105

metric tons of dye stuffs is lost and released to industrial
effluents (Palmieri et al., 2005). Nearly a half of all known
dyestuffs are azoic type, which makes them the most
abundant group of synthetic dyes (Selvam et al., 2003).
These dyes can be hardly degraded in the environment
because of their resistance to the oxidizing agents, light
and water due to their chemical structure (O’Neill et al.,
1999). The decolourization of azo dyes by microorganisms
usually starts by reductive cleavage of azo bond under
anaerobics conditions leads to the formation of aromatic
amines which may are toxics on microorganisms (Gottlieb

* Corresponding author. E-mail: aseoud2002@yahoo.fr

et al., 2003). Even though, the physical and chemical
methods have been applied in most studies (Robinson et
al., 2001; Lin and Chen, 1997; Zhang et al., 2009), they
present some drawbacks of being economically unfeasible,
and being unable to completely remove the recalcitrant
azo dyes and/or their organic metabolites, generating an
important amount of sludge that may cause secondary
pollution problems (Forgacs et al., 2004; Zhang et al.,
2004). One approach that is more advantageous is the
use of enzyme-based methods, which generate compounds
with lower toxicity and a minimal impact on ecosystems.
They also present some other interesting properties as low
energy requirements, easy process control and operation
over a wide range of pH, temperature and ionic strength.
Furthermore, enzymes are active in the presence of high
concentrations of organic solvents in which hydrophobic
molecules are soluble. In addition, enzyme-based treat-
ments used alone could be sufficient when the enzymes
transform toxic compounds to less harmful products. In
this case, complete degradation of the contaminants is
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therefore not necessary (De Souza et al., 2007; Khouni
et al., 2011; Husain, 2006; Shaffiqu, 2002). Peroxidases
are among the oxidative useful enzymes in wastetreat-
ment. Among the heme-containing peroxidases, those
from plants, fungi, and bacteria share similar amino acid
sequences and similar catalytic activities, but are slightly
different in terms of substrate specificities and subsequent
reaction products (Welinder, 1992). Removal of complex
azo dyes by peroxidases from plants such as horse radish
horse radish, turnip and bitter gourd, was thoroughly stud-
ied (Bhunia et al., 2001; Shaffiqu et al., 2002). Peroxidase
can act on the soluble azo dye substrate in the presence of
hydrogen peroxide, leading to a non soluble product which
can be easily removed by precipitation or filtration. The
high commercializing costs for applying horse radish led
to the search for alternative cheaper sources of plant PODs
to substitute HRP in various applications. Crude or puri-
fied extracts of several vegetables such as peach (Prunus
persica), yam (Alocasia macrorhiza), manioc (Manihot
utilissima), artichoke (Cynara scolymus L.), sweet potato
(Ipomoea batatas (L.) Lam.), turnip (Brassica campestre
ssp. rapifera), and zucchini (Cucurbita pepo) were also
investigated as the source of peroxidase. Among those,
zucchini (Cucurbita pepo) peroxidase represents one of
the highest activities, thermal and chemical stabilities
(Ghaemmaghami et al., 2010; Neves et al., 2012).

Enzyme recovery and substrate inhibition which are
the major constraints in enzymatic process development
could be easily overcome by immobilization on various
supports (Akhtar et al., 2005b; Mohan et al., 2005; Shakeri
and Shoda, 2010). Immobilization into calcium alginate
beads represents however several advantages such as high
support porosity and chemical stability, with a mild, fast,
simple and low cost immobilization method (Alemzadeh
and Nejati, 2009; Taqieddin and Amiji, 2004; Mohan et
al., 2005).

The purpose of the present study, was firstly, to extract
a peroxidase from fruit organs of Cucurbita pepo, then
optimize its immobilization in beads of calcium alginate.
Secondly, we attempted to apply the free and immobilized
form of peroxidase on a Direct Yellow (DY106) dye solu-
tion from the class of azo dye. Effects of parameters such
as: aqueous phase pH, temperature, substrates and enzyme
concentrations, contact time, have been investigated to
optimize the reaction conditions. The reusability of immo-
bilized enzyme in repeated batch processes was also tested.
Products of enzymatic transformation were analyzed by
Fourier transform infrared (FT-IR) and compared with
DY106 dye.

