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Abstract
Fe2O3 particle catalysts were experimentally studied in the low temperature selective catalytic reduction (SCR) of NO with NH3. The
effects of reaction temperature, oxygen concentration, [NH3]/[NO] molar ratio and residence time on SCR activity were studied. It was
found that Fe2O3 catalysts had high activity for the SCR of NO with NH3 in a broad temperature range of 150–270°C, and more than
95% NO conversion was obtained at 180°C when the molar ratio [NH3]/[NO] = 1, the residence time was 0.48 seconds and O2 volume
fraction was 3%. In addition, the effect of SO2 on SCR catalytic activity was also investigated at the temperature of 180°C. The results
showed that deactivation of the Fe2O3 particles occurred due to the presence of SO2 and the NO conversion decreased from 99.2% to
58% in 240 min, since SO2 gradually decreased the catalytic activity of the catalysts. In addition, X-ray diffraction, Thermogravimetric
analysis and Fourier transform infrared spectroscopy were used to characterize the fresh and deactivated Fe2O3 catalysts. The results
showed that the deactivation caused by SO2 was due to the formation of metal sulfates and ammonium sulfates on the catalyst surface
during the de-NO reaction, which could cause pore plugging and result in suppression of the catalytic activity.
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Introduction

Nitrogen oxides originating from the combustion of
stationary sources are the major source of some environ-
mental problems such as acid deposition, photochemical
smog and the greenhouse effect (Sheng et al., 2012; Qi et
al., 2003). Selective catalytic reduction (SCR) of NOx with
NH3 is a major technology for reducing NOx emissions
due to its high efficiency (Sheng et al., 2012; Qi et al.,
2003; Liu et al., 2009; Xu et al., 2010; Lee et al., 2012;
Huang et al., 2008; Chen et al., 2009; Shen et al., 2010).
The most widely used commercial catalysts are V2O5–
WO3 (MoO3)/TiO2, which show the highest activity in
the temperature range 300–400°C (Sheng et al., 2012; Qi
et al., 2003; Liu et al., 2009; Lee et al., 2012; Chen et
al., 2009; Tang et al., 2007). This temperature is higher
than that of flue gas passing through the desulfurization
unit. Therefore, many studies are focused on the catalytic
activity of SCR catalysts at low temperature (< 200°C).
Such a catalyst would show high catalytic activity at low
temperature and thus the SCR system could be located

* Corresponding author. E-mail: ktgui@seu.edu.cn

downstream of the desulfurizer and the particulate-removal
device without gas preheating (Sheng et al., 2012; Qi et
al., 2003; Liu et al., 2009; Lee et al., 2012; Huang et al.,
2008; Chen et al., 2009; Shen et al., 2010; Tang et al.,
2007). Success in this technology would not only avoid gas
preheating but also the occurrence of pore plugging from
the deposition of sulfate species.

Many catalyst systems containing Mn-based catalysts
(Huang et al., 2008; Kang et al., 2006; Yu et al., 2010),
V-based catalysts (Zhu et al., 1999; Huang et al., 2002;
Ha et al., 2008), Fe-based catalysts (Huang et al., 2008;
Yao et al., 2010a, 2010b) and other metal oxide catalysts
(Xie et al., 2004; Li et al., 2012) are active for the low-
temperature SCR of NO. However, there remain small
concentrations of SO2 in combustion gas even after the
desulfurizer, and the catalyst is usually deactivated, mainly
by sulfur compounds (Sheng et al., 2012; Qi et al., 2003;
Lee et al., 2012; Huang et al., 2008; Chen et al., 2009; Shen
et al., 2010; Tang et al., 2007; Xie et al., 2004). Based
on previous studies (Sheng et al., 2012; Qi et al., 2003;
Xie et al., 2004), the deactivation of the catalysts caused
by SO2 are attributed to the formation of sulfate species,
which deposit on the catalyst surface and thus result in their

http://www.jesc.ac.cn
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deactivation.
In this study, particulate Fe2O3 catalysts prepared by the

Research Institute of Nanjing Chemistry Industry Group
were used in the selective catalytic reduction of NO with
NH3 at low temperature. The effects of reaction tem-
perature, oxygen concentration, [NH3]/[NO] molar ratio,
and residence time were experimentally studied in a fixed
bed. Moreover, the effects of SO2 on catalytic activity
were also investigated and the deactivation mechanism
of the catalysts was studied by X-ray diffraction (XRD),
thermgravimetric analysis (TGA) and Fourier transform
infrared spectroscopy (FT-IR).

