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Abstract

Sulfur-oxidizing bacteria (SOB) are the main microorganisms that participate in the natural sulfur cycle. To obtain SOB with high
sulfur-oxidizing ability under aerobic or anaerobic conditions, aerobic and anaerobic enrichments were carried out. Denaturing
gradient gel electrophoresis (DGGE) profiles showed that the microbial community changed according to the thiosulfate utilization
during enrichments, and Rhodopseudomonas and Halothiobacillus were the predominant bacteria in anaerobic enrichment and aerobic
enrichment, respectively, which mainly contributed to the thiosulfate oxidization in the enrichments. Based on the enriched cultures, six
isolates were isolated from the aerobic enrichment and four isolates were obtained from the anaerobic enrichment. Phylogenetic analysis
suggested the 16S rRNA gene of isolates belonged to the genus Acinetobacter, Rhodopseudomonas, Pseudomonas, Halothiobacillus,
Ochrobactrum, Paracoccus, Thiobacillus, and Alcaligenes, respectively. The tests suggested isolates related to Halothiobacillus and
Rhodopseudomonas had the highest thiosulfate oxidizing ability under aerobic or anaerobic conditions, respectively; Paracoccus and
Alcaligenes could aerobically and anaerobically oxidize thiosulfate. Based on the DGGE and thiosulfate oxidizing ability analysis,
Rhodopseudomonas and Halothiobacillus were found to be the main SOB in the sulfide-removing reactor, and were responsible for the

sulfur-oxidizing in the treatment system.
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Introduction

Biological oxidation of sulfur is an important metabolic
process in the natural sulfur cycle. The oxidation reac-
tions are performed mainly by sulfur-oxidizing bacteria
(SOB) from the classes Alphaproteobacteria, Betapro-
teobacteria, Gammaproteobacteria, Epsilonproteobacteria,
Chlorobia, and Chloroflexi (Friedrich et al., 2001, 2005).
The electrons derived from sulfide oxidation are used by
aerobic chemotrophic colorless SOB (i.e., Thiobacillus,
Beggiatoa, Halothiobacillus, etc.) for energy transforma-
tion of the respiratory chain and for autotrophic carbon
dioxide reduction; anaerobic phototrophic SOB (green
sulfur bacteria, i.e., Chlorobium, etc.; purple sulfur bac-
teria, i.e., Allohromatium, Halochromatium, Thiocapsa,
etc.) use light energy to transfer electrons from sulfur
or other sources for autotrophic carbon dioxide reduction
(Friedrich et al., 2005; Ghosh and Dam, 2009). Meanwhile,
many heterotrophic SOB were found to participate in
the sulfur-oxidizing process under aerobic and anaerobic

* Corresponding author. E-mail: weitie@21cn.com

conditions (Kantachote et al., 2008; Mahmood et al., 2009;
Potivichayanon, 2005).

Knowledge regarding the ecology of the SOB communi-
ties and abundance in natural or manmade environments is
of great importance for the knowledge of microorganisms
participating in the sulfur cycle, and the design of specific
methods and media to obtain the main SOB with high
sulfur-oxidizing ability. In the present work, to reveal
the SOB community in a sulfide-removing bioreactor and
obtain the main SOB for the further optimization of the
wastewater treatment system, we carried out aerobic and
anaerobic enrichments and analyzed the SOB communi-
ty changes during the enrichments, and developed two
methods to isolate aerobic and anaerobic SOB from the
sulfide-removing bioreactor.

1 Materials and methods

1.1 Sample preparation

Activated sludge samples were collected [from a sulfide-
removing bioreactor (Lin et al., 2010).| Samples from



http://www.jesc.ac.cn

1394 Journal of Environmental Sciences 2013, 25(7) 1393-1399 / Jianfei Luo et al.

Vol. 25

five different sites were obtained in sterile polyethylene
bottles (500 mL volume), and mixed together before being
frozen in an ice cube box (TaKaRa, Dalian, China). After
transport to the laboratory, 100 mL of the sludge samples
were suspended in sterile phosphate buffer solution (PBS,
pH 8.0) with the dilution ratio of 1:10 (W/V) and mixed by
shaking with sterile glass beads. After shaking for 30 min
at 25°, the suspension was collected after allowing mud
particles, stones and sand to settle for 2 min. The suspen-
sion was then transferred to clean tubes, and centrifuged at
6000 xg for 5 min. The pellets were resuspended twice in
100 mL of PBS (pH 8.0) and stored at 4°C until use for
enrichments.

