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The ozonolysis of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an efficient degradation
way in the atmosphere. The ozonolysis process and possible reactions path of Criegee Intermediates
with NO and H,O are introduced in detail at the method of MPWB1K/6-31+G(d,p)//MPWB1K/6-
311+G(3df,2p) level. In ozonolysis, H,O is an important source of OH radical formation and
initiated the subsequent degradation reaction. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory
was applied to calculate rate constants with the temperature ranging from 200 to 600 K. The rate
constant of reaction between 2,3,7,8-TCDD and O3 is 4.80 x 10720 ¢cm?/(mole-sec) at 298 K and 760

Torr. The atmospheric lifetime of the reaction species was estimated according to rate constants, which

study

rate constants

atmospheric lifetime
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is helpful for the atmospheric model study on the degradation and risk assessment of dioxin.

Introduction

With the increasing of environmental awareness, the
persistent organic pollutants (POPs) have leaped into
people’s view. As typical POPs, dioxins with the car-
cinogenic, teratogenic, and mutagenic effects (Schecter,
1994), are a class of structurally and chemically relat-
ed polyhalogenated aromatic hydrocarbons that mainly
include polychlorinated dibenzo-p-dioxins (PCDDs) and
dibenzofurans (PCDFs) (Schecter et al., 2006; Kulkarni
et al.,, 2008). PCDD/Fs are mainly emitted to the at-
mosphere from incineration, combustion, industrial and
reservoir sources (Lin et al., 2008; Chiu et al., 2011).
Chi et al. (2007, 2009) studied the historical trends of
PCDD/Fs in sediments buried in a reservoir and mea-
sured atmospheric deposition by automated and traditional
samplers in Northern Taiwan. Because of their biological

* Corresponding author. E-mail: sxmwch@sdu.edu.cn

effects and high toxicities, the investigation of dioxin’s
destruction is of great significance. To destroy these recal-
citrant compounds, a growing interest has been provoked
in developing efficient and economically feasible reme-
diation technologies including incineration and thermal
treatment (Weber et al., 1999; Lundin and Marklund,
2005), catalytic destruction (Ide et al., 1996; Debecker et
al., 2011), photocatalysis (Choi et al., 2000), photolysis
(Konstantinov et al., 2000; Rayne et al., 2002; Choi et
al., 2004), radiolysis (Hilaridles et al., 1994), ozonolysis
(Vollmuth and Niessner, 1995) and biodegradation (Mori
and Kondo, 2002; Fennell et al., 2004). However, most
of these methods are not suitable for the degradation
of PCDD/Fs in the atmosphere. Gaseous PCDD/Fs are
primarily depleted when reacting with OH, NOj radicals
and Oj3 in the atmosphere (Kwok and Atkinson, 1995;
Atkinson, 1996). All of those oxidants play an important
role in the atmospheric chemistry. The reaction of gaseous

PCDD/Fs congener with OH is reported ffo be at Ieast 8
and 3 orders of magnitude faster than their reactions with
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O3 and NOj radicals (Atkinson, 1996). And the OH and
O3 concentration in atmosphere are 2.0 X 10° mole/cm?
and 7.0 x 10'" mole/cm?, respectively. Obviously the O3
concentration is much higher than OH radical, thus the role
of ozone can not be ignored in atmospheric environment.
Furthermore, the main oxidants in the atmosphere are OH
radical and O3 during the daytime, while the main oxidants
are NO3 and Oj at night. So the ozone takes effect all
the time and it is a highly reactive gas with a strong
oxidability, which can promote heterogeneous chemical
reactions faster with the organic matters, especially those
with double bonds in their chemical systems. Recently
the investigation of O3 has aroused considerable attention
(José et al., 2005; Al-Alawi et al., 2008), and many
experimental and theoretical studies of the ozonolysis
reactions have been carried out. Most importantly, the
ozone arises from a variety of resources, including an-
thropogenic sources and natural sources. Given that dioxin
congeners share similar chemical and physical properties,
2,3,7,8-TCDD, the most toxic congener among all dioxin
congeners (Schecter et al., 2006; Kulkarni et al., 2008), is
selected as a typical one in this study.