1 Experimental

1.1 Catalyst preparation

The particulate Fe2O3 catalyst evaluated in this study was
provided by the Research Institute of Nanjing Chemistry
Industry Group and the Fe2O3 particles were prepared as
follows: after aqueous solutions of ferric sulfate and fer-
rous sulfate were pre-mixed, a solution of ammonia (1:1,
V/V) was continuously added to the mixture until the pH of
the solution reached 8. Then the resulting precipitate was
washed several times with deionized water and separated
by filtration under suction, followed by extrusion molding
and evaporation to dryness at 120°C. Finally, the particles
were calcined at 300°C in air for 3 hr and crushed to 35–65
mesh. The bulk density of the Fe2O3 catalyst particles was
1.06 g/cm3 and the BET surface area, pore volume, and
pore size of the Fe2O3 catalysts were 90.79 m2/g, 0.2582
cm3/g and 11.38 nm, respectively.

1.2 Catalyst characterization

X-ray diffraction (XRD) measurements were carried out
to determine the crystalline structures of catalysts on a
Rigaku D/MAC-III instrument with Cu Kα radiation at
room temperature.

TGA experiments were carried out to determine the
sulfate species forming on the surface of Fe2O3 catalysts
with a Perkin Elmer TGA 7 apparatus. The heating pro-
gram was carried out under a nitrogen flow of 50 mL/min
with a heating rate of 10°C/min from room temperature to
1000°C.

FT-IR spectra of the catalyst were recorded in the 400–
4000 cm−1 range to determine sulfur-containing species
on the catalyst surface using a Nicolet Nexus 470 Fourier
transform infrared spectrometer.

1.3 Catalytic activity measurement

Experiments to investigate the catalytic activity of the
catalysts were carried out in a fixed-bed quartz reactor,
shown in Fig. 1.

The experimental setup mainly consisted of four units:
a simulated flue gas system, a fixed bed reactor, an electric
heating system and a flue gas analysis system. The reaction
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Fig. 1 Schematic diagram of experimental setup for NO removal. (1)
filter; (2) mass flow rate controller (MFC); (3) buffer tank; (4) valve; (5)
mixing tank; (6) primary heater; (7) secondary heater; (8) thermocouple;
(9) heater; (10) reactor; (11) gas analyzer.

gas components were as follows: 500 ppm NO, 500 ppm
NH3, 3% O2 (V/V) in N2, 1000 ppm SO2 (when used),
and balance N2. The feed gases were premixed in a glass
chamber, but the NH3 was fed directly into the reactor to
avoid possible reaction between SO2 and NH3 before the
reactor. All data were recorded when the SCR reaction
reached steady state, and the product components in the
outlet gases were measured online by an online flue gas
analyzer (rbr ecom-J2KN, Germany).

2 Results and discussion

2.1 Catalyst characterization

The XRD patterns of Fe2O3 particles before and after
reaction are shown in Fig. 2. The results indicate that
the main phases found in the Fe2O3 catalysts before and
after reaction were γ-Fe2O3 (maghemite) and α-Fe2O3
(hematite). This also means that the Fe2O3 particles used
in the experiments function as catalysts, and their compo-
nents are not substantially changed by the SCR reaction.
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Fig. 2 XRD patterns of the Fe2O3 catalysts before and after reaction.
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2.2 Effect of reaction temperature on SCR activity

Figure 3 shows the NO conversion measured for Fe2O3
catalysts with 3% O2 and without oxygen in the reactor
at temperatures ranging from 90 to 300°C. It can be
clearly seen from Fig. 3 that the NO conversion on Fe2O3
catalysts in the absence/presence of O2 were very sensitive
to temperature, and increased with temperature before
210°C and then decreased. The maximum efficiency of
NO conversion was 98.5% in the presence of 3% O2 at
210°C, and the efficiency of NO conversion was over
90% in the absence of O2. Therefore, Fe2O3 catalysts
showed high catalytic activity at low temperatures in the
presence/absence of O2.