1.2 Media

The aerobic culture medium (ACM) used for enrichment
and isolation of aerobic SOB contained the following com-
ponents at the specified concentrations (in g/L): Na;S,03,
6.00; NaH,PO,4, 1.22; Na,HPO4, 1.39; NH4CI, 1.00;
MgCl,, 0.10; FeCl;, 0.03; CaCl,, 0.03; MnCl,, 0.03;
KNOs;, 0.50; CH3COONa, 1.00; NaHCOs, 2.00. The
anaerobic culture medium (ANCM) used for enrichment
and isolation of anaerobic phototrophic SOB was (g/L):
Na;S,03, 10.00; NaH, POy, 2.45; Na,HPO4, 2.78; NH4Cl,
1.00; MgCl,, 0.50; CH3COONa, 1.00; sodium succinate,
1.00; NaHCOs, 3.00; KNOj3, 0.50; NaCl, 1.00; yeast
extract, 0.50; plus 1 mL of trace element solution which
included (g/L): FeSO4-4H,0, 1.80; CoCl,-6H,0, 0.25;
CuCl,-2H,0, 0.01; NiCl-6H,0, 0.01; MnCl,-4H,O0, 0.70;
ZHCIQ, 010, H3BO3, 050, (NH4)6MO7024'4H20, 010,
EDTA, 2.50; in 1 L distilled water. Because S>~will convert
into H,S and be lost as a gas from aerobic enrichment,
Na,S,05 instead of Na,S was used as the sulfur substance.
Na,S,03 was added aseptically from a sterile stock solu-
tion of 50 g/ Na,;S,0j; to the sterile media. The initial pH
of media was adjusted to 6.8. Agar (2%) was added as a
solidifying agent.

1.3 Enrichment cultures and isolation of pure cultures
from enrichments

A 10-mL of prepared sample was inoculated into Er-
lenmeyer flasks containing 100 mL ACM medium and
ampoule bottles containing 100 mL ANCM medium, re-
spectively. The enrichment for aerobic SOB was cultivated
at 30°C and rotation speed of 180 r/min. Successive
enrichments of aerobic SOB were prepared with 5% (V/V)
culture fluid used as the inoculums for each subculture.
After four successive cultures, 0.1 mL of the enrichment
and diluted samples (1072, 1073, 10™*, and 107°) were
spread onto agar ACM plates and incubated at 30°C for 2—
3 days. Colonies were picked from plates and inoculated in
fresh fluid ACM to determine the sulfur-oxidizing ability.
The enrichment of anaerobic and phototrophic SOB was
cultured in an illumination incubator (BSG-300, Boxun,
China) with light intensity of 2000 lux and temperature

of 30°C. The ANCM culture medium was flushed with
N, gas for 2 min to create an anaerobic condition. After
enrichment, 0.1 mL of the culture sample and diluted
samples (1072, 1073, 107*, and 107>) were spread onto the
agar ANCM plates and incubated under 30°C and 2000 lux
in an AnaeroPouch™-Anaero system (MITSUBISHI Gas
Chemical Co., Inc., Japan) for 3—4 days. Colonies were
picked from plates and inoculated in flesh fluid ANCM to
determine the sulfur-oxidizing ability.

SOB was re-spread onto the agar ACM plates or agar
ANCM plates, and was re-streaked several times on fresh
agar to obtain purified isolates.

1.4 DNA preparation and 16S rRNA gene amplification

The aerobic and anaerobic enrichment culture samples
were pre-treated with 0.5 mg/mL Propidium Monoazide
(Biotium, Inc., Hayward, USA) before community DNA
extraction; the total DNA extraction and the PCR am-
plification protocol to prepare PCR products for DGGE
analysis were carried out according to a method previously
described by Luo et al. (2010). 16S rRNA genes of SOB
pure cultures were PCR amplified directly with primer pair
27F/1492R (27F: 5°-AGA GTT TGA TCC TGG CTC AG-
3’; 1492R: 5’-TAC CTT GTT ACG ACT T-3").