1 Materials and methods

1.1 Chemicals

Direct azo dye: C.I. Direct Yellow 106 (DY106), from
stilbene azo dye, was provided by SOITEX (textile man-

ufacturing unit located to Tlemcen, in Algeria and which
was purchased from Ciba Colors Ltd. The DY106 was
chosen since it was widely used to color cotton and silk.

Acetone, hydrogen peroxide, calcium chloride were
obtained from Sigma Chemical Co. (St. Louis, MO, USA).
All others chemicals were of analytical grade and were
used without further purification.

C-Peroxidase was extracted from fresh vegetal courgette
which was collected from local market.

1.2 Methods

1.2.1 Acetone precipitation of courgette peroxidase

Courgette (100 g) was homogenized in a blender with 200
mL of 50 mmol/L of cold phosphate buffer pH 7. The
extract was filtered through multi-layers of cheese cloth.
The obtained solution is considered as a crude courgette
peroxidase (C-peroxidase). The filtrate thus obtained was
subject to acetone precipitation by drop wise addition
under permanent agitation at 0°C. The precipitate was
collected by centrifugation at 4000 r/min for 30 min at
4°C. The obtained precipitate was redissolved in 100 mL
of 50 mmol/L of phosphate buffer pH 7 (Şimşek and
Yemenicioğlu, 2005). This solution was considered as a
partially purified C-peroxidase.

1.2.2 Entrapment of C-peroxidase in alginate gel

Peroxidase immobilization was realized by entrapment
in calcium alginate (Ca-alginate) beads according to the
method described by Nigma et al. (1988). The optimization
strategy was similar to that described by other authors
(Won et al., 2005; Cheirsilp et al., 2009; Ozyilmaz and
Gezer, 2009). The aim was to retain maximum enzyme
at the highest activity with minimum leakage. Sodium
alginate was dissolved in 10 mL of enzymatic solution
containing (2.53 ± 0.08) UI/mL, and kept under mag-
netic stirring. The solubilization process lasted 2 hours
to prepare different alginate/enzyme solutions (1%, 2%,
3% and 4% (W/V)). Finally, the gel mixture was dropped
through a syringe into 50 mL of calcium chloride (CaCl2)
solution (100, 200 and 300 mmol/L). The mixture was
kept under permanent magnetic agitation 250 r/min for
2 hr (Alemzadeh and Nejati, 2009), forming beads of
1.7–2.5 mm diameter. The beads were separated from
CaCl2 solution by vacuum filtration, washed twice with
distilled water and kept in phosphate buffer solution pH
7 at 4°C. The immobilization efficiency and the retained
activity were calculated from Eqs. (1) and (2). Enzyme
leakage estimation was carried out by placing beads in a
test tube with phosphate buffer pH 7 during 24 hr. Beads
were then removed and released enzyme activity in the
buffer solution was measured by phenol-4 aminoantipyrine
method (Nicell and Wright, 1997). Immobilization effi-
ciency (IE), retained activity (RA) and enzyme leakage EL
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were calculated by the following equations:

IE (%) =
(

A0 × V0 − AF × VF

A0 × V0

)
× 100 (1)

RA (%) =
(

Aimm × Vimm

A0 × V0 − AF × VF

)
× 100 (2)

EL (%) =
A24 hr

buffer − At=0
buffer

At=0
buffer

 × 100 (3)

where, A0, Aimm and AF are activities of C-peroxidase so-
lution, immobilized C-peroxidase and filtrate respectively,
V0, Vimm and VF are the volumes of C-peroxidase solution,
immobilized C-peroxidase and filtrate respectively, At=0

buffer
and A24 hr

buffer are activities of C-peroxidase in buffer solution
at initial time and after 24 hr respectively.

The stability of free and immobilized enzyme was
studied by incubating separately 15 g of immobilized C-
peroxidase immobilized C-peroxidase (ICP) in 50 mL of
50 mmol/L of phosphate buffer pH 7 and 150 mL of free C-
peroxidase (FCP) at 4°C. The activity was assessed daily
for both FCP and ICP in the buffer solution during three
months.