It is well known that the function of catalysts is to
change the reaction pathway of NO conversion and de-
crease the activation energy and reaction temperature.
Selective non-catalytic reduction (SNCR) is mainly op-
erated in the temperature range of 850–1100°C without
catalysts (Gang et al., 2008), while SCR is highly effective
under the effects of V-based catalysts at comparatively
lower temperatures (300–400°C) (Qi et al., 2003). Al-
though this reaction temperature is lower than that in
SNCR, it is also higher than the temperature of post-
desulfurization. The experimental results of this article
show that the temperature for high efficiency NO con-
version with Fe2O3 catalysts was 210°C and this catalyst
could be used downstream of the desulfurizer. This is
due to the fact that the new catalysts provide a new
reaction pathway for NO conversion, and the activation
energy for Fe2O3 in the SCR process was calculated to
be 28.32 kJ/mol (Yao et al., 2010a), lower than values
obtained by other researchers, such as for V2O5/TiO2 (85
kJ/mol) (Amiridis and Solar, 1996), H-ZSM-5 (55 kJ/mol)
(Stevenson et al., 2000), and MnOx/TiO2 (38 kJ/mol)
(Wu et al., 2007). It is well known that the activation
energy in the SCR reaction is an important parameter to
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Fig. 3 Effect of reaction temperature on de-NO efficiency. Reaction
conditions: [NO] = [NH3] = 500 ppm, balance N2, total flow rate 1500
mL/min, catalyst 12 mL.

evaluate the performance of the catalysts. The lower the
activation energy is, the lower the activation temperature
required for the reaction would be. Therefore, the Fe2O3
catalysts are superior catalysts for low temperature SCR
of NO with NH3. The second reason may be due to
its large BET surface area (90.79 m2/g). The reaction
rate is determined by both chemical reaction and ‘mass
transfer and diffusion’ (Yao et al, 2010a). Therefore, the
specific surface area of catalysts is important for a catalytic
reaction. Since the BET surface area of the Fe2O3 particles
was 90.79 m2/g and was larger than that of commercial
V-based catalysts (83.76 m2/g) (Zhu et al., 2009), the
adsorption of the gaseous reactants on the catalyst surface
would be strengthened and promoted during the SCR
reaction, and thus more free radicals would be generated
on the active sites of catalysts to promote the reaction.
Furthermore, it can be seen from the XRD results of the
Fe2O3 catalysts that they consist of α-Fe2O3 and γ-Fe2O3.
Cation vacancies in the lattice of γ-Fe2O3 can be classified
as point lattice defects, which can provide more active
sites for the catalytic reaction and contribute to the surface
electron transfer in the reaction, and thus increase the low
temperature catalytic activity.

In addition, the difference of NO conversion on Fe2O3
catalysts with and without oxygen indicated that the addi-
tional oxygen caused enhancement of the catalytic activity.
However, compared with the results of oxygen absence,
the downward trend of NO conversion declined faster
in the presence of O2 when the temperature exceeded
210°C, which might due to the oxidation of NH3 at high
temperatures.

2.3 Effect of O2 on SCR activity

Based on previous studies, it was well known that oxygen
is important for SCR of NO with NH3 at low temperature.
The effect of oxygen concentration on SCR activity was
also tested in this work and shown in Fig. 4. It can
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Fig. 4 Effect of O2 on de-NO efficiency at 210°C. Reaction conditions:
[NO] = [NH3] = 500 ppm, balance N2, total flow rate 1500 mL/min,
catalyst 12 mL.
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be seen that NO conversion over the catalysts increased
with increasing oxygen concentration, especially when the
oxygen concentration was less than 3%. At 210°C, 91%
NO conversion was obtained in the presence of 0.5%
O2. When 3% O2 was added, a conversion of NO up to
98.2% was obtained. However, there was no significant
increase of the de-NO efficiency with increasing oxygen
concentration further. It is indicated that O2 enhanced the
SCR activity of Fe2O3 catalysts at low temperature and
the optimum concentration of oxygen was 3% under the
conditions used. According to our previous study (Yao
et al., 2010b), the oxidation of ammonia occurred on the
Fe2O3 catalysts in the presence of O2 and then NO was
oxidized to NO2 at low temperatures. A partial conversion
of NO into NO2 would result in a significant improvement
of the catalytic activity, and the reaction rate of NH3
with NO2 + NO was much higher than that with NO
alone (Qi and Yang, 2003; Koebel et al., 2001; Long and
Yang, 2001). Therefore, the observed results may be due
to the fact that the Fe2O3 catalysts increased the activity
for NO oxidation to NO2 in the presence of O2 at low
temperatures, and thereby increased the catalytic activity.

2.4 Effect of the [NH3/NO] molar ratio on SCR activity

It is well known that the [NH3]/[NO] molar ratio is a
key parameter in SCR of NO with NH3. To determine
the effect of the [NH3]/[NO] molar ratio on NO removal,
experiments were performed at different molar ratios of
NH3 to NO at 210°C. The effect of [NH3]/[NO] molar ratio
on the SCR reaction is shown in Fig. 5. It can be seen that
NO conversion increased rapidly with [NH3]/[NO] molar
ratio when it was less than one and varied more gradually
when a higher molar ratio of [NH3]/[NO] was used. Hence,
considering some increment for safety, the [NH3]/[NO]
molar ratio of 1.2 is suitable and there is no necessity to
increase the [NH3]/[NO] molar ratio over 1.2.