Although the experiments of PCDD/Fs’ ozonolysis have
been performed, the reaction mechanism is still not clear.
Recently, ab initio molecular orbital calculation is widely
adopted to interpret experimental findings and to provide
theoretical understanding for chemical transformation pro-
cesses. Many theoretical studies on the formation of PCDD
have been reported (Leon et al., 2002; Khachatryan et al.,
2003; Fabian and Janoschek 2006; Altarawneh et al., 2007,
2008; Zhang et al., 2008, 2010; Qu et al., 2009; Xu et
al., 2010, 2011; Yu et al., 2011). Therefore, invalidation
of the degradation mechanism under different conditions
is necessary. Zhang et al. (2011, 2012) used quantum
chemical theory to clarify the mechanism for OH-initiated
degradation of 2,3,7,8-TCDD and 2,3,7,8-TCDF in the
presence of O, and NO/H,0O. Wen et al. (2010) reported a
possible ozonolysis degradation mechanism of the 2,3,7,8-
TCDD. But it can be found that Wen’s research is only
based on the stereoeffect, while the electronic effect is ne-
glected. By means of thermodynamic and kinetic analysis,
the two easiest pathways of the ozonolysis degradation
over the low temperature range are given in this article.
Some reactions of intermediates with NO and H,O are
also discussed. The rate constants are calculated and the
atmospheric lifetime of the reaction species is estimated
accordingly.

1 Computational method

1.1 Geometry optimization

The unrestricted MPWB 1K method is used to treat systems
with an even number of electrons but with partial open-

shell character, such as ozone, the Criegee biradicals. The
MPWBIK method is a hybrid density functional theory
model with excellent performance for thermochemistry,
thermochemical kinetics, hydrogen bonding, and weak in-
teractions. It is well-known that MPWB1K is an excellent
method to predict transition state geometries and thermo-
chemical kinetics, based on the modified Perdew and Wang
exchange functional (MPW) and Becke’s 1995 correlation
functional (B95) (Zhao and Truhlar, 2004). MPWBI1K
method has ever been applied to the study of ozonolysis
reactions (Yang et al., 2007, 2008). In all reaction channels,
the geometry structures of various reactants, transition
states, intermediates and products are optimized at the
MPWB1K/6-31+G(d,p) level. The vibrational frequencies
are also calculated at the same level to determine the
nature of stationary points. The selection of basis set is
important to get precise results (Zhang et al., 2000). The
single-point energy calculations are performed at a higher
level of theory MPWBI1K/6-311+G(3df,2p). All the work
is performed using the Gaussian 03 programs (Frisch et al.,
2003) and SGI workstation.

1.2 Kinetic calculation

The initial information obtained from ab initio calculations
allows us to calculate the rate constants. The kinetic
calculations have been carried out using Rice-Ramsperger-
Kassel-Marcus (RRKM) theory modified by Hou and
Wang (2007). This method has been successfully used in
the previous ozonolysis study (Wang et al., 2010; Sun et
al., 2011).

2 Results and discussion

2.1 Ozonolysis reaction

Scheme 1 shows the structure of 2,3,7,8-TCDD. There are
four different kinds of C=C double bonds labeled as A,
B, C and D, respectively, which can be attacked by Os.
According to the stereoeffect, Wen et al. (2010) has report-
ed that the D position is the most probable pathway for
2,3,7,8-TCDD to react with Os. In fact, both the electronic
effect and stereoeffect should be taken into consideration.
The thermodynamic and kinetic calculations of the four
positions with Oz are performed. The potential energy
surface is drawn in Fig. 1. Obviously, the barriers of path
A (10.29 kcal/mol) and path B (9.79 kcal/mol) are lower
than those of path C (14.51 kcal/mol) and path D (14.93
kcal/mol). Due to the distinction of calculation methods,
the potential barrier of path D is different from the data
(12.25 kcal/mol) of Wen et al. (2010).

The ozonolysis reaction is initiated by addition of ozone
to the double bonds of 2,3,7,8-TCDD to produce a primary

ozonide. The unstable five-membered rjng of primary
ozonide can easily break up in the the C—( bond and O-O
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bonds part to generate a high-energy criegee intermediate
and a relatively stable aldehyde or ketone. In this article,
the four ozonolysis reactions are similar, but path A and
B are chosen to discuss the mechanism since they take
up the major proportion in most of the temperature range.
The structures of all the reactants, intermediates, transition
states and products are listed in Fig. S3.

