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a b s t r a c t

Cigarette smoking is a particle-related exposure. Studying the characteristics of the particle size
distribution of cigarette smoke can aid in providing knowledge of smoke aerosol attributes. We used
an electrical low pressure impactor (ELPI) to measure the particle size distribution of mainstream
cigarette smoke generated by a smoking machine and provided a continuum of particle sizes
of cigarette smoke from a whole cigarette. The results showed that the aerodynamic diameters
(D, geometric mean of a channel) of particles ranged from 0.021 to 1.956 µm, and the number
concentrations were on the order of 105–109 cm−3 for different sizes of particles. The particle number
of the size category below 0.1 µm approximated that of the category 0.1–2.0 µm, and the particles in
the size category of 0.1–2.0 µm contributed extremely heavily to total particulate mass. In addition, the
results with small samples indicated that the tar yields normalized per milligram of nicotine showed
an approximately linear increase with increasing concentration of total particles.

Introduction

Cigarettes are the most-used combusted tobacco products
by far, and the burning of tobacco during smoking causes
smokers to be exposed to thousands of toxicants. The
health effects of cigarette smoking have been of more and
more concern to the public and the government (FSPTCA,
2011; IOM, 2001). Mainstream cigarette smoke, which
emerges from the butt end of a puffed cigarette, is a dy-
namic and complex aerosol composed of more than 5000
chemical constituents (Rodgman and Perfetti, 2008). The
majority of constituents exist in the particulate phase and
the minority is found in the gas vapor phase, while some
constituents dynamically distribute in both phases. The
chemical compounds, formed by pyrolysis and distillation
during tobacco combustion, coagulate and form various

∗Corresponding authors. E-mail: congnie@yahoo.com.cn (Cong Nie),
shengl@gdzygy.com (Guanglin Shen)

sizes of particles which are small enough to be inhaled and
deposit in the respiratory tract and the lung of smokers.
The particles in smoke aerosol have been reported to play
important roles in smoking-related diseases, such as lung
cancer, chronic obstructive pulmonary disease (COPD)
and cardiovascular disease (US DHHS, 1989; IARC, 2004;
Sherman, 1991; Yoshida and Tuder, 2007).

Cigarette smoking is a particle-related exposure (San-
gani and Ghio, 2011). The health consequences of smoking
are mainly attributable to inhalation of particles. The
particle size distribution of cigarette smoke aerosol is an
important parameter in predicting the deposition of inhaled
particles in different regions of the smoker’s airways.
Studying the characteristics of the particle size distribution
of cigarette smoke can aid in providing knowledge about
smoke aerosol (Aldermana and Ingebrethsen, 2011; An-
derson et al., 1989; Hinds, 1978; McCusker et al., 1983),
understanding the retention and deposition of cigarette
smoke particles in the respiratory tract (Bernstein, 2004;
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Kane et al., 2010), and performing modification of product
design (Wayne et al., 2008). In addition, the measurements
of particle size distribution associated with the data from
smoke chemical analysis and biological assays can pro-
vide a comprehensive insight into the adverse effects of
cigarette smoke and the health risk following smoking.
Over the past decades, the tobacco industry has long been
involved in harm reduction for tobacco products. Smoke
aerosol particle size manipulation has been evaluated both
as a means of controlling physical and sensory product
attributes and as a possible approach to reducing health risk
related to exposure (Wayne et al., 2008).

