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a b s t r a c t

Organic matter-induced black blooms (hypoxia and an offensive odor) are a serious ecosystem
disasters that have occurred in some large eutrophic shallow lakes in China. In this study, we
investigated two separate black blooms that were induced by Potamogeton crispus in Lake Taihu,
China. The main physical and chemical characteristics, including color- and odor-related substances,
of the black blooms were analyzed. The black blooms were characterized by low dissolved oxygen
concentration (close to 0 mg/L), low oxidation-reduction potential, and relatively low pH of overlying
water. Notably higher Fe2+ and

∑
S2− were found in the black-bloom waters than in waters not

affected by black blooms. The black color of the water may be attributable to the high concentration
of these elements, as black FeS was considered to be the main substance causing the black color of
blooms in freshwater lakes. Volatile organic sulfur compounds, including dimethyl sulfide, dimethyl
disulfide, and dimethyl trisulfide, were very abundant in the black-bloom waters. The massive anoxic
degradation of dead Potamogeton crispus plants released dimethyl sulfide, dimethyl disulfide, and
dimethyl trisulfide, which were the main odor-causing compounds in the black blooms. The black
blooms also induced an increase in ammonium nitrogen and soluble reactive phosphorus levels in the
overlying waters. This extreme phenomenon not only heavily influenced the original lake ecosystem
but also greatly changed the cycling of Fe, S, and nutrients in the water column.

Introduction

Massive cyanobacterial and vegetation blooms are a visi-
ble ecosystem response to advanced eutrophication (Diaz
and Rosenberg, 2008; Paerl et al., 2011). However, the
decrease in dissolved oxygen (DO) levels in bottom waters
that results from the degradation of large amounts of
organic matter is regarded as the most serious threat from
these blooms (Rabalais et al., 2002; Diaz and Rosenberg,
2008). Moreover, excessive organic matter in the water
column can result in hypoxia, even anoxia, in the water

∗Corresponding author. E-mail: cxfan@niglas.ac.cn

and surface sediments. Hypoxia and anoxia can induce
black water bloom disasters in freshwater lakes (Stahl,
1979; Yang et al., 2008). Because of the degradation of
organic matter from cyanobacteria blooms and/or polluted
sediments, some of the most important freshwater lakes
in China, such as Lake Taihu, Lake Chaohu, and Lake
Dianchi, have been suffering from black blooms for many
years. These black blooms have drawn the attention of
the government and academicians. All the black blooms
occurred unpredictably in late spring or early summer,
were near the shore, and usually lasted from 24 hr to 2
weeks. Black blooms are identified by the black color of
the water and are often accompanied by offensive odors.
Black blooms cause mass death of fishes and benthic
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fauna. Furthermore, when black blooms occur near water-
source intake areas, they can result in water supply crises or
even panic within local communities (Nanjing Institute of
Geography and Limnology, Chinese Academy of Science,
2007; Yang et al., 2008; Lu and Ma, 2010).

Lake Taihu is the third largest freshwater lake (2338
km2) and the largest water-source lake in China, and it is
also well known for its hyper-eutrophication and notorious
cyanobacterial blooms (Guo, 2007; Paerl et al., 2011).
Over the past several years, algae-induced black blooms
have occurred frequently in Lake Taihu and have caused
severe ecological and environmental disasters (Lu and Ma,
2010). While black blooms can be induced by algae, they
can also be induced by the degradation of submerged
plants and other organic matter. In recent years, black
blooms induced by submerged plants have occurred in
some areas of Lake Taihu and have caused increasingly
serious damage in some eutrophic bays. On May 16, 2012,
black blooms induced by Potamogeton crispus (P. crispus)
were found in the Gonghu Bay of Lake Taihu, China.
These blooms represented a new type of black bloom that
was similar to algae-induced black blooms in that the water
was also black in color and emitted a strong foul odor.

