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Abstract
The biodegradability of three alkylates (2,3-dimethylpentane, 2,4-dimethylpentane and 2,2,4-trimethylpentane) under less agitated
aquifer conditions was investigated in this study. All three alkylates biodegraded completely under these conditions regardless of the
presence or absence of ethanol or benzene, toluene, ethylbenzene, and xylenes (BTEX) in the feed. In the presence of ethanol, alkylates
degradation was not inhibited by ethanol. However, alkylates degraded more slowly in the presence of BTEX suggesting competitive
inhibition to microbial utilization of alkylates. In the sterile controls, alkylates concentrations remained unchanged throughout the
experiments.
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Introduction

To improve fuel combustion efficiency and decrease ex-
haust emissions, fuel oxygenates such as methyl t-butyl
ether (MTBE) are added to gasoline to replace lead organic
compounds because of their high octane value and ease of
blending with gasoline (Mormile et al., 1994; Siminiceanu,
2007; Wallner et al., 2009; Kim et al., 2012). However,
use of MTBE has resulted in widespread groundwater
contamination due to its high water solubility and low
affinity to soil particles (Freitas and Barker, 2011). MTBE
has become one of the most frequently detected volatile
organic compounds in groundwater and has raised public
health concerns (Squillace et al., 1996; Landmeyer et al.,
1998; Rosell et al., 2007; Wang and Deshusses, 2007; Kim
et al., 2012). Furthermore, MTBE poses an environmental
challenge when it is inadvertently released to drinking
water resources from leaking underground storage tanks
at gas stations throughout the country (Squillace et al.,
1996; Hartley et al., 1999; Zein et al., 2004). MTBE
is often found with other gasoline contaminants such as
benzene, toluene, ethylbenzene, and xylenes (BTEX) in
groundwater, and it tends to persist in the environment.
It has an estimated half-life in groundwater of at least 2
years due to its molecular structure, i.e. the tertiary carbon
atom, the ether bond, and the absence of long alkyl chains

* Corresponding author. E-mail: msuidan@aub.edu.lb

(Deeb et al., 2001; Ferreira et al., 2006; Siminiceanu,
2007; Wang and Deshusses, 2007). Because of its low
taste and odor threshold in drinking water and the fact
that data support the conclusion that MTBE is a potential
human carcinogen at high doses, the U.S. Environmental
Protection Agency (EPA) in 2002 drafted plans to phase
out the use of MTBE nationwide over four years. As a
result, MTBE was replaced with less toxic alternatives
such as ethanol (Mackay et al., 2006; Wang and Deshusses,
2007).

Ethanol rapidly replaced MTBE because it is a re-
newable, biomass-based source of fuel and its lower
environmental impact when compared to MTBE (Rice,
1999; Zhang et al., 2006). Ethanol is also expected to
degrade rapidly by microorganisms without any acclima-
tion period under most redox conditions (Powers et al.,
2001a; Mackay et al., 2007; Feris et al., 2008). Ethanol
concentrations in groundwater typically are not reported
at leaking underground storage tank sites because it is an
unregulated contaminant, has low toxicity and persistence
and is difficult to measure at trace concentrations (Zhang
et al., 2006). For this reason, ethanol has largely been
assumed to be an innocuous replacement for MTBE (Feris
et al., 2008).

However, ethanol is expected to influence the in-situ
biodegradation of BTEX and other fuel components since
it may cause the depletion of electron acceptors needed
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for the degradation of the fuel hydrocarbons and/or de-
crease the microbial community able to degrade BTEX
(Corseuil and Alvarez, 1996; Powers et al., 2001a, 2001b;
Da Silva and Alvarez, 2002; Mackay et al., 2006, 2007).
Several laboratory studies have shown that BTEX com-
pounds persist in the presence of ethanol and sometimes
for considerable periods of time after ethanol is de-
graded (Corseuil et al., 1998; Ruiz-Aguilar et al., 2002;
Osterreicher-Cunha et al., 2004, 2007; Mackay et al.,
2006). Ethanol has been reported to increase the solubility
and migration of BTEX and other gasoline constituents
(Corseuil and Alvarez, 1996; Beller et al., 2002; Da Silva
and Alvarez, 2002; Lovanh et al., 2002; Ruiz-Aguilar
et al., 2002; Williams et al., 2003; An and Lee, 2008;
Feris et al., 2008; Freitas and Barker, 2011). Ethanol and
ethanol blends of gasoline conduct electricity. In contrast,
unblended gasoline is an electrical insulator. For this
reason, pure ethanol is more corrosive than gasoline, and
materials-compatibility must be considered when design-
ing large-volume, bulk-ethanol storage tanks (Marchetti et
al., 1999; Rice, 1999).