1.2.3 C-peroxidase activity assay
Activities of crude, partially purified free and immo-
bilized C-peroxidase were assessed by employing 4-
aminoantipyrene method involving colorimetric estimation
using phenol and hydrogen peroxide as substrates and 4-
aminoantipyrene as chromogen (Nicell and Wright, 1997).
Peroxidase activity was measured from the change in the
optical density (A517 nm) at 25°C by adding phosphate
buffer pH 7.4 containing reagents with time. One unit of
peroxidase activity was defined as 1 µmol/(min·mL) (for
enzyme solution) or 1 µmol/(min·g) (for enzyme beads)
of hydrogen peroxide transformed at 25°C and pH 7.4
respectively. For ICP, enzyme activity (EA, IU/g support)
was reported to beads mass (msupport) as shown in Eq. (4)
(Yücel et al., 2011):

EA =
Aimm

msupport
(4)

Protein concentration in FCP was determined according
to the Bradford method (Bradford, 1976). Bovine serum
albumin was used as standard for making a calibration
curve.

Specific activity (SA) giving the degree of purification
was calculated by the following equations:

SAPPE =
APPE

Cprotein
(5)

Purification fold (%) =
SAPPE

SACE
(6)

where, APPE (UI/mL): activity of partially purified C-
peroxidase; SAPPE (IU/mg): specific activity of partially
purified C-peroxidase; Cprotein (mg/mL): protein con-
centration; SACE (UI/mg): specific activity of crude
C-peroxidase.

1.2.4 Dye enzymatic degradation
Experiments were conducted to compare the capacities of
the free and immobilized forms of C-peroxidase in the
decolourization reaction of DY 106. Batch experiments
were conducted in glass beakers containing 100 mL of
the reaction synthetic mixture under permanent magnetic
agitation at 300 r/min for a fixed duration. The reaction
was then started by adding 0.48 UI/mL of FCP and 0.32
UI/g of ICP.

These experiments were carried out to study effect of
parameters, such as initial conditions of DY106 concen-
tration (10–160 mg/L), H2O2 dose (0.1–100 mmol/L),
temperature (20–80°C) and initial pH fixed in range of 2 to
10 on decolourization efficiency and initial decolourization
rate.

The effect of pH was investigated by choosing dif-
ferent types of buffer solutions including: 50 mmol/L
of potassium chloride/HCl buffer (pH 2), 50 mmol/L of
hydrochloric acid/phthalate buffer (pH 3 and pH 4), 50
mmol/L of phosphate buffer (pH 6, 7 and 8), 50 mmol/L of
borax/NaOH buffer (pH 9 and 10). After centrifugation at
4000 r/min for 10 min, the residual dye concentration after
treatment with free and immobilized C-peroxidase was
carried out by UV-Vis spectrophotometer (Perkin-Elmer
550A) at the maximum wavelengths 396 nm. The initial
decolourization rate (IDR) on treated dye by FCP and ICP
was calculated from the slope of the dye concentration
versus time, at the beginning of decolourization. The
decolourization efficiency (DE) with both FCP and ICP
was calculated from Eq. (7):

DE (%) =
(

A0 − At

A0

)
× 100 (7)

where, A0 and At were the absorbance at 396 nm of dye
before and after treatment.

1.2.5 Dye decolourization reusability of immobilized C-
peroxidase

Experiments were performed repeatedly using the same
sample of ICP (0.32 UI/g) in five consecutive agitated
batches during 30 min in the presence of 100 mmol/L
H2O2 in pH 2 buffer solution. Once reaction was com-
pleted, beads containing ICP were separated from the
mixture, washed with distilled water, and used again in
a fresh decolourization medium. Dye decolourization was
monitored by UV-Vis at λmax (396 nm) at the end of each
batch.
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2 Results and discussion

2.1 Purification efficiency by acetone precipitation
method

Partially purified peroxidase extracted from Cuccurbita
pepo was obtained by a simple, economic and less dena-
turing method. Enzymatic and specific activities of crude
and partially purified C-peroxidase are shown in Table 1.
It shows that the C-peroxidase acetone powder specific
activity increased when compared to crude enzyme extract
by 1.34 fold. Besides, partially purified peroxidase showed
greater storage stability.

2.2 Optimization of C-peroxidase immobilization con-
ditions

Spherical particles having a mean diameter of 2 ± 0.2 mm
were obtained by a simple inclusion method with no risk
of denaturation or inactivation.

Effects of alginate and CaCl2 concentrations on immo-
bilized C-peroxidase activity, retained activity and enzyme
leakage were investigated by the one factor at a time
method (Won et al., 2005; Ozyilmaz and Gezer, 2010).
Results are illustrated in Table 2.