2.1.1 Reaction channel A

The main possible reaction paths for the reaction of
2,3,7,8-TCDD with O3 are listed in Scheme 2. Reaction
channel A is the O3 addition to the > C2 = C3 < bond.
Firstly, 2,3,7,8-TCDD reacts with O3 via TSal to generate
IMal, with a potential barrier of 10.29 kcal/mol and the
reaction heat of —36.80 kcal/mol. Then the C2-C3 and
01-03 bonds of the five-membered ring in the IMal will
be broken via TSa2 to form IMa2, the barrier is 25.30
kcal/mol and the reaction heat is —11.00 kcal/mol ( Fig. 2).
It can be seen that the IMa2 contains a benzene ring and
two C=C double bonds. Obviously, the ozone can be added
to the benzene ring or the C=C double bonds sequentially.
With their barriers compared, the reaction IMa2 + O3 —
TSa32 — IMa32 is determined to be the most probable

183
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Fig. 1 Profile of potential energy AE surface for the first step reaction
of 2,3,7,8-TCDD with Os.

reaction channel. The subsequent ozonolysis processes are
similar to the above discussed and the whole reaction route
is listed in the Scheme 1 and the profile of potential energy

surface for the subsequent reactions of reaction channel A
is drawn in Fig. S1.

2.1.2 Reaction channel B

Hy T15 The reaction channel B is the O3 addition to the > C1 =
| al C2 < which has the lowest potential barrier among the
22 . .
Clzo\ /C1\ /017\ /Cg\ four channels. Firstly, the 2,3,7,8-TCDD reacts with O3 to
Cﬁ/c B :C2 01: :C10 produce IMb1 via TSbl with a potential barrier of 9.79
1
‘:‘D Ai‘ Ii | kcal/mol and a relative energy of —38.05 kcal/mol (Fig. 1).
P oGO —=Cu The asymmetric IMb1 is different from the symmetrical
Chg Ca Ots Ciz \C|21 IMal, so that the five-membered ring in IMb1 has two
||_| *L pathways to break and generate two intermediates, that
8 1 is, IMb21 and IMb22, respectively. Similarly, IMb22 is
Scheme 1 Structure of 2,3,7,8-TCDD. chosen as the reactant in the subsequent reaction after
TSaRl
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Scheme 2 Main possible reaction paths for the reaction of 2,3,7,8-TCDD with Os.
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Fig. 2 Profile of potential energy surface for the IMal and the following
reactions.

the potential barrier and relative energy are compared
(Fig. 3). The ozonolysis reaction occurs unceasingly until
the products do not contain double bonds any longer.
The profile of potential energy surface for the subsequent
reactions of reaction channel B is drawn in Fig. S2.

The ozonolysis reaction initiated by C or D position is
similar to the reaction channel A and B discussed above.

According to many reported results, the unimolecular
reactions such as isomerization are also very important.
Consideration of the large system of reactants, the IMa2
and IMb22 are only chosen to study the mechanism of
isomerization. The reaction path is described as follows:

IMa2 — TSa3 — IMa3 )
AE = 40.42 kcal/mol, AH = —2.17 kcal/mol

IMb22 — TSb3 — IMb3 2)
AE = 52.15 kcal/mol, AH = —46.78 kcal/mol

From the values of reaction barrier, a conclusion can be
drawn that the isomerization reactions are not easy to occur
to intermediates which contain the benzene ring.

TSI
e ——
40t a5
/ \
i 4
/ .
301 I TSb22 |
~ [ e U
E i 2134
5 201 i
Q iy
v i
= Iy
5 1y
10} if
i
PP IMb21
opb———F 2@
0.00 L IMb22
" 481

Fig. 3 Profile of potential energy surface for the IMb1.

