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a b s t r a c t

The strategy of choosing suitable plants should receive great performance in phytoremediation of
surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl-1,2,4-triazol-3-base) sulfur phosphate,
TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and
moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of
TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive
score (CS) of five parameters (relative growth rate (RGR), biomass, root/shoot ratio, removal capacity
(RC), and bio-concentration factor (BCF)) by factor analysis was employed to screen the potential
macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus
alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species
having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and
Cyperus rotundus were 42.11 and 24.63 µg/(g fw·day), respectively. The highest values of BCF
occurred in A. calamus (1.17), and TF occurred in Eichhornia crassipes (2.14). Biomass and root/shoot
ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal
in the hydroponic system, indicating that plant biomass and root system play important roles in
remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica
and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation
of contaminated water bodies.

Introduction

Triazophos (O,O-diethyl-O-(1-phenyl-1,2,4-triazol-
3-base) sulfur phosphate, TAP) is an efficient and
broad-spectrum organophosphorus pesticide used as
insecticide, nematicide and acaricide, which is widely
used in Chinese agricultural industry to protect various
crops like cotton, rice, fruits, oil seeds and vegetables

∗Corresponding author. E-mail: shpcheng@tongji.edu.cn (Shuiping
Cheng); xxl594518@163.com (Xiaolong Xie)

(Qu et al., 2003; Gui et al., 2006; Li et al., 2008). The
toxicity of TAP attracted considerable public attention
over the last decades. It was reported that TAP has fairly
high toxicity to aquatic creatures and shows threat to the
water ecosystem health (Zhong et al., 2009; Naveed et al.,
2010; Jain et al., 2011). Zhang et al. (2011) showed that
TAP chronic dietary intake risk for aged persons and that
an acute nutritional intake risk of TAP residues in apple,
cabbage, rice and wheat meal reaches an unacceptable
range in China.

In the past few years, phytoremediation is of great
concern as a cost-efficient and eco-friendly technology
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that uses plants and their associated rhizosphere microbes
to remove, transform, or contain contaminants located in
soils, sediments, surface water, and ground water (Alkorta
and Garbisu, 2001; Susarla et al., 2002; Gerhardt et al.,
2009). Many authors have reported the role of plants in
remediating soils and water contaminated with organic
pollutants. Burken and Schnoor (1997) found that hy-
brid poplar trees could uptake, hydrolyze and dealkylate
atrazine to less toxic metabolites. The study by Gao et
al. (2000a) showed that selected aquatic plants have the
potential to accumulate and metabolize organophosphorus
compounds. The feasibility study of phytoremediation to
TAP has also been proved. In our previous studies, plants
play a leading role in removal of TAP in hydroponic
systems and Canna indica shows the potential of phy-
toremediation of TAP from contaminated water (Cheng
et al., 2007; Xiao et al., 2010a, 2010b). Consequently,
phytoremediation is a sound approach to remediate TAP
pollution from the ecosystem.

In recent years, differences in ability of phytoremedi-
ation among plant species were well recognized (Gao et
al., 2000b; Hutchinson et al., 2001; White et al., 2005),
therefore selecting suitable plants should receive great
attention as an effective phytoremediation approach. Al-
though there has been a growing interest in the purification
efficiency of plants relative to remediate organophosphorus
pesticides, little information is available regarding the
plant species involving the phytoremediation of TAP and
the effectiveness of these plants to remediate TAP from
contaminated water. In this research, several macrophytes,
which are available in China and commonly used in
constructed wetlands, were chosen for experiment in a
hydroponic system to study the ability of different plant
species to remediate TAP. A comprehensive score (CS)
was employed by factor analysis to compare the potential
plant species for TAP phytoremediation.