1.5 Denaturing gradient gel electrophoresis (DGGE)-
16S rRNA gene analysis

DGGE was performed on a 10% (W/V) polyacrylamide
gel with a denaturing gradient of 30% to 60% denaturants
(Muyzer et al., 1993). Electrophoresis was carried out
in 1XTAE (Tris-Acetate-EDTA) buffer at 60°C and at a
constant voltage of 80 V for 12 hr using a Bio-Rad DCode
system (DCode, Bio-Rad, USA). The gel staining was
performed by a modified method previously described by
Zakaria et al. (2007). In brief, gels were washed for 15
min in a fixing solution (10% (V/V) ethanol and 1% (V/V)
acetic acid), stained for 20 min in a staining solution
(0.2% (W/V) AgNOs), washed thrice in deionized water,
and visualized in a developing solution (2% (W/V) NaOH
and 0.5% (W/V) formaldehyde). The DNA in DGGE gel
was extracted and the V3 region DNA was re-amplified
according to the method as described by Lin et al. (2010).
The PCR products amplified by the primer pair with GC
clamp were run again on DGGE gel to verify their position
and purity, and the PCR products amplified by the primer
pair without GC clamp were sequenced with primer 341F
by Beijing Genomics Institute, China.

1.6 Phylogenetic analysis

16S rRNA gene sequences from DGGE bands
and SOB isolates were analyzed using the
Nucleotide-nucleotide =~ BLAST  (Blastn)  database

(http://www.ncbi.nlm.nih.gov/BLAST) and-the-Segmateh
program and CHIMERA_CHECK program of the
Ribosomal Database Project (http://rdpjcme.msu.edu/).
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Sequences and their closest matches retrieved from the
database were aligned using the software Clustal X version
1.8 (Thompson et al., 1997), and phylogenetic trees were
constructed by the neighbor-joining method with the
software MEGA 3 (Kumar et al., 2004). Evolutionary
distances of nucleotide sequences were calculated with
Kimura’s 2-parameter model; bootstrap values were
obtained with 1000 re-samplings.

1.7 Analytical methods

The sulfate was determined by a modified Barium Chro-
mate method according to Foster (1936). In brief, the water
sample was acidified with 1 mol/L HCI, and boiled for
5 min to eliminate CO32~ and HCO; ™. Barium chromate
suspension was added in the sample and boiling was
maintained for 5 min. After cooling, the excess barium
chromate was precipitated by ammonium hydroxide; the
color of the fluid changed from orange yellow to lemon
yellow after adding 3 drops of ammonium hydroxide
solution. The sample was centrifuged at 4000 r/min for 3
min, and the supernatant was collected. The absorbance
of the supernatant was determined at 420 nm using a
spectrophotometer (Unico UV-2802S, Unico, China). The
concentration of thiosulfate was determined by an iodo-
metric method (Kelly and Wood, 1994) after precipitating
the solid and cells by centrifugation.

1.8 Nucleotide sequences accession numbers

The sequences reported in this article have been deposited
in the GenBank database with the accession numbers:
HQ693538 to HQ693547 for DGGE bands and HQ693548
to HQ693555 for isolates.

2 Results

2.1 Thiosulfate utilization and sulfate production in
enrichments

During the enrichment for anaerobic and phototrophic
SOB, the concentration of thoisulfate remained steady
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for the first 55 days, and decreased quickly in the next
week, then decreased slowly in the last 20 days. The
concentration of sulfate fluctuated at 1.50 g/L for the first
55 days, and increased quickly in the next week, then
became steady in the last 10 days (Fig. 1a), changing
according to the change in thiosulfate concentration.

In aerobic enrichment, subculturing was carried out
four times (Fig. 1b). The concentration of thiosulfate
decreased from 6.07 to 2.60 g/L in the first cultivation,
12.30 to 5.45 g/L in the first subculture, 6.58 to 2.09
g/L in the second subculture, 29.29 to 12.52 g/L in the
third subculture, and from 8.15 to 0.74 g/L in the fourth
subculture. The concentration of sulfate changed according
to the concentration change of thiosulfate.