2.2 Reactions in the presence of NO and H,O

It should be pointed out that the ozonolysis reactions of
2,3,7,8-TCDD discussed above will occur only on the
existence of ozone. It is well known that there are many
abundant atmospheric precusors in the atmosphere, such
as NO and H,O. The criegee intermediates produced from
the reaction of ozonolysis of 2,3,7,8-TCDD can react
easily with these precursors. Some criegee intermediates in
reaction channel A and B will be chosen as research object
to discuss the reaction mechanism with NO and H,O.

2.2.1 Reaction of IMa2

In the reaction channel A, the first criegee intermediate
is IMa2. The profiles of the potential energy surface of
IMa2 with NO and H; O are drawn in Fig. 4. The potential
barrier and exothermic energy for the process of IMa2 +
NO — S31a — IM31a + NO, are 9.50 kcal/mol and 78.87
kcal/mol, respectively. This low barrier energy and high
exothermic energy in this process mean that the O atom
abstraction by NO can occur easily. So this process is both
thermodynamically and kinetically favorable. IM31a is a
o

kind of intermediates which contains group “—t—o—" and
is easy to hydrolyze.

Hasson et al. (2003) has studied the role of the water
vapor in the alkene ozonolysis. It is pointed out that water
vapor is an additional source of OH radicals in the reaction
with criegee intermediates. The mechanism is proposed
(Fig. 5) and the route R(1) is the most probable reaction
channel.

IMa2 can react with H,O to form a van der Waals com-
plex IM3a, and then it will generate IM4a-OH via TS3a.
In TS3a, the H atom of H,O is transferred to the O atom
of “C=0-0” and the OH group of H,O approaches the C
atom. The IM4a-OH will be decomposed quickly because
it is a complex with rich energy. Then the OH radical
will play a very important role in dioxin degradation. The
energy barrier and exothermic energy of this process are
11.75 kcal/mol and 29.41 kcal/mol, respectively.

20
TS31
104 —
o IMa2 N(?,,/ 9.50 % TS3
000 o262
000 M3k \
-10 - ! \
- 913
g -20r
= -30f }
g \ IM4-OH
| -40r "‘-.|N02 -38.54
-50 - i
60 -
0r i IM31
-80 | —
-78.87
-90

Fig.4 Profile of potential energy surface for the ]
and H;O.

a2 react with NO
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Fig. 5 Possible reactions of criegee intermediates with HyO (Hasson et
al., 2003).

OOH

2.2.2 Reacion of IMb21 and IMb22

In the ozonolysis reaction channel B, the criegee interme-
diates generated from the reactions are IMb21 and IMb22.
IMb21 can react with H,O which is the same as the
reaction of IMa2 with H,O. The profile of the potential
surface is given as follows:

IMb21 + H,O — IM3b 3)
AH = -9.26 kcal/mol
IM3b — TS3b — IM4b — OH

AE = 5.02 kcal/mol, AH = —37.74 kcal/mol

While IMb22 can be abstracted by NO, which is similar to
the reaction of IMa2 with NO.

“

IMb22 + NO — TS32b — IM32b + NO,
AE = 15.18 kcal/mol, AH = —75.56 kcal/mol

Here, the property of IM32b is similar to that of IM31a
discussed previously. The other criegee intermediates pro-
duced in the ozonolysis reaction can also react with NO
and H,O, similar to the reaction of IMa2, IMb21 and
IMb22.

&)

2.3 Rate constants and atmospheric lifetimes

So far, the whole degradation mechanism is discussed in
detail. The rate constants for the reaction of PCDD/Fs

with O3 have been studied by many groups. Kwok et al.
(1995) has reported the rate constant for the gas-phase
reaction of debenzo-p-dioxin with Oz at 297 + 2 K and
atmospheric pressure of air using a relative rate method.
The rate constant is < 5 x 1072 ¢m? (mole-sec) which is
consistent with expectations based on kinetic data for gas
phase reactions of O3 with other aromatic compounds.

In this study, the RRKM theory modified by Hou and
Wang (2007) is used to calculate the rate constants. The
generally accepted temperature ranges from —56 to 15°C in
the troposphere. Flue gas temperatures of 240-260°C are
generally needed for effective PCDD/Fs destruction in field
tests. Then a wider range of 200-600 K is chosen to
study the relationship between the temperature and rate
constants.

There are no previous data for the reaction of 2,3,7,8-
TCDD + O3 — TS — IM. The rate constants of each
channel are listed in Table 1. The rate constants at 298.15
K are taken as examples.