1 Materials and methods

1.1 Materials and treatment

Twelve common macrophytes were collected from the
East Lake of Wuhan (Hubei Province, China). These
plants were Acorus calamus Linn., Canna indica Linn.,
Cyperus alternifolius Linn. subsp. flabelliformis (Rottb.)
Kukenth., Cyperus rotundus Linn., Eichhornia crassipes
(Mart.) solms, Iris pseudacorus Linn., Phragmites aus-
tralis (Cav.) Trin. ex Steud., Pontederia cordata Linn.,
Scirpus triangulates Roxb., Thalia dealbata Fraser ex
Roscoe, Typha orientalis Presl and Vetiveria zizanioides
(Linn.) Vach. All plants were washed by deionized water
and pre-cultivated in nutrient medium for 7–10 days before
experiment. The nutrient medium consisted of (mg/L)
KNO3 (50.5), Ca(NO3)2 (118), MgSO4 (24), KH2 PO4

(13.6), HBO3 (286), MnCl2·4H2O (181), ZnSO4·7H2O
(22), CuSO4·5H2O (8), H2MoO4·H2O (2), FeSO4·7H2O
(28) and EDTA-Na2 (37). TAP (emulsifying concentrate
80%) was purchased from Deshijia Chemical Pesticide
Consultation Center (Shandong Province, China).

Plants with similar biomass were selected from each
species and transplanted to conical flask containing 2 L
nutrient medium, and twelve groups were set up with
different plant species. Taking into account that the usual
TAP residual concentration of soil leachate was lower than
1 mg/L (Bosch et al., 2005), control and three treatments
with three replicates were set up, including 0, 1, 3, 5 mg/L
of TAP, respectively. In addition, a non-plant group con-
sisting of nutrient medium with 1, 3, 5 mg/L of TAP was
set to calculate the TAP removal by photolysis, hydrolysis
and microbial degradation in non-plant hydroponic system.
All plants were cultivated under similar conditions with
room temperature (25 ± 5°C) and natural illumination
(light intensity 34.5 ± 7.1 µmol/(sec·m2), 14 hr:10 hr of
day/night). Water loss from evaporation and transpiration
by plants was compensated by adding deionized water
every five day.

1.2 Chemical analysis

Water samples for TAP analysis were sampled every 5 days
and then pretreated according to the methods of Zhang
et al. (2005). The samples were centrifuged at 15,000
r/min at 25°C for 10 min and a volume of 1.5 mL of
the supernatants was prepared for the analysis of TAP
concentration. TAP concentration was measured by high
performance liquid chromatography (HPLC) (1100 serial,
Agilent, USA), which was furnished with a DAD detector.
Water RP-C18 column (5 µm, 3.9 mm × 150 mm inner
diameter, Waters, USA) was used for separation. Analytes
were eluted with water-methanol (3:7, V/V) mixture at a
flow rate of 1.00 mL/min. UV detection was made at 246
nm for TAP and retention time was 6.79 min with the
column temperature of 25°C.

The treatment lasted 20 days. The plants were harvested
and were separated into three sections (roots, stems and
leaves) for recording fresh weight, and then replicates of
each section of each group in the same treatment were
composited respectively for TAP determination in the end
of experiment. TAP in plant samples was analyzed using
the method of Xiao et al. (2010a). Plant samples were
extracted with 0.01 mol/L CaCl2 and methanol, and then
freeze-dried, homogenized and extracted with acetone.
The supernatant condensed and eluted through a chro-
matographic column. The eluent condensed and readied
to post-HPLC detection. The method of TAP detection for
plant organs was similar to the HPLC method described
above, with several conditions adjusted as follows: the
water-methanol ratio of mobile phase was changed into
same size ratio (V/V) and the retention time for TAP was
transformed into 17.57 min.

http://www.jesc.ac.cn


jes
c.a

c.c
n

Journal of Environmental Sciences 26 (2014) 315–322 317

1.3 Data analysis

The relative growth rate (RGR, mg/(g fresh weight
(fw)·day) was calculated for total biomass by Eq. (1)
(Blackman 1919):

RGR =
lnW2 − lnW1

t2 − t1
× 1000 (1)

where, W1 (g) and W2 (g) indicated the initial and final
plant fresh weights, respectively. And (t2-t1) (day) indicat-
ed the experimental time.

The TAP removal in the hydroponic system adapts to the
kinetics of a first-order decay model (Gao et al., 2000a) ,
which could be described by Eq. (2):

Ct = C0 × e−k×t (2)

where, k (day−1) indicated the first-order kinetic constant.
C0 (mg/L) and Ct (mg/L) indicated the TAP concentration
at the beginning and time t (day) in the hydroponic
solution, respectively.