For a fixed FCP activity of (2.53 ± 0.08) IU/mL,
different concentrations of sodium alginate and calcium
chloride solution were used to obtain the optimal con-
dition for producing immobilized biocatalysts which are
effective in dye removal from aqueous phase. From Ta-
ble 2, immobilization efficiencies were not significantly
affected by alginate concentration. The values were in the
range of 86.70%–92.48%. Nevertheless, the immobilized
C-peroxidase activity decreased. This might be due to a
limitation of substrate transfer from the bulk phase into the
alginate bead to access the enzyme (Cheirsilp et al., 2009).
A significant decrease in enzyme leakage (more than 47%),
was detected when alginate concentration increased to 2%
(W/V), at constant calcium chloride concentration.

No significant change was detected in enzyme leakage
when varying CaCl2 concentration. The maximal retained
activity of ICP was reached at 200 mmol/L and 2% (W/V)
of calcium chloride and sodium alginate concentrations
respectively. The effect of enzyme concentration on C-
peroxidase immobilization was determined by varying
enzyme concentrations while keeping the alginate and
CaCl2 concentrations at the optimal level. With increasing
enzyme concentrations, the ICP activity and retained activ-
ity also increased but they were stabilized at FCP activity

Table 1 Results of Cucurbita pepo peroxidase purification

Sample Activity Protein Specific activity Purification
(IU/mL) (mg/mL) (IU/mg) fold

Crude extract 2.19 2.63 0.83 1
of C-peroxidase

Partially 1.39 1.24 1.12 1.34
purified C-peroxidase

of 1.4 IU/mL. This could be due to diffusion limitations
of the substrate in alginate gel. In conclusion, the best
biocatalyst performance including higher IE, RA and lower
EL were achieved when calcium chloride and sodium
alginate concentration were 200 mmol/L and 2% (W/V)
respectively and activity of FCP was 1.4 IU/mL. The
prepared ICP under optimal conditions, could be stored
at 4°C in pH 7 buffer solution for three months with no
significant changes in either enzyme leakage (< 5%) or
loss of activity (< 10%).

2.3 DY106 degradation by free and immobilized C-
peroxidase

2.3.1 Effect of pH
The effect of pH on DY106 degradation was investigated
by incubating separately 0.28 IU of FCP or 0.16 IU of
ICP at 20°C in a reaction mixture containing 50 mg/L of
DY106 and 5 mmol/L of H2O2. The pH of solutions was
kept constant between 2 and 10. The mixture was kept
under constant agitation 100 r/min for one hour. The effect
of pH on decolourization efficiency is depicted in Fig. 1.

For FCP, 73.71% of dye decolourization was obtained
with an acidic medium (buffer pH = 2). Dye removal
efficiency decreased rapidly from pH 2 to 5, then less
dramatically between pH 5 and 8, followed by a decrease
down to less than 20% from pH 8 to 10. In a similar study
with the enzyme HRP, Bhunia et al. (2001) found that
the maximum degradation yield of Remazol blue by free
HRP was obtained at pH 2.5. Similar results were obtained
by treating other azo dyes (Turquoise Blue G133, Lanaset
Blue 2R and Direct Yellow 12) with HRP as a catalyst (De
Souza et al., 2007; Maddhinni et al., 2006)

On the other hand, with ICP (Fig. 1), about 51% of
the dye was removed at pH 2. Increasing pH above 2
conducted to a slight decrease down to 10%–20% in
decolourization efficiency (from pH 2 to 6, removal de-
crease was about 15%). Thus, alginate entrapped enzyme
presented a certain stability against changing acidity. The
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Fig. 1 Effect of pH on dye decolourization by free C-peroxidase (FCP)
and immobilized C-peroxidase (ICP).
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Table 2 Immobilization efficiency (IE), immobilized C-peroxidase and retained activities (RA) and enzyme leakage (EL) of alginate beads obtained
under different gelation conditions

Test 1 Sodium alginate concentration at calcium chloride 100 mmol/L, FCP = 2.53 IU/mL
1%, w/V 2%, w/V 3%, w/V 4%, w/V