Alkylation is an industrial synthesis process that is used
to produce a high-octane solution of branched alkanes,
called isoalkanes (Marchetti et al., 1999; Rice, 1999).
These alkylate solutions are used as a blending component
for gasoline. During World War II, alkylate production was
increased to meet the demand for high-octane gasoline
used by fighter planes (Marchetti et al., 1999; Rice, 1999).
After the war, the demand for high octane components
for aviation fuels diminished, and the use of alkylates
shifted towards the automotive market (Marchetti et al.,
1999; Rice, 1999). Alkylates are branched alkanes, such
as isooctane (2,2,4-trimethylpentane), and have low wa-
ter solubility and high octanol-water partition coefficient.
Thus, they would likely be retained in the aquifer ma-
terial and be much less mobile through the groundwater
(Marchetti et al., 1999; Rice, 1999; Cho et al., 2007).

The percentage of alkylates in gasoline will be increased
significantly in the future to compensate for the loss in
octane number, resulting from either the removal of MTBE
and use of ethanol or no oxygenates in fuel (Marchetti et
al., 1999; Rice, 1999). For example, although ethanol also
has a high-octane level, its oxygen content is about twice
that of MTBE; consequently, less ethanol is required to
meet a specified oxygen content (e.g., 2.5 wt% oxygen)
(Marchetti et al., 1999; Rice, 1999). California’s oxygenat-
ed gasoline program limits oxygen content to a maximum
of 2.2% to limit increases in nitrogen oxides (NOx) emis-
sions that occur from adding oxygen to gasoline (Marchetti
et al., 1999; Rice, 1999). To compensate for the resulting
octane deficit, petroleum companies could add more alky-
lates as the high-octane blending components. If an oxygen
requirement is eliminated altogether, even greater amounts
of high-octane components, such as alkylates, must be
added to gasoline (Marchetti et al., 1999; Rice, 1999).

Since the physicochemical properties of alkylates resemble
those of other hydrocarbons present in gasoline (low
solubility in water, high octanol-water partition coefficient,
and high Henry’s law constant), an increase in the alkylate
percentage of gasoline may not affect significantly the way
gasoline behaves in environmental releases (Marchetti et
al., 1999; Rice, 1999). From an environmental standpoint,
alkylates have some of the more desirable properties for
a blending component for gasoline. Therefore, as environ-
mental regulations move toward cleaner burning fuels, it
is likely that the use of alkylates as blending stock for
gasoline could rise (Marchetti et al., 1999; Rice, 1999).
However, only limited studies have been performed to
evaluate the degradation of alkylates.

A laboratory study by Solano-Serena et al. (1998)
showed that all gasoline components were biodegrad-
ed to below detection limit after 28 days with the
exception of 2,2,4-trimethylpentane (isooctane), 2,3,4-
trimethylpentane, and cyclohexane. The percentages of
degradation for these compounds were 18% for 2,2,4-
trimethylpentane, 9% for 2,3,4-trimethylpentane, and
100% for benzene after 28 days of incubation. The
low biodegradation rates of 2,2,4-trimethylpentane and
2,3,4-trimethylpentane were likely due to a deficiency in
microorganisms that can degrade these hydrocarbons and
not to any inhibition by the alkanes (Solano-Serena et
al., 1998; Marchetti et al., 1999). In contrast, biomass
that was acclimated to three alkylates, 2,3-dimethylpentane
(2,3-DMP), 2,4-dimethylpentane (2,4-DMP) and 2,2,4-
trimethylpentane (2,2,4-TMP) in porous pot reactors,
completely mineralized all three alkylates within 10 days
(Cho et al., 2007) under agitated conditions. The objective
of this study was to evaluate the biodegradability of three
alkylates, 2,3-DMP, 2,4-DMP, and 2,2,4-TMP, under less
agitated conditions typical of groundwater aquifers in the
presence and absence of ethanol and BTEX.

1 Materials and methods

1.1 Chemicals and columns

The alkylates, 2,3-DMP, 2,4-DMP, and 2,2,4-TMP,
BTEX compounds, and sodium azide were purchased
from Sigma-Aldrich, USA. Dichloromethane (DCM) and
ethanol were purchased from Fisher Scientific, USA. All
the chemicals including nutrients had greater than 99.0%
purity. The 25-mm diameter glass tubes used for this study
were purchased from Aceglass Inc., USA.