R + O3 —» TSal — IMal

k1= 5.66 x 107! cm?/(mol-sec) ©)
R + O3 — TSbl — IMb1 7
ki=8.73 x 1072! cm?/(mol-sec)
R + O3 — TScl — IMcl
’ ®)

ki=3.76 x 10722 cm?3 /(mol-sec)

The total rate constant design formula of 2,3,7,8-TCDD
with O3z i8S ki = (k1 + kg) X 2 + (ko + k3) X 4, ie.,
about 4.80 x 1072° cm?3/(mole-sec), which is close to the
experiment value (5x1072° cm?/(mole-sec)) of the reaction
of PCDD/Fs with O3, and the difference between rate
constants may be attributed to the number of CI atoms. It
seems that the RRKM rate constants are reasonable.

Apart from the height of potential barriers, the rate
constants are influenced significantly by the change of

Table 1 Rate constants of the elementary reaction of 2,3,7,8-TCDD with O3 (unit: 01113/(111016-sec‘))

T (K) R+03—TSal—IMal®  R+03—TSbl—IMb1P R+03—-TScl—IMcl¢ R+03;—TSdl1—IMd1¢ 2,3,7,8-TCDD+03 >TS—IM®
200 1.90E-24 4.77E-24 2.09E-26 5.86E-27 2.30E-23
250 2.30E-22 4.40E-22 7.59E-24 2.40E-24 2.26E-21
298.15 5.66E-21 8.73E-21 3.76E-22 1.30E-22 4.80E-20
300 6.29E-21 9.70E-21 4.32E-22 1.49E-22 5.34E-20
350 7.29E-20 9.39E-20 8.43E-21 3.11E-21 5.61E-19
400 4.90E-19 5.41E-19 8.37E-20 3.25E-20 3.54E-18
450 2.27E-18 2.20E-18 5.27E-19 2.13E-19 1.59E-17
500 8.11E-18 6.96E-18 2.40E-18 1.01E-18 5.56E-17
550 2.38E-17 1.84E-17 8.59E-18 3.72E-18 1.63E-16
600 6.00E-17 4.22E-17 2.57E-17 1.14E-17 4.14E-16

A |(T) = 2.49 x 10713 exp(-5188.93/T); ® k(T) = 1.00 x 10713 exp(-4803.81/T); ¢ k(T) = 6.62x10~13 exp(-6286.89/T); ¢ k(T) + 3.66x10713 exp(-

6425.55/T); © k(T) = 2.41 x 10712 exp(-5014.17/T).
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temperature. Evidently, the rate constants of path A and
path B are larger than those of path C and path D in low
temperature range. While the rate constants of path C are
larger than those of path A, path B and path D in high
temperature range. The branching ratios of the four paths
are drawn in Fig. 6. The branching ratio of path A increase
gradually with the temperature rising. The proportion of
path A varies from 17% to 29% in the range of 200-600
K. The branching ratio of path B decreases gradually as
the temperature rises, which takes up the largest proportion
(83%) in 200 K and the smallest proportion (41%) in 600
K. The branching ratios of path C and path D increase
gradually with the temperature rising and that of path C
takes the largest proportion (25%) at 600 K. It can be
seen that the different paths play different roles at different
temperatures, and the different paths will lead to a different
degradation mechanisms.

In order to further consider the role of NO, H,O and O3
on the criegee intermediates, the rate constants of IMa2
with NO, H,O and O3 are calculated. The values are
listed in the Table 2, which can provide a reference for
experimental data. For the above dimolecular reaction, the
reaction velocity (v) is

v = k[IMa2][X] X = NO, H,O or Os ©)

Since the concentration of X can be taken as a constant
in the troposphere, the dimolecular reactions approximate
the first order reactions. Then the roles of NO, H,O or O3
are changed vary with their concentrations in atmosphere.

The calculated rate constants for the reactions are ex-
pressed in the Arrhenius form of k = Aexp(-E,/RT) (in
cm?/(mole-sec)). The formula is given in Tables 1 and 2.