Based on previous studies (Lázaro et al., 2006; Mochida
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Fig. 5 Effect of [NH3]/[NO] molar ratio on de-NO efficiency at 210°C.
Reaction conditions: [NO] = 500 ppm, 3% O2 (V/V), balance N2, total
flow rate 1500 mL/min, catalyst 12 mL.

et al., 2000; Boyano et al., 2008), the reaction between NO
and NH3 could be divided into the following two parts:
one in the gas phase and the other on the surface of the
catalysts. Because the reactivity between NO and NH3 was
low in the gas phase, the main part of the reaction was on
the surface of the catalysts. The NH3 was first absorbed
on the surface of catalysts, and then reacted with NO on
the surface. When the concentration of NH3 was increased,
more NH3 could be adsorbed on the catalyst and react
with NO. However, the adsorption sites were limited on
the surface of catalyst, and thus the adsorbed NH3 was also
limited. Therefore, additional concentration of NH3 cannot
increase NO conversion.

2.5 Effect of residence time on SCR activity

The effect of residence time on NO conversion was
investigated at different temperatures, by changing the
residence time, which could be obtained through varying
catalyst volume. Figure 6 shows the NO conversions
obtained at different temperatures under different residence
time values. The results clearly showed from Fig. 6 that
the activity increased with increasing residence time at
different temperatures. The same strong effect of residence
time was widely confirmed by other authors (Wu et al.,
2007; Qi and Yang, 2003; Lázaro et al., 2006; Boyano
et al., 2008; Niu et al., 2011; Izquierdo et al., 2001) who
previously studied the effects of residence time on de-NOx
efficiency. In addition, at higher temperature, the residence
time had less effect on NO conversion than that at lower
temperature. When residence time increased from 0.36 to
0.48 sec, the efficiency of NO conversion increased by
4.5% at 120°C, while the increase was only 1.9% at 210°C.

2.6 Effect of SO2 on SCR activity

It is well known that the effect of SO2 on NO conversion
is noticeable for the low temperature SCR reaction. The
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Fig. 6 Effect of residence time on de-NO efficiency at different temper-
atures. Reaction conditions: [NO] = [NH3] = 500 ppm, 3% O2 (V/V),
balance N2, total flow rate 1500 mL/min, catalyst 3–12 mL.
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effect of SO2 on the activity of catalysts has been studied
by many researchers (Kang et al., 2006; Qi et al., 2003;
Tang et al., 2007; Huang et al., 2008; Li et al., 2012; Ha
et al., 2008; Xie et al., 2004) who found that the catalysts
could be gradually deactivated by SO2. For example, 100–
200 ppm SO2 could gradually deactivate the Cu-CNTs
catalysts, and NO conversion on the catalysts decreased
sharply from the original level (about 65%) to about 45%
in less than 150 min (Li et al., 2012); NO conversion on
the Mn/TiO2 catalysts decreased from about 96% to 60%
in less than one hr and then reached a stable level in the
presence of 100 ppm SO2 and 2.5% H2O (Qi and Yang,
2003). Xie et al. (2004) reported that 1600 ppm SO2 could
seriously deactivate the CuO/Al2O3 catalyst in 120 min
during the SCR process. Yang et al. (2011) studied the
effect of 2000 ppm SO2 on the NO reduction with NH3
over sulfated CaO and found that NO conversion decreased
sharply. Thus, how to improve the SO2 resistance of
catalysts is an important issue in the industrial application
of catalysts; but few researchers have studied the effect of
SO2 on the SCR activity of Fe2O3 particles. Therefore, we
studied the effect of SO2 on the catalytic activities of the
Fe2O3 particles.