Feed to the test columns was supplemented with an
acidified nutrient solution containing salts and vitamins
for biological growth. As shown in Table 1, the nutrient
solution consisted of 5 macronutrients, 5 micronutrients,
and 10 vitamins dissolved in deionized water (Zein et al.,
2006). To enhance the dissolution of the nutrient chemicals
and to prevent biological growth in the solution, 20 mL of
concentrated hydrochloric acid was added to the nutrient
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Table 1 Nutrient concentrations

Nutrient type Nutrients Concentration (mg/L) Essential nutrient Concentration (mg/L)

Macronutrients (NH4)2SO4 93.0 NH+4 22.5455
MgSO4·7H2O 69.6 Mg++ 6.8667
CaCl2·2H2O 22.5 Ca++ 6.1302
K2HPO4 6.90 P+5 4.0008
FeCl2·4H2O 17.25 Fe++ 4.8474

Micronutrients CuSO4·5H2O 0.11 Cu++ 0.0286
Na2MoO4·2H2O 0.15 Mo+6 0.0595
MnSO4·H2O 0.13 Mn++ 0.0423
ZnCl2 0.23 Zn++ 0.1104
CoCl2·6H2O 0.42 Co++ 0.1041

Vitamins 4-Aminobenzoic acid (99%) 0.01513
Biotin 0.00590
Cyanocabalamin (B12) 0.00030
Folic acid dihydrate (99%) 0.00590
Nicotinic acid (98%) 0.01513
(+)-Pantothenic acid, 0.01513
Ca salt hydrate (98%)
Pyridoxine, 0.03023
hydrochloride (98%)
(–)-Riboflavin (98%) 0.01513
Thiamine hydrochloride 0.01513
Thioctic acid (98%) 0.01513

solution (Cho et al., 2007). All columns were continuously
supplemented with nutrient and sodium carbonate buffer
solutions to support biological growth and maintain the pH
in an acceptable range between 7.4 and 8.0.

The soil sample for aquifer material collected from a
leaking gasoline underground storage tank site was ob-
tained from EPA, Cincinnati, OH, USA. The soil samples
were characterized as sandy clay loam, pH 4.5–4.7, 0.8%
of organic matter, moisture content 44.8%–46%, total
nitrogen 0.023%, and having a bulk density 1.32 g/cm3.

The same microbial culture used by Cho et al. (2007)
was also used for this study. The biomass was grown in a
porous pot cylindrical reactor constructed of 0.48 cm thick
filter grade porous polyethylene sheets (Atlas Minerals
and Chemicals, USA) with a mean pore size of 18–28
m. The porous pot was placed in a 304-stainless steel
chemostat with 21.6 cm in internal diameter and 30.5 cm in
height. To mix the contents of the reactor homogeneously,
a magnetically coupled variable speed mixer (Autoclave
Engineers, USA) was used (Cho et al., 2007).

The porous pot reactor was initially inoculated with 60
mL of a crude-oil-degrading microbial culture originally
obtained from EPA. Temperature inside the reactor varied
between 20°C and 24°C, and pH of the reactor was
maintained between 7.4 and 8.0. To maintain aerobic con-
ditions, pre-humidified air was introduced at the bottom
of the porous pot using a diffuser. The reactor feed was
supplemented with a sodium carbonate buffer at a flow rate
of approximately 7.75 L/day and an acidified nutrient so-
lution at a flow rate of approximately 0.25 L/day designed
to maintain a 1-day hydraulic retention time (HRT) in the
test columns. The reactors were seeded again with the
same culture after 3 weeks of operation. At this time 100

mL of biomass taken from another laboratory bioreactor
operated on a feed of MTBE, BTEX, t-amylalcohol, and
t-amylmethylether was also added (Zein et al., 2004,
2006).

The three alkylate compounds were introduced into
the porous pot reactors in neat form via a syringe that
introduced the compounds in the buffer feed line. The
syringe pump flow rate was set to 0.23 mL/hr to deliver
approximately 1.25 g of each alkylate into the reactor daily.

The biomass from the porous pot reactors was placed
in cryo-vials and frozen in a –80°C freezer when volatile
suspended solids reached a concentration of approximately
1000 mg/L (Cho et al., 2007). Before the experiment start-
ed, the frozen biomass containing vials were thawed, and
all the contents were washed with sterile saline solution to
remove the glycerol.