According to Eq. (2), the TAP removal (Rt) by plant and
microbial degradation promoting by plant at time t (day)
was derived by Eq. (3):

Rt = RG,t − RN,t

=
(
Ct−1 −Ct−1 × e−g) × V − (Ct−1 −Ct−1 × e−n) × V

= Ct−1(e−n − e−g) × V

= C0 × e−g(t−1)(e−n − e−g) × V
(3)

where, RG,t (mg) indicated the gross TAP removal at time t
(day) by combined action of plant, microbe, photolysis and
hydrolysis in hydroponic system, and RN,t (mg) indicated
the TAP removal at time t (day) by photolysis, hydrolysis
and microbial degradation in non-plant hydroponic system.
Ct−1 (mg/L) indicated the TAP concentration at time (t-1)
(day). V (L) indicated the volume of nutrient medium. g
(day−1) and n (day−1) indicated the first-order kinetic con-
stant in plant hydroponic system and non-plant hydroponic
system, respectively.

The fw of plant was given by Eq. (4):

Mt = M0 + m × t (4)

M0 and Mt meant the initial fw (g) and the fw at time t
(days). m (g) indicated the increase of fresh weight per day.

The TAP removal capacity (RC) of plant was expressed
as µg per gram of fw by day (Olette et al., 2008). Combined
with Eqs. (2), (3) and (4), RC (µg/(g fw·day)) of plant was
calculated by Eq. (5):

RC =

20∑
t=1

C0×e−g(t−1)(e−n−e−g)×V
( M0+m×t)

20
(5)

Biomass was the average of initial and final fresh weight
of plant. Root/shoot ratio was calculated by the ratio of
plant root biomass to shoot biomass. Bio-concentration
factor (BCF) was defined as the ratio of TAP concentration
in the plant tissue and that in the culture solution at harvest
(Kelsey and White 2005). Translocation factor (TF) was
estimated by the ratio of TAP concentration in plant shoot
and that in root at harvest (White et al., 2005). The average
values of BCF and TF of each species were the average of
three treatments. All reported TAP concentrations in plant
were on a dry weight basis.

All the statistical analyses were performed by SPSS
Statistics19 (SPSS Inc., Chicago, IL, USA). P values of
less than 0.05 were considered to be statistically signif-
icant. Differences in RGR of each species among four
TAP concentrations and differences in average RGRs of
four TAP concentrations among twelve plant species were
separately analyzed by One-Way ANOVA followed by
a Student-Newman-Keuls multiple comparison test. Be-
cause of the large scattering of data and failing ANOVA,
differences in RGR of each species in control, differences
in average values in RC, BCF and TF between each other
species were separately assessed by nonparametric tests
for several independent samples followed by a Kruskal-
Wallis test. Bivariate correlation analysis was calculated to
study the dependence relations between parameters. Factor
analysis was used in comprehensive comparison on five
parameters (biomass, RGR, RC, BCF and root/shoot ratio)
of twelve species of macrophytes, and two components
were extracted. CS of those plants was calculated by Eq.
(6):

CS = C1 × R1 +C2 × R2 (6)

where, C1 and C2 indicated the score of component 1 and
component 2, respectively. R1 and R2 indicated the contri-
bution rate of component 1 and component 2, respectively.

2 Results and discussion

2.1 Effect of TAP on the growth of different macro-
phytes

To be suitable for phytoremediation, a plant should grow
healthy when exposed to contaminated water. RGR can
reflect the plant capacity for survival and growth under
TAP stress. The RGRs of twelve macrophytes with four
TAP concentration levels are depicted in Fig. 1. Results
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Fig. 1 Relative growth rates (RGR) of twelve macrophytes exposed to
TAP at 0, 1, 3 and 5 mg/L during 20 days. Error bars represent standard
error of three replicates. ∗ Significantly different from control (P <

0.05). A: Acorus calamus; B: Canna indica; C: Cyperus alternifolius;
D: Cyperus rotundus; E: Eichhornia crassipes; F: Iris pseudacorus; G:
Phragmites australis; H: Pontederia cordata; I: Scirpus triangulates; J:
Thalia dealbata; K: Typha orientalis; L: Vetiveria zizanioides.

showed that there were significant differences of RGRs
among the twelve plants in control. The RGRs of C.
indica, T. dealbata and C. alternifolius were significantly
greater than that of C. rotundus (P < 0.05), indicating
that the former three plants are suitable for the culture
in this hydroponic system, but the last plant is not. This
phenomenon might be due to the fact that different plant
species request different nutrients, light and/or temper-
atures. The maximum and minimum value of average
RGRs in fw all these treatments was 7.43 mg/(g·day) for
fw T. dealbata and –27.91 mg/(g·day) for C. rotundus,
respectively. In comparision, the RGRs of T. dealbata, C.
alternifolius, C. indica and A. calamus were significant
greater than those of T. orientalis, I. pseudacorus, E.

crassipes, S. triangulates, P. australis, P. cordata and C.
rotundus (P < 0.05), indicating the former four plants have
stronger growth capacity under TAP stress.