There have been some studies of the black bloom
phenomenon (Yang et al., 2008; Lu and Ma, 2010; Shen
et al., 2011, 2012), but there are no published inves-
tigations into submerged plant-induced black blooms.
Previous publications (Stahl, 1979; Duval and Ludlam,
2001) suggested that ferrous sulfide (FeS) was respon-
sible for the black color and hydrogen sulfide (H2S)
was responsible for the offensive odor of water dur-
ing black blooms. However, other studies have implied
that more complex organic compounds resulting from
cyanobacteria degradation might be the major source of
the offensive odor during black blooms. These complex
compounds might include geosmin (trans-1,10-dimethyl-
trans-9-decalol); 2-methylisoborneol (MIB); and volatile
organic sulfur compounds (VOSCs), such as methanethi-
ol (MTL), dimethyl sulfide (DMS), dimethyl disulfide
(DMDS), and dimethyl trisulfide (DMTS) (Yang et al.,
2008; Zhang et al., 2010). Lu and Ma (2009) investigated
an algae-induced black bloom in Lake Taihu and reported
that total nitrogen (TN), total phosphorus (TP), ammonium
nitrogen (NH+4 -N) and soluble reactive phosphorus (SRP)
were significantly more concentrated in black-bloom water
than in normal water. Furthermore, Shen et al. (2011,
2012) studied the formation and recovery processes of
black blooms and determined that DO was the key influ-
ential factor for both the generation and disappearance of
blooms. However, the factors that are closely related to the
black color and offensive odors have seldom been studied
effectively because of the unpredictability of the time and
location of black blooms. Therefore, the mechanism of
these blooms is still unknown and almost nothing is known
about black blooms that are induced by submerged plants.

The goal of this study was to explore the main physical
and chemical characteristics of submerged plant-induced
black-bloom water and to analyze the major odor com-
pounds. The mechanism of black-bloom formation has
been summarized to improve the understanding of this
serious ecological disaster.

1 Materials and methods

1.1 Study site

On May 16, 2012, black blooms occurred in two separate
nearshore zones in the Gonghu Bay of Lake Taihu. Gonghu
Bay is an important water-source intake area for the nearby
Wuxi and Suzhou Cities. The bay has an area of about
147 km2 and an average depth of less than 2 m (Fan
et al., 1997). One bloom zone was in Shazhu Port (SZ)
and the other was near Xuxian Port (XX) (Fig. 1). Both
bloom areas covered less than 1 km2 and were close to the
water-source intake area of Wuxi City. No black blooms
occurred within the water-source intake area during the
study period. Therefore, the two black bloom areas and
the water-source intake area were selected as the study
areas. Samples were collected from SZ, XX, and the water-
source intake area of the Nanquan Water Plant (NQ). The
sampling sites are shown in Fig. 1.

1.2 Sampling and pretreatment of water samples

During the black bloom period, triplicate surface and
bottom water samples were collected at each sam-
pling site. Aerobic solutions of ferrozine in N-2-
hydroxygethylpiperazine buffer (Phillips and Lovley,
1987) and basic solutions of zinc acetate (Cline, 1969)
were placed into individual 10 mL polypropylene cen-
triguge tubes. Water samples for the analysis of Fe2+ were
immediately transferred into the bottles containing fer-
rozine and samples for the analysis of

∑
S2− (
∑

S2− = [H2S]
+ [HS−] + [S2−]) were transferred into bottles containing
zinc acetate, in order to avoid oxidation. For the analysis of
VOSCs, 50-mL-headspace bottles were completely filled
with sample water and allowed to overflow for 5 sec before
capping to ensure that no air remained in the bottles. Sam-
ples for the analysis of NH+4 -N, SRP, and dissolved organic
compounds (DOC) were collected in 100-mL polythene
bottles and filtered through cellulose acetate filter (Ø47
mm, 0.45-µm pore size) within 2 hr of collection. All
bottles were immersed in dilute hydrochloric acid for 12
hr and then washed three times by using deionized water
prior to the collection of samples.

1.3 Analysis of physical and chemical characteristics

The concentration of iron,
∑

S2−, NH+4 -N, and SRP in the
water samples was measured using a Shimadzu UV-2550
spectrophotometer. Iron was analyzed using a ferrozine

http://www.jesc.ac.cn
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Lake Taihu

N
▲ XX 

31.4509°N, 120.3250°E 

▲ SZ 

31.4038°N, 120.2369°E

▲ NQ 

31.3804°N, 120.2460°E 

Gonghu Bay 

N

Fig. 1 Water sampling sites in Gonghu Bay, Lake Taihu, China. Shazhu Port (SZ) and Xuxian Port (XX) were affected by black blooms, while the
water-source intake area of Nanquan Water Plant (NQ) was not.

spectrophotometry method (Stookey, 1970).
∑

S2− was an-
alyzed using a methylene blue spectrophotometric method
(Cline, 1969). NH+4 -N and SRP contents were determined
using a Nessler’s Reagent method (Jing and Tu, 1990) and
a molybdenum blue method (Murphy and Riley, 1962),
respectively. A total organic carbon analyzer (LiquiTOCII,
Elementar Company, Germany) was used to determine
the DOC in the water samples. DO, chlorophyll a (Chl-
a), oxidation-reduction potential (ORP), and pH were
simultaneously measured using a multi-parameter water-
quality testing instrument (YSI 6820EDS, USA) at the
midway between the water surface and lake floor at each
sampling site.