1.2 Analytical methods

The three alkylate compounds, ethanol and BTEX in both
the killed control and biologically active columns were
monitored using a Hewlett Packard 6890 Series II gas
chromatograph (GC). The GC/FID was equipped with a
DB-5 capillary column (30.0 m × 0.25 mm i.d. × 0.25
m thickness) (Supelco, USA). The oven temperature was
set at 35°C for 1 min and was subsequently ramped to
100°C at 5 °C/min and finally ramped to 300°C at 25
°C/min and held for 10 min at 300°C. The total duration
of the analytical run was 32 min.

When the alkylate concentrations were below 0.5 mg/L,
the samples were reanalyzed using a GC/FID coupled to a
Purge and Trap apparatus (Tekmar Dohrmann 3100 sample
concentrator and a Tekmar Dohrmann AquaTek 70 Liquid
Autosampler, Tekmar Dohrmann, USA). Purging was for
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11 min at 40°C followed by a 4 min desorbing phase at
225°C. The GC/FID connected to a heated Purge and Trap
was equipped with DB-1 column (30.0 m × 0.53 mm ×
3 µm film thickness) and the oven temperature was set at
35°C for 6 min followed by ramping to 190°C at 12 °C/min
and with a hold time of 6 min. The method detection limit
of this procedure was approximately 0.5 µg/L for each
alkylate.

A standard stock solution containing approximately
1000 mg/L of each alkylate was diluted with DCM to
prepare standard solutions for alkylates. A total of ten stan-
dard solutions were prepared from the stock solution with
DCM in 2 mL ABC auto sampler vials. The final volume
per vial was 1 mL. The surrogate, 2,2,3-trimethylbutane
was prepared in DCM and 2,2-dimethylhexane. It was
used as an internal standard. The internal standard method
published by US EPA (1996) was used for this study.

To determine if the decline in the alkylate concentra-
tions in the columns was mainly due to biodegradation,
dissolved oxygen (DO) and inorganic carbon (IC) in both
the influent and effluent were analyzed. Micro electrodes
from an OM-4 oxygen meter equipped with flow-through
oxygen microelectrodes were used to measure DO and
Shimadzu TOC-VCSH total organic carbon (TOC) analyzer
was used to measure IC. To extract the studied compounds
from the columns, the extraction method previously de-
scribed was followed (Cho et al., 2007).

1.3 Column experiments

1.3.1 Alkylates as sole sources of carbon under less
agitated aquifer conditions

Glass columns, 25-mm in internal diameter, were op-
erated to demonstrate that biodegradation, observed in
well-agitated batch serum bottles, can also occur under
less agitated aquifer conditions. Three sets of column
experiments were prepared with 2,3-DMP, 2,4-DMP, and
2,2,4-TMP separately. Three glass columns were prepared
for each experiment; 2 columns (one biologically ac-
tive and one abiotic control) were continuously operated
throughout the experiment, and another abiotic column
was extracted at the beginning of the experiment to quan-
tify the initial concentrations of the studied compounds
in the column. Each column was charged with 90 g of
aquifer materials and 6 mL of biomass. All columns
were continuously supplemented with nutrient and buffer
solutions containing salts and vitamins needed to support
biological growth and maintain the pH in an acceptable
range. The flow rate to each column was maintained at 0.25
L/day. Sodium azide was added at 2 g per column to inhibit
biological activity in the killed controls. Each column was
spiked with approximately 306 mg/kg of each alkylate
compound. DO for the biologically active and abiotic con-
trol columns was measured to monitor changes in oxygen
composition as biodegradation proceeded throughout the
experiment. IC analysis was also performed to monitor the

concentration changes of inorganic carbon in the aqueous
effluent. The effluent samples were analysed by using
Purge and Trap to monitor any compounds dissolved in the
effluent samples. When the cumulative oxygen consump-
tion reached the theoretical chemical oxygen demand of
each alkylate compound in the biologically active columns,
and the compounds of interest were not detected in the
effluent, the contents of each tube were extracted and
analysed by GC/FID and Purge and Trap to monitor if any
alkylates remaining in the column.