Results also showed that the RGRs of A. calamus in
all treatments, S. triangulates in 3 mg/L TAP were sig-
nificantly larger than those in control, that of E. crassipes
and T. dealbata in 1 mg/L TAP was significantly smaller
than its control, and that the other plant species showed no
significant difference between their control and treatments.
The different response in growth of these twelve species
may be caused by the reasons on: (1) plant species differ
in their phosphorus requirement (Föhse et al., 1988). TAP
can be hydrolyzed into inorganic phosphorus, which can
be utilized by plants and promotes their growth (Rani et al.,
2001; Cheng et al., 2007); (2) plant species have different
tolerance to pesticides (Olette et al., 2008). TAP can affect
physic-biochemical characteristics of a plant and inhibit its
growth (Xiao et al., 2008).

2.2 Removal of TAP by different macrophytes

The removal kinetics constant (k) can reflect the total
removal rate of TAP by combined action of plant, microbe,
photolysis and hydrolysis in hydroponic system. The k
value of non-plant group (Table 1) was 0.006, which was
far lower than that of plant groups, indicating that plant a
play key role in TAP removal of plant hydroponic system.
A significant positive correlation existed between k and
root/shoot ratio (R2 = 0.603, P < 0.01), which was used to
calculate the estimated size of plant root system (Anderson
1988). This result indicated that plant root system played
an important role in remediation of TAP. It was coincident
with the previous studies. Voerman and Besemer (1975)
and Singh et al. (1992) found that weak hydrophobic
compounds (such as dichlorodiphenyltrichloroethane and
dieldrin) were mainly accumulated in roots. Burken and
Schnoor (1996) reported that hybrid poplar uptake and
degradation in the rhizosphere played a major role in

Table 1 Removal kinetics constants (k) of triazophos degradation by twelve macrophytes

Species Biomass (g) Root/shoot ratio Average removal kinetics constant (k) (day−1)

A. calamus 12.20 (0.36)∗ 1.37 (0.21) 0.017 (0.009)
C. indica 54.65 (0.58) 0.45 (0.10) 0.013 (0.004)
C. alternifolius 90.47 (11.22) 0.39 (0.04) 0.036 (0.012)
C. rotundus 5.31 (0.51) 1.54 (0.72) 0.033 (0.010)
E. crassipes 33.18 (1.54) 0.44 (0.28) 0.048 (0.010)
I. pseudacorus 3.43 (0.64) 0.50 (0.15) 0.042 (0.021)
P. australis 26.46 (0.95) 1.06 (0.02) 0.032 (0.004)
P. cordata 113.26 (15.36) 2.97 (3.28) 0.074 (0.048)
S. triangulates 14.20 (3.12) 0.69 (0.17) 0.036 (0.014)
T. dealbata 35.47 (3.89) 0.85 (0.17) 0.016 (0.003)
T. orientalis 121.87 (0.97) 0.69 (0.09) 0.044 (0.013)
V. zizanioides 16.23 (1.79) 0.84 (0.08) 0.031 (0.025)
Non-plant group 0.006 (0.002)

∗ Standard deviations are shown in parenthesis. Biomass was the average of initial and final fresh weight of plant.
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phytoremediation. Fan et al. (2008) and Lee et al. (2008)
showed that the microbial activity in the rhizosphere
also played an important role in degradation of organic
pollutants. Those reports validated the hypothesis in this
study that plant root plays a key role for TAP remediation
from soil or water.