1.4 Analysis of odor compounds

Yang et al. (2008) determined that DMDS and other
related alkyl sulfide compounds were the main odor-
causing compounds in a 2007 black bloom in Lake Taihu.
Therefore, we measured VOSCs, including MTL, DMS,
DMDS, DMTS, by using a headspace solid-phase micro-
extraction method and a gas chromatograph coupled to a
flame-photometric detector (Lu et al., 2012).

1.5 Statistical analysis

Differences in the Fe2+,
∑

S2−, NH+4 -N, and SRP of waters
from different sampling sites were evaluated using one-
way analysis of variance, followed by Tukey’s honestly
significant differences test (∗ represents P < 0.05, ∗∗ repre-
sents P < 0.05). These statistical analyses were conducted
using SPSS 16.0 software. Regressions between DOC and
black color-causing ions (Fe2+ and

∑
S2−) were evaluated

using linear fit, as implemented in Origin 8.5 software.

2 Results

2.1 Characteristics of the black bloom

In XX and SZ black bloom areas, the water was black
in color and emitted strong offensive odors. In contrast
to previous algae-induced black blooms, these two black
blooms were not induced by large-scale aggregations of
algae, as there were neither algae blooms nor algae accu-
mulations in or near the XX and SZ bloom areas. Dead P.
crispus was dominant in both black bloom zones during the
bloom period. No submerged plants, including P. crispus,
or cyanobacteria blooms were found at the control site,
NQ. Compared to NQ, the waters in XX and SZ were
remarkably anoxic, with DO of 0.45 mg/L and 0.83 mg/L,
respectively. The ORP and pH of the water at the two black
bloom sites were significantly lower than those at NQ,
while Chl-a levels were dramatically higher at XX and SZ
than at NZ (Table 1).

2.2 Fe2+ in waters

As shown in Fig. 2, water samples from different sites
had significantly different Fe2+ content. In NQ samples,
Fe2+ concentrations were very low in both surface and
bottom waters. The Fe2+ concentrations were much higher
in black bloom samples from XX and SZ. In XX and SZ

Table 1 Main physical characteristics of the water sampled from two
black-bloom sites and one control site in Lake Taihu, China

Sampling site DO (mg/L) Chl-a (mg/L) ORP (mV) pH

NQ 8.30 1.6 526.6 8.1
XX 0.45 31.5 358.7 7.74
SZ 0.83 69.2 394.0 7.82
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Fig. 2 Fe2+ in overlying waters at three sampling sites in Gonghu Bay,
Lake Taihu, China. * Presents concentrations from XX or SZ samples
were significantly different (P < 0.05) from NQ samples, and also
represents the same meaning in the following figures.

samples, the concentration of Fe2+ in bottom waters was
much higher than that in surface waters. The bottom-water
Fe2+ concentration at SZ was as high as 0.88 mg/L.

2.3
∑

S2− in waters

The
∑

S2− concentrations in overlying waters are shown
in Fig. 3. Compared to samples from NQ, samples from
XX and SZ black-bloom zones contained much higher
concentrations of

∑
S2−. The

∑
S2− concentrations at NQ

and SZ were significantly different. Concentrations of∑
S2− were much higher than those in surface waters at

XX and SZ. Bottom
∑

S2− concentrations reached as high
as 1.03 mg/L at SZ, 6.23 times those at NQ.

2.4 Nutrients in waters

Dissolved nutrients (NH+4 -N, SRP) are important water
quality parameters in lakes. Ammonium and SRP are
always higher in the black blooms overlying waters than in
normal areas (Lu and Ma, 2009). There were no significant

Surface Bottom
0.0

0.5
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*

*

Σ
S

2
-

(m
g
/L

)

 NQ

 XX

 SZ

Fig. 3
∑

S2− in overlying waters at three sampling sites in Gonghu Bay,
Lake Taihu, China.

differences in the ammonium concentration between NQ
and the two black-bloom zones. However, as shown in
Fig. 4, ammonium concentrations in the bottom waters
at XX and SZ were higher than that at NQ. Moreover,
ammonium concentrations in the bottom waters at XX
and SZ were higher than those in the surface waters at
these sites. SRP concentrations in both surface and bottom
samples at NQ were low, but were significantly higher at
XX and SZ (Fig. 5). The maximum SRP was 0.11 mg/L in
XX surface water. This maximum value was 19.39 times
that of the NQ surface sample.