1.3.2 Alkylates in the presence of ethanol under less
agitated aquifer conditions

The biodegradability of 2,3-DMP, 2,4-DMP, and 2,2,4-
TMP was investigated in the presence of ethanol under
less agitated aquifer conditions. Similar to the experiments
described earlier, 3 sets of column experiments were
prepared and each set consisted of 3 glass columns (one
biologically active column and two abiotic controls). Each
glass column was spiked with approximately 306 mg/kg
of each alkylate compound and 516 mg/kg of ethanol.
Sodium azide was also used to inhibit biological activity
in the control columns. DO and IC analyses were also
performed to monitor changes in oxygen composition
and inorganic carbon in the aqueous samples. Effluent
samples were analyzed by Purge and Trap to monitor the
compounds of interest, especially ethanol, dissolved in
effluent samples. As in the batch experiments discussed
earlier, at the end of the experiment the entire contents of
each column were extracted and analyzed by GC/FID and
Purge and Trap to measure any residual compounds in the
column.

1.3.3 Alkylates in the presence of BTEX under less
agitated aquifer conditions

The biodegradability of each alkylate in the presence of
BTEX was investigated. This experiment was performed
similarly to the column experiments described earlier. In
addition to 306 mg/kg of each alkylate compound, 332
mg/kg of a BTEX mixture (volume ratio, 1:1:1:1) was
spiked in each glass tube. DO and IC in both the influent
and effluent were monitored throughout the experiments.
The effluent samples were also analyzed by Purge and Trap
to monitor for any compounds dissolved in the effluent.

2 Results and discussion

Since the glass columns were continuously operated
throughout the experiments without sacrificing columns
for extraction (except for the one abiotic control column
per each experiment extracted at the beginning of the
experiment to verify the initial concentrations of spiked
compounds), DO and IC in both influent and effluent
of the columns were measured to monitor for oxygen
consumption and inorganic carbon production in the aque-
ous phase as biodegradation progressed. The time-varying
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concentrations of alkylates were calculated based on the
cumulative oxygen consumption. The theoretical mass of
oxygen required to mineralize each alkylate compound in
this study was 96.7 mg for 2,3-DMP and 2,4-DMP and
96.4 mg for 2,2,4-TMP.

Figure 1a presents the cumulative oxygen consumption
for the three biologically active columns fed 2,3-DMP,
2,4-DMP and 2,2,4-TMP, respectively. When alkylates
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were present as the sole carbon and energy sources,
the cumulative oxygen consumption in all three columns
increased gradually exceeding 100 mg. The time-varying
concentrations of each alkylate were also calculated from
the cumulative oxygen consumption data (Fig. 2a). As
shown in Fig. 2a, the initial 306 mg/kg concentration of
each alkylate was gradually decreased in the biologically
active columns. In this experiment, all three compounds
needed approximately 120 days or more to be mineralized
completely. At the end of the experiment, the biologically
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active columns were extracted, and the concentrations
of all the studied chemicals were below the detection
limits. However, no changes were observed in the con-
centrations of the three alkylates in the abiotic control
columns throughout the experiments (the entire column
was extracted at the end of the experiment and more than
90% of each alkylate was recovered from the column).
This confirms that the degradation of alkylates was mainly
occurring by microbial activity and not by physical loss
such as volatilization or dissolution. In the biologically
active columns, an increase in IC concentrations was
also observed in the effluent samples confirming partial
dissolution of carbon dioxide as mineralization proceeded
(Fig. 3a).

The data observed when the alkylate compounds were
present with ethanol were similar to those observed when
they were present as the only carbon source. DO readings
on both the influent and effluent of the columns were also
monitored and the cumulative oxygen consumption com-
puted (Fig. 1b). Ethanol was detected in the effluent during
the first 4 days of the experiment and dropped to below its
detection limit after day 4 in both the biologically active
and abiotic control columns (Fig. 2b). Unlike ethanol, the
alkylate compounds were below their detection limit in the
effluent samples throughout the experiment due to their
very low water solubility and high octanol-water partition
coefficient (data not shown). For the first 4 days of the
experiment, approximately 79% of the spiked ethanol was
recovered in the effluent samples for the biologically active
column compared to 87% for the abiotic control column
(the remaining 13% of spiked ethanol was lost due to
analytical limitations and/or volatilization). The theoretical
mass of oxygen needed to completely degrade ethanol (516
mg/kg of spiked concentration) in this experiment was 97.1
mg. However, only approximately 7.3, 7.2, and 7.5 mg
was consumed in the degradation of ethanol in 2,3-DMP,
2,4-DMP, and 2,2,4-TMP columns, respectively, during
first 4 days. This suggests an average of only 7.4% of
the spiked ethanol biodegraded in the biologically active
column during the first 4 days (approximately 3.5 mg of
ethanol biodegraded for 2,3-DMP and 2,4-DMP columns
and 3.6 mg for 2,2,4-TMP column). This may have been
due to oxygen limitations in the columns (Fig. 2a). The
DO concentration in the influent varied between 6.0 and
7.4 mg/L, while in the effluent it was between 0.08 and
0.12 mg/L during the first 4 days of operation. Since the
flow rate was 0.25 L/day, theoretically a maximum of 0.88
mg of ethanol can be biodegraded daily.