2.2 DGGE profile analysis of the enrichments

The microbial community structures and dynamic changes
during both enrichments were tracked by PCR-DGGE
analysis (Fig. 2). At the beginning of the enrichment, the
microbial community structure was complex, so that more
than 20 DNA bands were presented in the lane of DGGE
profiles. During the anaerobic enrichment, the microbial
community remained relatively steady during the first 41
days, but then changed substantially after day 48; at the
end of the enrichment, only six DNA bands were visible
in the lane (Fig. 2a). During the enrichment, four DNA
bands (AN2, AN4, AN5, and AN6) were visible in the
lanes almost all of the time, but two DNA bands (AN1 and
AN3) were present from day 35 and 60, respectively, and
the band density of AN1 became more and more strong.

During the aerobic enrichment, the microbial commu-
nity changed substantially from the beginning to day 24,
and remained relatively steady after this initial transition
period; at the end of the enrichment, only seven DNA
bands were visible in the lane (Fig. 2b). During the
enrichment, five DNA bands (Al, A2, A3, A4, and A7)
were visible in the lanes almost all of the time, but two
DNA bands (AS and A6) were visible from day 28.

To better understand the microbial community after
two enrichments, six bands from the anaerobic enrich-
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Fig. 1 Changes of substrate (thiosulfate) concentration and product (sulfate) concentration in anaerobic phototrophic enrichment cufture (a) and aerobic

enrichment culture (b).
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Fig.2 DGGE profiles of microbial communities in anaerobic pho-
totrophic enrichment culture (a) and aerobic enrichment culture (b).

ment DGGE gel and seven bands from the aerobic
enrichment DGGE gel were excised, purified, and char-
acterized by 16S rRNA gene sequence analysis (Fig. 2).
Five known bacteria were closely related to Acineto-
bacter, Rhodopseudomonas, Paracoccus, Alcaligenes, and
Clostridium, respectively, and one bacterium closely re-
lated to unknown Enterobacteria were identified in the
bands from the anaerobic enrichment; and seven known
bacteria closely related to Pseudomonas, Halothiobacillus,
Ochrrobactrum, Paracoccus, Thiobacillus, and Alcali-
genes, respectively, were identified in the bands from the
aerobic enrichment (Fig. 3). The most abundant DNA
bands ANI1 in anaerobic enrichment and A3 in aerobic
enrichment were closely related to the genus Rhodopseu-
domonas and Halothiobacillus, respectively.

2.3 Isolation, identification and characterization of the
isolates

After enrichments, serial dilutions of enrichment cultures
were plated on agar ACM plates or agar ANCM plates.
Representative colonies of different morphotypes from
plates were selected for further thiosulfate utilization tests.
Finally, six isolates were obtained from the aerobic enrich-
ment and four isolates were obtained from the anaerobic

enrichment, respectively. Based on the 16S rRNA gene se-
quence analysis, the sequences of isolates were matched by
BLAST to the genus Acinetobacter, Rhodopseudomonas,
Pseudomonas, Halothiobacillus, Ochrobactrum, Paracoc-
cus, Thiobacillus, and Alcaligenes, respectively (Fig. 3).
The sequence similarities of all the isolates were more than
98% (data not shown).

Sequences of isolates showed high homology to
the DGGE band sequences from the same enrich-
ments (Fig. 3). After the phylogenetic analysis, all
sequences were grouped into 4 clusters (Alpha-, Beta-,
and Gammaproteobacteria, and Clostridia). The Al-
phaproteobacteria were dominated by Bradyrhizobiaceae,
Brucellaceae, and Rhodobacteraceae; the Betaproteobac-
teria were dominated by Hydrogenophilaceae and Al-
caligenaceae; the Gammaproteobacteria were dominated
by Pseudomonadaceae, Enterobacteriaceae, Halothiobacil-
laceae, and Moraxellaceae; and the Clostridia was domi-
nated only by Clostridiaceae.

After the identification, all isolates were tested for
their thiosulfate utilization (Fig. 4). In the aerobic test,
isolate JFA2 closely related to the genus Halothiobacillus
showed the highest thiosulfate oxidizing ability, using
up the thiosulfate in 8 days (Fig. 4a, b). Meanwhile in
the anaerobic test, isolate JFANg related to the genus
Rhodopseudomonas showed the highest thiosulfate oxidiz-
ing ability (Fig. 4c, d).