IE (%) 86.70 ± 4.94 90.43 ± 4.01 89.48 ± 3.06 92.48 ± 5.36
IEA (IU/g) 0.47 ± 0.04 0.37 ± 0.08 0.13 ± 0.02 0.02 ± 0.006
RA (%) 19.17 ± 1.69 16.16 ± 1.52 7.77 ± 1.05 5.99 ± 0.10
EL (%) 9.52 ± 0.05 14.97 ± 0.05 3.97 ± 0.01 1.25 ± 0.02

Test 2 Calcium chloride at sodium alginate concentration = 2% (w/V), FCP = 2.53 IU/mL
100 mmol/L 200 mmol/L 300 mmol/L

IE (%) 90.34 ± 4.01 82.42 ± 3.39 88.90 ± 4.55
IEA (IU/g) 0.37± 0.08 0.41 ± 0.03 0.16 ± 0.01
RA(%) 16.16 ± 1.52 13.64 13.76 ± 2.04
EL (%) 14.97 ± 0.05 4.19 ±0.38 4.95 ± 0.11

Test 3 FCP at sodium alginate concentration 2% (w/V), calcium chloride 200 mmol/L
0.45 IU/mL 0.98 IU/mL 1.4 IU/mL 2.53 IU/mL

IE (%) 84.33 ± 4.95 90.69 ± 2.03 89.14 ± 3.59 82.42 ± 3.39
IEA (IU/g) 0.02 ± 0.001 0.22 ± 0.01 0.38 ± 0.02 0.41 ± 0.03
RA (%) 4.25 ± 1.65 22.77 ± 1.76 29.25 ± 2.41 13.64 ± 2.05
EL (%) 2.43 ± 0.06 2.19 ± 0.55 3.79 ± 0.13 4.19 ± 0.38

reincreasing yield between pH 8 and 9 could be due to
isoenzymes. Mohan et al. (2005) obtained the maximum
of decolourization of Acid Black 10BX, by free and
immobilized HRP in alginate at pH 2, with decreasing
in decolourization efficiency on immobilized compared to
free enzyme.

2.3.2 Effect of contact time

Series of mixtures containing different initial concentra-
tion of dye (10–160 mg/L), H2O2 5 mmol/L, FCP (0.28
IU) or ICP (0, 16 IU), were prepared. Temperature was
maintained at 20°C under constant magnetic agitation (200
r/min) at pH 2 during one hour. At 5 min time intervals,
the reaction was stopped and solution was analyzed for the
residual dye concentration. Figure 2a shows a rapid dye
decolourization was recorded during the first 5 min, for
all dye concentrations. With an initial dye concentration
of 25 mg/L, more than 80% of color was removed within

5 min. After this period, a negligible dye removal was
noticed up. Decolourization yield was significantly related
to initial dye concentration. Tests with ICP showed that the
decolourization process could take more time to achieve
the highest yield (Fig. 2b). Equilibrium time was 30 min.
and the highest yield was obtained at 25 mg/L initial
concentration. This could be due to diffusional limitations
in alginate beads. Similar results were noted, where the
reaction profile of Acid Black BX 10 decolourization with
alginate immobilized HRP reached an optimal decolour-
ization yield of 54% after 45 min against 67% removed by
the free form (Mohan et al., 2005).

2.3.3 Effect of temperature

Effect of temperature was investigated for a reaction mix-
ture containing 50 mg/L DY106, H2O2 (5 mmol/L), FCP
(0.28 UI),or ICP (0.16 UI). Contact time was fixed at 5
min for FCP and 30 min for ICP. Figure 3 shows the
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Fig. 2 DY106 decolourization efficiency (DE) kinetics by FCP (a) and ICP (b) at different dye concentrations.
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Fig. 3 Effect of temperature on decolourization efficiency (DE) of
DY106 by FCP and ICP.

variation of decolourization efficiency (DE) at different
temperatures for DY106 treatment by FCP and ICP. The
optimal temperature was 40°C, corresponding to more than
84% and 52% of dye removal by FCP and ICP respectively.

Above 40°C, the DE with FCP decreased dramatically
(up to 40% loss) due to enzyme partial denaturation.
This decrease was less pronounced with ICP (less than
10%) when temperature was increased from 40°C to 60°C.
The enzyme is more protected in alginate gel against
temperature increase. The immobilization in alginate beads
significantly improves the thermal stability of the peroxi-
dase. The greater stability of the entrapped enzyme may be
ascribed to the stabilizing effects of immobilization (Cao,
2005).