Figure 1b shows the cumulative oxygen consumption
in the ethanol and 2,3-DMP, 2,4-DMP, and 2,2,4-TMP
charged columns. Complete mineralization of 2,3-DMP,
2,4-DMP, and 2,2,4-TMP was also calculated when
ethanol was present (Fig. 2b). In this case, alkylates
biodegradation was likely to be delayed until day 4 based
on the findings by Cho et al. (2007). As observed in
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Fig. 3 Change of inorganic carbon (∆C = effluent–influent) when
alkylates were present alone (a), in the present of ethanol (b) or BTEX
(c).

the first experiment, 2,3-DMP, 2,4-DMP and 2,2,4-TMP
degraded completely after 120 days. Regardless of the
presence or absence of ethanol, complete mineralization of
these alkylates was observed within the same time period.
This suggests that the concentration of ethanol used in
this experiment did not inhibit the microbial utilization
of 2,3-DMP, 2,4-DMP, or 2,2,4-TMP. At the end of the
experiment, the abiotic control columns were extracted
and the concentrations of alkylates remained unchanged
(more than 90% of alkylates was recovered) confirming
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the removal of alkylates was due to biological activity.
However, the concentration of ethanol in the extract so-
lution was below the detection limit since ethanol, being
miscible with water, exited the columns with the effluent.
The biologically active columns were also extracted at the
end of the experiment and no ethanol or alkylates were
detected. In the biologically active columns, an increase
in the IC concentrations was observed in the effluent
samples confirming partial dissolution of carbon dioxide
as mineralization proceeded (Fig. 3b).

In regard to the biodegradation of alkylates in the
presence of BTEX, as in the first two experiments, the DO
in both the influent and effluent of the columns was mon-
itored (Fig. 1c). Unlike the experiment where ethanol was
present, time-varying concentrations of individual BTEX
and alkylate cannot be estimated by DO and IC data since
individual BTEX concentration cannot be calculated only
with DO and IC data (unlike serum bottle experiment, the
column was being operated for the entire duration of the
experiment without sacrificing for extraction). Thus, the
combined time-varying-concentrations of both alkylates
and BTEX were calculated based on cumulative oxygen
uptake data (Fig. 2c). The combined theoretical mass of
oxygen to completely biodegrade both BTEX (94 mg of
oxygen needed) and alkylates (97 mg of oxygen needed
for each alkylate) in this study was approximately 191 mg.
As shown in Fig. 1c, cumulative mass of oxygen consumed
by alkylates and BTEX biodegradation gradually increased
up to approximately 200 mg in the biologically active
column. As in the experiment where ethanol was added,
complete biodegradation of 2,3-DMP, 2,4-DMP, and 2,2,4-
TMP was also calculated when they were present with
BTEX (Fig. 2c). At a combined concentration of approx-
imately 638 mg/kg of each alkylate and BTEX, all three
alkylates required approximately 150 days to be biode-
graded completely. Effluent samples from the biologically
active columns were monitored for aqueous presence of
alkylates or BTEX. BTEX concentrations in the effluent
were consistently below their detection limits after day
60 for the 2,3-DMP and 2,2,4-TMP columns compared
to day 80 for the 2,4-DMP column. From this result, it
was assumed that the majority of BTEX were degraded
by day 60 (2,3-DMP and 2,2,4-TMP column) or day 80
(2,4-DMP column) with only biodegradation of alkylates
occurring thereafter. At the end of the experiment, the
biologically active column was extracted, and none of the
added compounds were detected in the extract. In addition,
an increase in the IC concentrations was also observed in
effluent samples, confirming that the decrease of alkylates
was primarily due to biological activity and not to physical
losses (Fig. 3c).