2.5 VOSCs in waters

VOSCs were remarkably different in NQ, XX, and SZ
samples (Fig. 6). Low levels of MTL, DMS, DMDS, and
DMTS were detected in samples from NQ. In contrast,
with the exception of MTL in XX samples, VOSCs were
much more concentrated in XX and SZ black-bloom wa-
ters. The highest concentration of VOSCs was found in SZ
samples, in which the DMS concentration in surface water
reached 8.63 µg/L, 336.9 times that of NQ surface water.
Among the VOSCs in black-bloom waters, DMS was the
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Fig. 4 NH+4 -N in overlying waters at three sampling sites in Gonghu
Bay, Lake Taihu, China.
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Lake Taihu, China.

most abundant, and the samples contained significantly
more DMS than MTL, DMDS, or DMTS.

3 Discussion

3.1 Effects of hypoxia/anoxia on the black bloom

Hypoxia occurs when DO concentrations are less than, or
close to 2 mg/L (Turner et al., 2005; Diaz and Rosenberg,
2008; Bianchi et al., 2010; Vaquer-Sunyer and Duarte,
2008). Such low DO concentrations are commonly found
in global marine ecosystems (Diaz and Rosenberg, 2008)
and some freshwater systems (Conroy et al., 2011), and
are always caused by excessive organic matter. In the
study area, there were abundant submerged plants (mainly
P. crispus) and the DO concentration was high in water
samples from the control site. However, most of the P.
crispus died of an unknown cause and sank to the floor
of the lake, thus contributing a great deal of organic
matter to the top layer of the sediment. The degradation
of this organic matter likely caused DO depletion, thereby
inducing hypoxia and anoxia in the surface sediment and
overlying water.

DO deficiency in overlying water initiates a redox state
change and causes a cascade of alternative terminal elec-
tron acceptor use by anaerobic organisms (Middelburg and
Levin, 2009). Subsequently, sulfates and iron (hydr)oxides
are reduced as terminal electron acceptors in biochemical
reactions (Middelburg and Levin, 2009; Nielsen et al.,
2010); as the terminal products of these reduction pro-
cesses, H2S and Fe2+ begin to accumulate. Thus, hypoxia
and anoxia accelerate H2S release (Roden and Tuttle,
1992; Diaz and Rosenberg, 2008) and ferric iron reduction
(Gerhardt and Schink, 2005) in surface sediments and
overlying water. Moreover, black blooms or black water
in freshwater lakes is closely related to FeS content. FeS
is considered to be the main substance causing the black

color of black blooms and is generated from ample Fe2+

and
∑

S2− (Stahl, 1979; Duval and Ludlam, 2001).
In the present study, black-bloom waters contained

notably higher concentrations of Fe2+ and
∑

S2− than
were found in NQ water. Correlations between DOC and
Fe2+ and between DOC and

∑
S2− (Fig. 7) indicate that

organic matter degradation consumed a large amount of
DO, causing first hypoxia and then anoxia. The low DO
concentration induced changes in electron acceptor use by
anaerobic organisms that ultimately caused the production
of large amounts of FeS in low pH, low ORP, anoxic
waters, which finally caused the black color of the water
that marked the formation of black bloom. Therefore, the
increase in Fe2+ and

∑
S2− in anoxic overlying waters may

be an important material preparation to the bulk synthesis
of FeS, which finally causes the formation of black blooms.

3.2 Sources of the odor-causing substances

Offensive odors in natural waters are mainly caused by
MIB, geosmin, VOSCs, and other complex organic com-
pounds released because of the degradation of various
algae (Ikawa et al., 2001; Bentley and Chasteen, 2004;
Kiene et al., 2007; Li et al., 2007). In algae-induced
black blooms, VOSCs are regarded as more important
odor-causing substance than MIB, geosmin, or other or-
ganic compounds (Yang et al., 2008; Zhang et al., 2010).
Previous studies indicated that VOSCs, including MTL,
DMS, DMDS, and DMTS, are mainly found in marine
(Bentley and Chasteen, 2004) and anoxic or hypolimnion
lake waters (Hu et al., 2007), whereas the concentrations
of these offensive odor-causing substances are very low in
well-oxidized freshwater lakes (Hu et al., 2007; Peter et al.,
2009).