According to the rate constants of elementary reaction,
the atmospheric lifetime of the reactants can be calculated
(Sun et al., 2011). The lifetimes of the 2,3,7,8-TCDD and
IMa2 over the range of 200-600 K are listed in Table 3.
The lifetimes of reactants are helpful in the risk assessment
of hazardous materials.

The lifetime of 2,3,7,8-TCDD relative to Oz is 11.50

° —m— A Reaction channel
80 T~ —e— B Reaction channel
e —A— C Reaction channel
T~ —v— D Reaction channel
60} e
\.
S T~
Y T
£ 40f T~—e
[
. n—n—n—a—u
R
20l -—" o
] /A
/A/A
0 H—A——y—v—v— 7 "

500 600

Temperature (K)

Fig. 6 Branching ratio of four reaction pathway at 200-600 K.

Table 2 Rate constants of IMa2 react with O3, H,O and NO (unit:

cm3 /(mole-sec))

T (K) IMa2+05? IMa2+H,0P IMa2+ NO®
200 1.94E-24 1.48E-19 7.82E-24
250 1.32B-22 1.01E-18 1.32E-21
298.15 2.15E-21 3.50E-18 3.92E-20
300 2.38E-21 3.66E-18 4.42E-20
350 1.98E-20 9.36E-18 5.83E-19
400 1.02E-19 1.93E-17 4.25E-18
450 3.08E-19 3.47E-17 2.07E-17
500 1.12E-18 5.65E-17 7.59E-17
550 2.80E-18 8.57E-17 2.25E-16
600 6.13E-18 1.23E-16 5.69E-16

A(T) = 8.20 x 10" Pexp(—4480.31/T); ° k(T) =3.14 x 1071
exp(=2010.89/T); © k(T) = 3.88 x 107'2 exp(=5440.59/T).

Table 3 Lifetimes of 2,3,7,8-TCDD and IMa2 in atmosphere

according to the rate constant at 200—600 K (unit: sec)

T (K) 23,78-TCDD  IMa2? IMa2® IMa2¢

200 6.22E+10 7.36E+11 1.26E+01  4.76E+12
250 6.33E+08 1.08E+10  1.84E+00  2.82E+10
298.15  2.98E+07 6.64E+08  5.32E-01 9.49E+08
300 2.67E+07 6.00E+08  5.08E-01 8.42E+08
350 2.54E+06 7.22E+07  1.99E-01 6.38E+07
400 4.03E+05 140E+07  9.64E-02 8.76E+06
450 9.00E+04 4.64E+06  5.36E-02 1.80E+06
500 2.57E+04 1.28B+06  3.29E-02 4.90E+05
550 8.76E+03 5.10E+05  2.17E-02 1.65E+05
600 3.45E+03 233E+05  1.51E-02 6.54E+04

b water

2 O3 average concentration is about 7 X 10" mole/em?;
average concentration is about 5.375 x 10'7 mole/cm’; ¢ NO average

concentration is about 2.6875 x 10! mole/cm?.

months at 298.15 K. The lifetimes of IMa2 relative to
03, H,0 and NO are 21.05 years, 0.53 seconds and 30.09
years, respectively. Obviously, the water in atmosphere
may play an important role in the degradation of IMa2.

The dioxins, including 2,3,7,8-TCDD, are distributed all
over the atmosphere, such as gas phase, liquid phase, and
the surface of gas-solid phase. The degradation mechanism
in different phases should be further studied.

3 Conclusions

The ozonolysis mechanism of 2,3,7,8-TCDD is studied
using the method of quantum chemistry calculation. The
role of abundant precursors such as NO and H,O in the
atmosphere was also discussed. The rate constants were
calculated using the RRKM theory at 200-600 K and

the atmospheric lifetimes are estimated. TIie present study
leads us to draw the following conclusionk: (1) There are
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existences of four reaction channels, any of which can
take place. The potential barriers of four intramolecular
reaction sites in 2,3,7,8-TCDD with the O3 show that path
A and path B are lower than those of path C and path D. (2)
In the ozonolysis mechanism, the water is the source of the
OH radical, which can initiate the subsequent degradation.
(3) The total rate constant of 2,3,7,8-TCDD with O3 is 4.80
x 10720 cm3/(mole-sec) and the lifetime is 11.50 months.
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