Plant biomass (Table 1) was shown to be associated with
k (R2 = 0.379, P < 0.05) indicating that plant biomass
played an important role in TAP removal. According to
Karthikeyan et al. (2004), the large pool of biomass may
act as a storage or sink compartment for agrochemicals
Therefore, the inference can be deduced that a large
biomass can accumulate more TAP, which is confirmed by
other published results. Kelsey and White (2005) found
a direct relationship between the total amount of p,p′-
dichlorodiphenyldichloro-ethane (p,p′-DDE) taken up by
plant and the biomass of plant. A general behavior was
observed in the study by Garcinuno et al. (2003) that
the retention efficiency of different pesticide (simazine,
atrazine, isoproturon, linuron and carbaryl) increased with
biomass increase.

As a result of the huge difference in those species
and the interference by TAP natural degradation, k value
is unsuitable to measure the TAP removal capacity of
plants. According to Olette et al. (2008), the RC of plants
was expressed as µg of TAP per gram of fw by day. A
glaring discrepancy of RC showed among those plants
(Fig. 2). The maximum RC of these twelve plants at 1,
3, 5 mg/L TAP occurred in I. pseudacorus (6.11, 52.16
and 68.05 µg/(g fw·day), respectively), which was 23–
112 times higher than the minimum RC (0.26, 0.62 and
0.60 µg/(g fw·day) for C. indica). This results showed
that the TAP removal capacity of plants is species-specific,
which was consistent with former reports. Chaudhry et
al. (2002) reported that the removal of pesticides by
plants from water was dependent on chemical properties of
the compounds, environmental conditions, initial pollutant
concentration, and plant species. Huang et al. (2004) found
that the contaminant tolerance and growth potential of a
plant species were directly related to its biochemistry and
physiology. Gao and Zhu (2004) also showed that plant
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Fig. 2 Removal capacity (RC) of TAP degradation by twelve macro-
phytes at three concentrations of TAP.

uptake and accumulation of phenanthrene and pyrene were
correlated with their plant composition.

2.3 Concentration and transportation of TAP by differ-
ent macrophytes

Compounds most easily taken up by organisms are moder-
ately hydrophobic chemicals with octanol-water partition
coefficients (logKow) ranging from 0.5 to 3.5 (Briggs et
al., 1982). The logKow of TAP is 3.34 (Li et al., 2008),
therefore, it can be absorbed and transferred easily. BCF
reflects the ability of absorbing contaminants by plant. TF
reflects the ability of transferring pollution from root to
shoot. The average BCF and TF are shown in Fig. 3.
The average BCFs of these plants were significantly dif-
ferent (P < 0.05), ranging from 0.02 (I. pseudacorus) to
1.17 (A. calamus). The average TFs of these plants were
significantly different (P < 0.05), and the maximum and
minimum value was 2.14 for E. crassipes and 0.07 for V.
zizanioides, respectively.

The varieties of BCF and TF among the twelve plants
suggested that differences existed in uptake of organics
among these different plant species. Salt et al. (1998) and
Olette et al. (2008) demonstrated that the difference in the
capacity of plants extracting pesticide depended on plant
type. The BCFs of ten plants on p,p′-DDE in root varied
significantly (White et al., 2005). Schwab et al. (1998)
indicated that lipid content of plant root was a control-
ling factor in the adsorption of organic matter. Gao and
Zhu (2004) also demonstrated that significantly positive
correlations were shown between BCF of phenanthrene
and pyrene in root and root lipid contents. The low values
of BCF may be related to rapid degradation of TAP in
vivo. Our pervious study found that the concentration of
TAP in plant organs absorbing during the incubation period
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Fig. 3 Comparison of uptake and transformation ability of TAP
by twelve wetland plant species. BCF: bioconcentration factor, TF:
translocation factor.
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decreased by 48.4%–99.9% after another 7-day cultivation
in TAP-free solution (Xiao et al., 2010a).

A significant correlation was found between BCF and k
value (R2 = 0.485, P < 0.01), indicating that the absorption
by plants is one major route of TAP removal in hydroponic
system. BCF was also associated with root/shoot ratio (R2

= 0.723, P < 0.01), and illustrated that developed root sys-
tem could facilitate the absorption of TAP. Günther et al.
(1996) reported that biodegradation of hydrocarbons in the
rhizosphere was stimulated by plant roots. Therefore, the
absorbing capacity of TAP and development of root system
should be considered in the screening for effective plants of
TAP phytoremediation. However, there was no discernible
relationship between TF and k value, suggesting that the
transportation ability of plants is not directly correlated to
TAP removal in hydroponic system.