In the black bloom phenomena studied, DMS, DMDS,
and DMTS concentrations are significantly higher than
those in normal water (Fig. 6). The concentration range
of DMS, DMDS, and DMTS in XX and SZ surface black-
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bloom waters were 0.93–8.63 µg/L, 0.17–2.02 µg/L, and
0.09–1.73 µg/L, respectively, and were significantly higher
than those in NQ surface water. VOSC concentrations in
SZ and XX black-bloom waters were much lower than
those reported by Zhang et al. (2010) for algae-induced
black blooms (DMS 93.9 µg/L, DMDS 2.51 µg/L and
46.1 µg/L, DMTS 17.17 µg/L), although DMTS concen-
trations were similar to those reported by Yang et al.
(2008) (1.77 and 11.40 µg/L). In water, the odor threshold
concentrations for DMS, DMDS, and DMTS are 0.3–1
µg/L, 0.2–5 µg/L, and 0.01 µg/L, respectively (Chen et
al., 2010; Zhang et al., 2010). Trace concentrations of
these VOSCs could generate a strong putrid odor and taste.
Therefore, the concentrations of VOSCs in SZ and XX
black-bloom waters were high enough to account for the
offensive odors. DMS, DMDS, and DMTS clearly caused
the offensive odors emitted by SZ and XX black blooms.

Volatile organic sulfur compounds in freshwater lakes
are produced primarily by phytoplankton and algae
metabolism or microbial degradation of organic matter
(Song et al., 2004; Hu et al., 2007). Because neither
cyanobacterial accumulation nor an algae bloom was ob-
served in the SZ and XX black-bloom areas, the offensive
odor must have been closely related to the abundant dead
P. crispus plants. The production and accumulation of
VOSCs in black-bloom waters may have resulted from the
decomposition of sulfur-containing organic compounds in
dead P. crispus plants, as this process generates a variety
of methylated sulfides (Lomans et al., 1997; Bentley and
Chasteen, 2004; Hu et al., 2007; Lu et al., 2012).

3.3 Effects on nutrients

High ammonium and SRP concentrations are two notable
chemical characteristics of black-bloom waters (Shen et
al., 2012). Ammonium concentrations in algae-induced
black blooms can reach as high as 4.00–9.06 mg/L (Yang et
al., 2008; Lu and Ma, 2009). Although the ammonium con-
centrations of SZ and XX black-bloom waters were lower
than those reported in the literature, the concentrations
in the bottom water samples from these sites were still
remarkably higher than the concentrations in the bottom
water samples from NQ. The decomposition of dead P.
crispus plants may have released ammonium into the water
column and contributed to the high ammonium concen-
tration at the black-bloom sites. In addition, the anoxic
environment of black-bloom sites promotes the growth
of denitrifying bacteria and ammonifiers, which would
greatly increase denitrification and ammonification and
contribute further to the increase in ammonium in the water
column (Fan et al., 2000). Resuspended sediment particles
and surface sediments can also release ammonium into the
overlying water in anoxic environments (Søndergaard et
al., 1992). This process may have increased the ammonium
concentration in the black-bloom waters.

Degradation of massive numbers of dead P. crispus

plants and other organic matter was an important source of
SRP in the water column. At the same time, because of the
anoxic environment, a large amount of ferric hydroxides
was reduced to soluble ferrous ions, which can cause iron-
bound phosphorus in the sediments to transform into labile
phosphorus (Jensen and Thamdrup, 1993; Hupfer et al.,
1995; Rydin, 2000; Kaiserli et al., 2002). Excessive labile
phosphorus dissolves into the water and increases the SRP
concentration. Consequently, the SRP concentration in the
water column increased (Fan et al., 2000). Thus, release of
SRP from surface resuspended sediments may be another
important source of the elevated SRP found in black-bloom
waters.

Obviously, high SRP and ammonium concentrations are
the results of black blooms rather than the causes. Howev-
er, this kind of high-nutrient load aggravates eutrophication
and provides sufficient N and P to cause subsequent algae
blooms (Dodds, 2006), which might affect long-term N
and P cycles and eutrophication problems.

4 Conclusions

As an extreme phenomenon of hyper-eutrophication in
shallow lakes, black blooms have become a serious threat
to the safety of drinking water sources and lake ecosys-
tems. It is clear that the massive degradation of dead
submerged plants (P. crispus) can induce hypoxia and
anoxia and trigger black blooms in SZ and XX. In areas
affected by black blooms, black color and offensive odors
were directly observable. Low DO, ORP, and pH levels
were typical physical characteristics of black-bloom wa-
ters. High Fe2+ and

∑
S2− concentrations were important

chemical characteristics of black-bloom waters and were
also important sources of the black substance, FeS, in
the water column. Furthermore, VOSCs, including DMS,
DMDS, and DMTS, were remarkably high in SZ and
XX black-bloom waters, and these VOSCs released dur-
ing the decomposition of dead P. crispus plants under
anoxic conditions were the main odor-causing compounds
in black-bloom waters. High nutrient loads in the wa-
ter column were also important characteristics of black
blooms. Black blooms may have long-term effects on the
eutrophication of lakes.
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