In the continuously operated abiotic columns, BTEX
was detected in the effluent samples throughout the ex-
periment during the 180 days of operation. However, the
alkylate compounds in the effluent samples were below

their detection limits from day 1 in both the biological-
ly active and abiotic control columns. The two abiotic
columns were extracted one at the beginning and the other
at the end of the experiment. Compared to the concentra-
tions extracted at the beginning of the experiment, more
than 89% of alkylates were recovered at the end of the
experiment. However, only 33% of BTEX was recovered
at the end of the experiment since a portion of BTEX was
dissolved in effluent water and volatilized.

Contamination of soils and groundwater by gasoline
compounds has been of great concern in recent years
(Wang and Deshusses, 2007; Malandain et al., 2010).
As a result, studies have been reported that focused on
the bioremediation of gasoline-contaminated soils and
groundwater, and the remediation of these media from
contamination with fuel oxygenates, especially MTBE and
ethanol (Kharoune et al., 2001; Magar et al., 2002; Zoeck-
ler et al., 2003; Wang and Deshusses, 2007; Reinauer
et al., 2008; Malandain et al., 2010). However, limited
information is available on the biodegradation of alkylates,
potential high-octane alternatives to MTBE (Auffret et al.,
2009). Alkylate compounds are expected to be widely
used in both non-oxygenated gasoline and some ethanol-
containing gasoline (Rice, 1999; Machado et al., 2011).
For example, 2,2,4-TMP has an octane rating of 100 and
is attractive to the refining industry as an octane enhancer
since it can be produced by former MTBE production
plants (Auffret et al., 2009).

The biodegradation of monoaromatic compounds, such
as BTEX, and n-alkanes has been evaluated in many stud-
ies, and they have been reported to be biodegradable under
aerobic conditions (Atlas and Cerniglia, 1995; Solano-
Serena et al., 1998; Auffret et al., 2009). However, highly
branched alkanes such as alkylates have not been easily
or rapidly biodegradable due to their molecular structure
(Atlas and Cerniglia, 1995; Solano-Serena et al., 1998,
2000, 2004; Marchetti et al., 2003; Cho et al., 2007).
Recent laboratory studies by Solano-Serena et al. (1998,
1999) showed the partial (less than 50%) degradation
of alkylate compounds (2,2,4-TMP and 2,3,4-TMP) by
microorganisms. However, these authors suggested that
the resistance of alkylates to biodegradation is not due
to the inhibitory capacity of isoalkanes or cycloalkanes,
but rather to a population deficiency of the naturally
occurring microorganisms degrading these hydrocarbons
(Solano-Serena et al., 1998, 1999). Cho et al. (2007)
found that 2,3-DMP, 2,4-DMP and 2,2,4-TMP were com-
pletely mineralized under aerobic condition in well-mixed
serum bottle microcosms by a microbial culture that had
been previously enriched on alkylates. Consequently, the
biodegradation of all three alkylates (2,3-DMP, 2,4-DMP,
and 2,2,4-TMP) in this study is not surprising since the
columns were inoculated with a culture pre-acclimated to
these compounds. When alkylates were present alone as a
sole carbon and energy sources under less agitated aquifer
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Table 2 Zero-order degradation constants for the alkylates in the presence and absence of ethanol or BTEX under less agitated column (unit:
mg/(kg·day))

Alkylate Alone With ethanol With BTEX

2,3-DMP –3.65 ± 0.72 –3.71 ± 0.83 –4.92 ± 1.58
2,4-DMP –3.25 ± 0.74 –3.20 ± 0.82 –4.70 ± 1.98
2,2,4-TMP –3.56 ± 0.82 –3.57 ± 0.96 –4.55 ± 1.49

Data are expressed as mean ± SD. The values were deduced from the linear declining portions of the degradation curves in Fig. 2.

Table 3 Times to onset of alkylate degradation and total disappearance of cosubstrates under less agitated conditions (unit: day)

Alkylates Alone With ethanol With BTEX
Lag in onset of Complete disappearance Lag in onset of Complete disappearance Lag in onset of
alkylate degradation of ethanol∗ alkylate degradation of BTEX alkylate degradation

2,3-DMP 8.2 4.0 8.7 64 85
2,4-DMP 9.3 4.0 10.2 87 102
2,2,4-TMP 3.7 4.0 5.2 65 72
∗ Disappearance of ethanol was mostly due to dissolution in effluent.

condition, all three alkylates degraded completely after
approximately 120 days.