2.3.4 Effects of dye, H2O2 and enzyme concentrations

The optimization of dye decolourization was carried out
for the same conditions as mentioned earlier with fixed
duration 5 and 30 min by FCP and ICP, respectively.
High decolourization by C-peroxidase was achieved at
low concentration of DY106. DE dropped at higher dye
concentrations (Fig. 4). However, initial decolourization
rate increased with increasing concentration as also ob-
served in decolourization by other peroxidases (Alam et

al., 2009; Yu et al., 2006; Yousefi and Kariminia, 2010).
Optimum dye concentration was selected for maximum
initial decolourization rate (IDR) and DE, it has a val-
ue of 50 and 80 mg/L for FCP and ICP respectively
(Fig. 4). For free enzyme, the plot of initial rate vs. dye
concentration follows a hyperbolic pattern as expected for
Michelis-Menten kinetics. The lineweaver-Burke plot of
inverse of initial rate vs inverse of concentration giving the
values of the apparent Michaels constant (KM)app at 0.109
mmole/L and the apparent maximum velocity (Vmax)app
at 0.01 mmole/(L·min). This value is close to that found
by Bhunia et al. (2001) who studied the degradation of
remazol blue by HRP. Values of kinetic parameters were
estimated as: (KM)app 0.04 mmole/L and (Vmax)app 0.015
mmole/(L·min).

In order to find out optimum H2O2 concentration for
maximal degradation, experiments were carried out by
varying concentration of H2O2 from 0.1 to 7.5 mmol/L for
FCP (Fig. 5a) and from 1 to 200 mmol/L in the case of
ICP (Fig. 5b). All other parameters were kept constants
(pH 2, dye concentration: 50 mg/L for FCP and 80 mg/L
for ICP). Reaction time and enzyme activity were fixed
respectively to 5 min and 0.28 IU with FCP and 30 min
and 0.16 IU with ICP. Optimal concentration is obtained
from the intersection of IDR and DE curves.

Initial decolourization rate and decolourization effi-
ciency for the treatment by FCP increased when H2O2
concentration increase from 0.1 to 1 mmol/L, but de-
creased at higher concentrations. Maximum decolouriza-
tion (76.92%) was observed in the presence of 1 mmol/L
H2O2 that was near to those reported by using HRP
(Klibanov et al., 1983) and BGP (Akhtar and Husain,
2006) for phenol removal. Also, the inhibition effect at
high concentrations of H2O2 was observed by Yousefi and
Kariminia (2010) for decolourization of Acid Orange 7 by
Coprinus cinereus peroxidase. The high concentration of
H2O2 acted as an inhibitor of peroxidase activity by irre-
versibly oxidizing the enzyme ferric heme group essential
for peroxidase activity (Duarte-Vázquez, 2001). Thus, im-
mobilization has the advantage to protect enzyme against
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Fig. 5 Effect of hydrogene peroxide concentration on IDR and DE by FCP (a) and ICP (b).

high peroxide concentrations. The optimum H2O2 dose
was 100 mmol/L on ICP corresponding to the maximum
dye removal (70.92%).

To study the effect of C-peroxidase dose on DY106
removal, eight different enzyme concentrations were used.
All other parameters were kept constants at their optimum
values: DY106 50 and 80 mg/L, H2O2 1 and 100 mmol/L
and pH 2. Figure 6a shows that when enzyme concen-
tration was 0.16 IU/mL, the decolourization yield was
only 29%. However, when enzyme activity was increased
to 0.66 IU, the decolourization increased to 47%. The
highest decolourization efficiency (90%) was noticed at
2.25 IU/mL enzyme concentration. Further increase in
enzyme activity did not improve the yield. The enzyme
activity of 2.25 IU/mL was found to be the optimal dose
for experiment conditions. Similar results were found by
Mohan et al. (2005). An enzyme activity of 2.2 IU/mL was
sufficient to remove more than 84% of acid black BX10.
It could be noticed in Fig. 6b that IDR and DE of treated
dye solutions by ICP were lower than those obtained by
FCP. Increasing the activity from 0.025 to 0.5 IU/g resulted
in increasing dye decolourization, after which it remained
constant (76%).