The effect of SO2 on SCR activity was studied through
the following experiment at a temperature of 180°C. As
shown in Fig. 7, when 1000 ppm SO2 was added to
the simulated flue gas after 40 min of stable reaction,
the NO conversion on Fe2O3 catalysts showed almost no
change and the NO conversion still remained more than
92% after 60 min. Finally, the NO conversion on the
Fe2O3 catalysts decreased from 99.2% to 58% in 240 min
and basically reached a stable level. Compared with the
previous reports mentioned above (Li et al., 2012; Qi and
Yang, 2003; Xie et al., 2004), our experimental results
showed that the Fe2O3 catalysts were highly active for the
low-temperature SCR reaction and had better resistance
to SO2 at 180°C in one hour of added SO2. But just
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Fig. 7 Effect of SO2 on de-NO efficiency at 180°C. Reaction conditions:
[NO] = [NH3] = 500 ppm, 3% O2 (V/V), [SO2] =1000 ppm, balance N2,
total flow rate 1000 mL/min, catalyst 6 mL.

at that point, substantial deactivation occurred with time
and NO conversion decreased sharply. These experimental
results clearly indicate that SO2 significantly deactivates
the Fe2O3 catalyst for the reaction of NO-NH3-O2-SO2,
and sulfates may be formed on the surface of the catalysts
during the SCR reaction when SO2 is present for more than
one hour.

The XRD patterns of the deactivated Fe2O3 catalyst are
shown in Fig. 8. The results indicated that the main phases
found in the deactivated Fe2O3 catalysts were γ-Fe2O3
(maghemite) and α-Fe2O3 (hematite). Moreover, no visible
peaks of sulfur or sulfate were observed, which might be
due to the fact that sulfur or sulfate species existed as
surface sulfate or amorphous bulk sulfate and were poorly
crystallized (Sheng et al., 2012; Liu et al., 2009; Xu et al.,
2009). Since XRD is inappropriate to characterize matter
in a non-crystalline state, the deactivated catalysts were
examined by TGA and FT-IR and the results are shown
in Figs. 9 and 10.

The curves of TG and DTG for the deactivated Fe2O3
catalyst at the heating rate of 10°C/min are shown in Fig. 9.
It can be seen from Fig. 9 that the deactivated Fe2O3
catalyst has several temperature regions of weight loss. The
initial loss below 200°C is due to water desorption from the
catalyst surface (Huang et al., 2008). The next stage for
decomposition is between 280 and 480°C, and the weight
loss for this step can be attributed to the decomposition of
the ammonium sulfate on the deactivated Fe2O3 catalyst
surface, and ammonia desorption from the decomposition
of the ammonium sulfate occurs during this stage (Huang
et al., 2008; Xie et al., 2004; Li et al., 2012). The last
stage after 590°C could be attributed to the decomposition
of metallic sulfates during the heating course of the TG
analysis (Huang et al., 2008; Xie et al., 2004).

To confirm the above conclusions, FT-IR analysis was
performed and provided further evidence for the formation
of ammonium sulfate. The FT-IR spectra of the fresh
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Fig. 8 XRD patterns of the deactivated Fe2O3 catalysts.
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Fig. 9 TG and DTG spectra for the deactivated Fe2O3 catalysts at
heating rate of 10°C/min.
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Fig. 10 FT-IR spectra of the fresh catalysts (line a) and the deactivated
catalysts (line b).

catalysts and the deactivated catalysts are shown in Fig. 10.
Compared to the fresh catalysts, the spectra of the deac-
tivated Fe2O3 catalysts exhibit some new bands at 1120,
1400, and 3254 cm−1. The new bands at 1120 and 1400
cm−1 are due to the adsorption peak of the SO4

2− group
(Phil et al., 2010; Pietrogiacomi et al., 2009; Labádi et
al., 2006), whereas the band at 3254 cm−1 is attributed
to the corresponding N–H stretching vibration of NH4

+

ions (Xie et al., 2004). These results show that sulfate salts
such as (NH4)2SO4 and NH4HSO4 were formed during the
SCR reaction in the presence of SO2, which is in excellent
agreement with the TGA results.

Based on the discussion above, it can be found that
deactivation of the Fe2O3 catalysts in the presence of SO2
is due to the formation of ammonium sulfate and metallic

sulfates on the surface of the catalyst during the SCR
reaction.

3 Conclusions

Particulate Fe2O3 catalysts were used for the low temper-
ature SCR of NO with NH3 in the presence of oxygen.
The effects of reaction temperature, oxygen concentra-
tion, [NH3]/[NO] molar ratio and residence time on SCR
activity were experimentally studied. The experimental
results showed that the Fe2O3 catalysts had high activity
for the low temperature SCR of NO with NH3 in a broad
temperature range of 150–270°C and more than 95% NO
conversion was obtained at 180°C when the molar ratio
[NH3]/[NO] was 1, the residence time was 0.48 sec and
the O2 volume fraction was 3%. Moreover, according to
the results of TGA and FT-IR, the deactivation caused by
SO2 may be due to the formation of metal sulfates and
ammonium sulfates on the catalyst surface.
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