Wang and Deshusses (2007) reported that the pres-
ence of xylene completely inhibited MTBE degradation
Deeb et al. (2001) also suggested that BTEX and MTBE
degradation occurred primarily via two independent and
inducible pathways. Similarly, Cho et al. (2007) reported
that biodegradation of alkylates did not commence until
BTEX were entirely degraded. In our experiments, two
independent degradation pathways were observed in the
presence of BTEX (Fig. 1c). The first degradation pathway
ended between 58 and 68 days for 2,3-DMP, 2,4-DMP
and 2,2,4-TMP (Fig. 1c). After approximately 20 days of
lag period in all three experiments, the second degradation
pathway started. Based on these observations, it is assumed
that BTEX biodegradation was complete before the initia-
tion of alkylates bioutilization.

Corseuil et al. (1998) reported that when BTEX was
coming led with ethanol, the rate of aerobic biodegradation
of BTEX decreased since microorganisms preferentially
utilized ethanol. This resulted in oxygen depletion and the
persistence of BTEX contamination (Corseuil et al., 1998).
Cho et al. (2007) observed that the total biodegradation
time for alkylates in serum bottles was the same regardless
of whether these alkylates were present alone or with
ethanol. In these continuous flow column experiments,
ethanol did not inhibit the microbial utilization of alkylates
since ethanol was either rapidly degraded or dissolved in
the effluent.

As shown in Fig. 1, influent DO concentrations for
both abiotic and biotic columns and effluent DO con-
centrations for abiotic columns in all experiments were
between 6.0 and 7.4 mg/L throughout the experiments.
However, effluent DO concentrations for biologically ac-
tive columns were below 0.5 mg/L during the period when
biodegradation was actively occurring. Shaler and Klecka
(1986) reported that DO concentrations below 1 mg/L
may be rate limiting for the biodegradation of chlorinat-

ed aromatic compounds, which have a requirement for
molecular oxygen as a cosubstrate for metabolism. It was
also reported that MTBE biodegradation is dependent on
DO concentration with KO2 of 0.7 mg O2/L (Park, 1999).
Similarly, limited degradation of ethanol and BTEX in our
experiments was likely due to oxygen limiting conditions
in the columns. Thus, if oxygen is not a limiting factor,
ethanol and BTEX may be degraded earlier in the time
series. Generally, the greater the oxygen supply, the faster
biodegradation takes place (Zhou and Crawford, 1995).
Also if oxygen is supplied to the soil microorganisms,
the microbial community could adapt to the contaminated
environment through selective enrichment and degrade the
petroleum hydrocarbons at relatively fast rates (Zhou and
Crawford, 1995). Based on these observations, it is likely
that higher degradation rates of alkylates are possible if
enough oxygen is available for aerobic degradation.

Zero-order biodegradation rate coefficients for each
alkylate were calculated from the linear declining portions
of the degradation curves (Table 2). Similar to the experi-
ments performed by Cho et al. (2007), the rate coefficients
were similar whether the alkylates were in the presence
or absence of ethanol or BTEX. In addition to the zero-
order rate coefficients, the lag periods before the onset of
the declining period of the alkylates were estimated and
compared to the length of time for complete disappearance
of the co-substrates, ethanol or BTEX (Cho et al., 2007).
As shown in Table 3, only BTEX significantly delayed
the onset of biodegradation of alkylates. Ethanol did not
inhibit the biodegradation rate or the lag period for the
alkylates. However, the presence of BTEX significantly
increased the lag periods to the onset of alkylate biodegra-
dation especially under less agitated conditions.

3 Conclusions

The objective of this study was to investigate the
biodegradability of three alkylates (2,3-DMP, 2,4-DMP
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and 2,2,4-TMP) under less agitated conditions that might
exist in groundwater aquifers. When alkylates were present
alone, all three compounds degraded completely after
approximately 120 days. To confirm the degradation of
alkylates was mainly occurring by microbial activity, both
the biologically active and abiotic columns were extracted
at the end of the experiment. No studied chemicals were
detected in the biologically active columns compared to
more than 90% of alkylates were recovered from the
abiotic control columns. When ethanol was present, alky-
lates biodegradation was likely to be delayed until day
4. However, complete mineralization of the alkylates was
observed within the same time period regardless of the
presence or absence of ethanol. This suggests that the
concentration of ethanol used in this experiment did not
inhibit the microbial utilization of alkylates. By contrast,
the presence of BTEX significantly delayed the onset of
biodegradation of alkylates especially under less agitated
conditions.

Limited degradation of ethanol and BTEX was observed
in this experiment due to oxygen limiting conditions in the
columns. Thus, if enough oxygen is supplied for aerobic
degradation, the degradation rates of alkylates are expected
to be higher.
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