Under optimum DY106 degradation conditions with
FCP and ICP, the residual dye concentration and DE are

reported in Fig. 7.
It was observed that contact time is reduced from 5 to 2

min and from 30 to 15 min for treatment by 2.25 IU/mL
and 0.5 IU/g of FCP and ICP respectively with increasing
decolourization from 73.71% to 89.45% and from 51% to
75.66% for both cases. Different results were found if other
dyes/peroxidase/support systems were used (Mohan et al.,
2005).

2.3.5 UV-Vis and FT-IR spectra analysis
Decolourization tests were carried out under optimum
conditions in order to perform spectral analysis of products
before and after enzymatic treatments. When the reaction
was achieved, the solution was centrifuged at 4000 r/min
during 10 min, the supernatant was analyzed by UV-
Vis spectrophotometer and the precipitate was dried and
analyzed by FT-IR. In Fig. 8, the scanning spectra of dye
solution before and after enzymatic treatment show that
the DY106 spectrum in visible region exhibits a main peak
with a maximum absorbance at 396 nm, the other peaks
indicates the presence of auxiliary chemical substance ini-
tially in the dye sample. Their decrease indicating that they
were removed after enzymatic treatment. The decrease in
peak intensity at λ max was the result of the cleavage of
azo bonds. It could be speculated that azo bonds (–N=N–)
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Fig. 8 UV-Vis spectrum of DY106 dye aqueous solutions before and
after enzymatic treatment by CP under optimum conditions.

of characteristic conjugated chromophores in azo dyes
molecule were broken (Wang et al., 2009). Also, according
to Fig. 8, an extra absorbance peaks appeared in the treated
solution at 265 nm, probably resulting from the absorbance
of metabolites or degraded fragments of the dye molecule
(Wang et al., 2009).

The comparison of FT-IR spectrum (data not shown)
between the dye and its precipitate clearly indicated
the transformation of the parent dye compounds by
peroxidase. The absorption bands in the dye spectrum rep-
resented the stretching vibrations of –C–S– at 613.2 cm−1

and –S=O– at 1199.6 cm−1 as well as a stretching vibration
at 1045.3 cm−1 for –C–N. The stretching vibration of C–H
was reported at 2923.9 cm−1, whereas the band at 1431.1
cm−1 represented –N=N– stretching of azo group. The FT-
IR spectrum of the precipitate showed a significant change
in the band positions compared to dye spectra. The bands
corresponding to azo group disappeared and a new band
appeared at 1649 cm−1 which may be due to the formation
of aromatic compounds like aromatic amines.
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Fig. 9 Reusability of ICP for the treatment of DY106 under optimum
conditions.

2.3.6 Reusability of immobilized C-peroxidase
Experiments were carried out at optimum conditions fixed
for dye treated by ICP. The assay consisted in employing
ICP in repeated batch mode. Beads were separated from
the reaction mixture after 15 min, rinsed with distilled
water, then put in a fresh reaction mixture respecting the
same procedure described previously. Figure 9 shows the
performance stability of ICP in repeated batch treatments
of DY106. After three repeated uses, the ICP retained
87% dye decolourization of its initial capacity. It decreased
to a 36% removal capacity after five uses. This may be
due to inactivation of peroxidase induced by the reaction
metabolites or it could be attributed to the blockage of
pores making the enzyme inaccessible to reaction. Other
investigators for immobilized bitter gourd peroxidase were
found that 59% of textile effluent was removed after eight
repeated uses (Matto and Husain, 2009a, 2009b).
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3 Conclusions

The preparation and optimization of immobilized C-
peroxidase in Ca-alginate beads and application on
treatment of direct azo dye from aqueous solutions was
investigated. The immobilized C-peroxidase and retained
activities and enzyme leakage are influenced by the gel
preparation conditions. The results obtained in the present
study revealed the effectiveness of the free and immo-
bilized C-peroxidase in DY 106 decolourization. The
performance of DY106 removed with the use of free and
immobilized C-peroxidase was found to be highly depen-
dent on dye and enzyme concentrations, aqueous phase
pH and H2O2. The results of spectral analysis indicated
that enzymatic process can cause the disappearance of azo
bond in both the supernatant and the precipitate of treated
dye. The catalytic capacity of peroxidase for dye treatment
with ICP remained relatively constant after three repeated
uses.
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