2.4 Comprehensive comparison on phytoremediation
ability of twelve species of macrophytes

Strong tolerance and removal capacity of TAP are major
features for plants in TAP phytoremediation. Owing to
the reason that a single parameter is too limited to reflect
the capacity of plants to remove TAP, it is necessary
to comprehensively screen suitable plants for TAP phy-
toremediation. Combined with previous results, five plant
selection principles relative to phytoremediation ability are
proposed: (1) healthy growth under TAP stress, which
should be a primary consideration in phytoremediation
and can be reflected by RGR; (2) capacity of plants to
remove TAP, which is the key factor to screen efficient
plants and can be reflected by RC; (3) absorption ability
of TAP, which promotes the removal of TAP and can be
reflected by BCF; (4) a well-developed root system, which
can stimulate biodegradation of TAP and be reflected by
root/shoot ratio; (5) huge biomass, which contributes to
TAP removal.

Comprehensive scores by factor analysis of those five
parameters (RGR, biomass, root/shoot ratio, RCF and
BCF) was used to comprehensively compare the phytore-
mediation ability of these plants. In the opinion of Kaiser
(1974), a Kaiser-Meyer-Olkin (KMO) value greater than
0.5 is considered to be acceptable for factor analysis. The
data of those parameters in this study were suitable for
factor analysis, on the grounds that the KMO statistic
in this study was 0.521, as well as Bartlett’s test of
sphericity for the adequacy was significant (P < 0.01).
Two components were extracted and identified totaling
cumulative contribution of 73.4% (Table 2), which could
be more comprehensive to reflect the original five parame-
ters. Component 1 occupied 48.2% of totaling cumulative
contribution and mainly reflected RC, biomass and BCF;
component 2 occupied 25.2% of totaling cumulative con-
tribution and mainly reflected RGR and root/shoot ratio.

The CS of these plants are listed in Table 3. C. al-
ternifolius had the greatest CS with 1.18 among these

Table 2 Rotated component matrix by factor analysis of five
parameters

Index Component

1 2
RC –0.863 0
Biomass 0.763 –0.118
BCF 0.668 0.399
Root/shoot ratio 0.179 –0.890
RGR 0.612 0.725

Extraction method: principal component analysis; rotation method: vari-
max with Kaiser normalization.

Table 3 Comprehensive scores (CS) of twelve plants by factor
analysis

Species CS Species CS

C. alternifolius 1.18 P. australis –0.19
A. calamus 0.73 E. crassipes –0.31
T. dealbata 0.62 P. cordata –0.32
C. indica 0.58 S. triangulatus –0.34
T. orientalis 0.49 I. tectorum –1.10
V. zizanioides –0.09 C. rotundus –1.27

∗ Data are in ascending order of CS values.

twelve plant species. It indicated that C. alternifolius owns
strong ability of TAP removal and can be applied for
TAP phytoremediation. In addition A. calamus (0.73), T.
dealbata (0.62), C. indica (0.58) and T. orientalis (0.49)
are also suitable species for their higher CS values as well.

3 Conclusions

Phytoremediation has been proven a sound approach to
remediate pesticides, including TAP. The plant specificity
in ability of phytoremediation has been demonstrated. T.
dealbata, C. alternifolius, C. indica and A. calamus had
higher RGR values than those of other species and indi-
cated higher tolerance under TAP stress in the hydroponic
system. The higher RC loading in I. pseudacorus and C.
rotundus were 42.11 and 24.63 µg/(g fw·day), respectively.
The highest values of BCF occurred in A. calamus (1.17),
TF occurred in E. crassipes (2.14), respectively. Biomass
and root/shoot ratio of plant showed significant positive
correlation with first-order kinetic constant (k) of TAP
removal in the hydroponic system, indicating that plant
biomass and root system play important roles in remedi-
ation of TAP.

The principles on plant selection for TAP phytoremedi-
ation are proposed: (1) healthy growth under TAP stress;
(2) capacity to remove TAP; (3) absorption ability of TAP;
(4) developed root system; (5) large biomass. According to
factor analysis, C. alternifolius, A. calamus, T. dealbata, C.
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indica and T. orientalis, which own higher comprehensive
score, are potential species for TAP phytoremediation in
contaminated water body.

Further studies are needed to understand the mecha-
nisms of species from different families involved in TAP
phytoremediation, as well as to improve the removal
capacity of TAP.
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