3 Discussion

The DGGE analysis suggested that the microbial com-
munity changed according to the thiosulfate utilization
during enrichments, and the predominant strain in aer-
obic enrichment was most closely related to the genus
Halothiobacillus, while the predominant strain in anaer-
obic enrichment was most closely related to the genus
Rhodopseudomonas. Concerning the abundance, these two
kinds of strains were suggested to be the main SOB
that contributed to the oxidation of thiosulfate in enrich-
ment, and might be the main SOB for sulfur-oxidizing
in the wastewater treatment system. These deductions
were further supported by the thiosulfate utilization tests
after SOB isolates were obtained. In the tests, isolate
JFA2 closely related to Halothiobacillus and isolate JFANr
closely related to Rhodopseudomonas showed the high-
est thiosulfate-oxidizing ability in aerobic and anaerobic
conditions, respectively. Then, based on the abundance
and thiosulfate-oxidizing ability analysis, we concluded
the SOB closely related to the genus Rhodopseudomonas
and Halothiobacillus were the main SOB in the sulfide-
removing reactor, and responsible for the sulfur-oxidizing
in the treatment system.

Strains from genus Halothiobacillus aremesophitic; ob=
ligately chemolithoautotrophic, and strictly aerobic SOB
(Tto et al., 2005; Wood et al., 2005), and usyally found to be
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Fig. 3 Phylogenetic tree based on the 16S rRNA gene of DGGE bands and isolates from aerobic and anaerobic enrichments, and the selected sequences
from formally described species. The tree was inferred using the neighbor-joining method, and evolutionary distances were computed using Kimura’s

2-parameter model. Bootstrap values (1000 replicates) above 50 are shown at each node.

predominating members in manmade systems for sulfide
removal (Okabe et al., 2007; Vannini et al., 2008). As
representative members of the Rhodobacteraceae family,
Rhodopseudomonas are kinds of purple nonsulfur bacteria
that are capable of oxidizing sulfide and thiosulfate both
under anaerobic conditions in the light and under aerobic
conditions in the dark (Hashwa, 1975; Rodova and Pedan,
1980). Besides Rhodopseudomonas and Halothiobacillus,
strains related to the genus Thiobacillus, Paracoccus,

Acinetobacter, Pseudomonas, Ochrobactrum, and Alcali-
genes also participated in the thiosulfate oxidization in
the enrichments, and might be contributors to the sulfur
oxidization in the treatment system. Strains from the
genus Thiobacillus are obligately chemolithoautotrophic,
aerobic or facultative anaerobic SOB (Kelly and Wood,
2000; Vlasceanu et al., 1997), which ar i
wastewater treatment systems and with h high richness
(Ji et al., 2009; Silva et al., 2010). Strains from the
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Fig. 4 Utilization of thiosulfate and production of sulfate by isolates isolated from aerobic enrichment (a, b) and anaerobic enrichment (c, d).

genus Alcaligenes are kinds of facultatively anaerobic
bacteria; some of them have been reported to be color-
less sulfur-oxidizing bacteria which could oxidize sulfide
under anaerobic conditions (Bharathi, 1997) and aero-
bic conditions (Kantachote et al., 2008; Potivichayanon,
2005). Members of Paracoccus are facultatively aerobic
and grow heterotrophically with various carbon sources
and chemoautotrophically with thiosulfate and sulfide as
electron donors under aerobic conditions (Frierich et al.,
2008). The genus Ochrobactrum was reported to be able
to utilize sulfide and thiosulfate under aerobic and ther-
mophilic alkaline conditions, and use sulfide as a source
of electrons to reduce nitrite anaerobically (Mahmood et
al., 2009; Zhang et al., 2008). In addition, Aguilar et
al. (2008) isolated SOB from an artificial wetland for
tannery wastewater treatment and classified these SOB to
the genera Acinetobacter, Pseudomonas, Ochrobactrum,
and Alcaligenes, which is similar with our results.

The result established that the genus Rhodopseu-
domonas and Halothiobacillus were the main SOB in the
sulfide-removing reactor, and mainly responsible for the
sulfur-oxidizing in the treatment system. To optimize the
sulfur-oxidizing ability of the wastewater treatment system

in the future, we could apply a microbial augmentation
method that inoculates a high concentration of Rhodopseu-
domonas or Halothiobacillus into the system according to
the aerobic or anaerobic processes, or adds some specific
substance for enhancing the growth of Rhodopseudomonas
or Halothiobacillus in the system.
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