The differences in the measurements of particle size
distribution of cigarette smoke, which have been reported
previously, are attributed to differences in measurement
methods. Hinds (1978) measured the aerodynamic size dis-
tribution of cigarette smoke by using an aerosol centrifuge
and a cascade impactor, and observed that mass median
diameter decreased from 0.52 to 0.38 µm with increasing
dilution. Anderson et al. (1989) reported that mass median
diameter measured by the electrical aerosol analyzer was
smaller than in previous data. Recently, with the devel-
opment of advanced aerosol analysis technology, some of
the instruments used in the fields of aerosol measurement
and sampling have been applied in combustion research,
including cigarette smoke (Adam et al., 2009; Aldermana
and Ingebrethsen, 2011; Becquemin et al., 2009; Kane
et al., 2010). Kane et al. (2010) used an electrical low
pressure impactor (ELPI) to investigate effects of smoking
parameters on the particle size distribution and predicted
airway deposition of mainstream cigarette smoke, and
they determined that higher puff flow rates and reduced
filter ventilation decreased the count median diameter of
cigarette smoke. Aldermana and Ingebrethsen (2011) used
a DMS500 fast particulate spectrometer to characterize the
particle size distribution of mainstream cigarette smoke.

In this study, an ELPI was employed to measure the
particle size distribution of mainstream cigarette smoke
generated by a smoking machine. The purpose of this
study was: (1) to provide a continuum of particle sizes
of cigarette smoke from a whole-cigarette measurement,
and (2) to compare the particle distribution between the
size category below 0.1 µm and the category of 0.1–2.0
µm. In addition, the correlation between the concentration
of particles and tar yields or nicotine yields was studied
preliminarily.

1 Materials and methods

1.1 Cigarettes

Kentucky reference cigarettes 3R4F from the University of
Kentucky (Lexington, Kentucky, USA) and seven brands
of commercial cigarettes purchased from the Chinese mar-

ket were used in this study. The cigarettes were conditioned
at 22 ± 1°C and 60% ± 3% relative humidity for at least
48 hr before being smoked.

1.2 Mainstream cigarette smoke particle size distribu-
tion measurement

The particle size distribution of fresh smoke aerosol was
measured with an ELPI (Dekati, Tampere, Finland). The
ELPI is a real-time particle size spectrometer for real-time
monitoring of aerosol particle size distribution (Keskinen
et al., 1992). The main components of this instrument are
a corona charger, 13 stage cascade low-pressure impactor
and multichannel electrometer. The ELPI operates at 10
L/min air flow, and measures particle size ranging from 7
nm with filter stages to 10 µm.

Cigarettes were smoked by a Borgwaldt LM1 smok-
ing machine (Borgwaldt KC, Hamburg, Germany) under
the International Organization for Standardization (ISO)
smoking regimen (35/60/2 without blocking of filter venti-
lation) (ISO, 2000). When a puff was generated, a sample
of smoke passed through the axial diluter (Dekati) by
means of a vacuum pump, and then the diluted smoke
passed through the second diluter (Dekati), in which it was
mixed with clean air. After being twice diluted, a sample
of diluted smoke was introduced into the inlet of the ELPI
for particle size distribution measurement (Fig. 1). Total
dilution ratios between 600 and 1000 were achieved for
whole system.

The charged particles in smoke aerosol collected on
the 13 collection plates of the impactor according to their
aerodynamic diameter were recorded on 12 electrometer
channels. The measurement data were processed by ELPI
XLS4.05 software. The particle size measured by impact
was equivalent to the aerodynamic diameter of a particle.
In this study, the aerodynamic diameter was addressed
using D (geometric mean of a channel). The particle size
range and D corresponding to each impactor stage are
shown in Table 1.

Smoking

machine

Cigarette

Solenoid

valve

Axial diluter Second diluter 

Excess pumped away  

ELPI

Flowmeter Flowmeter

Clean air Clean air

Fig. 1 Schematic diagram of the smoking machine and dilution system
for the electrical low pressure impactor (ELPI) measurements.
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Table 1 Particle size range and D corresponding to each impactor
stage

Impactorst age Particle size range (µm) D (µm)

1 0.007–0.029 0.021
2 0.029–0.057 0.039
3 0.057–0.101 0.070
4 0.101–0.165 0.119
5 0.165–0.255 0.201
6 0.255–0.393 0.315
7 0.393–0.637 0.483
8 0.637–0.990 0.761
9 0.990–1.610 1.231
10 1.610–2.460 1.956
11 2.460–3.970 3.088
12 3.970–10.150 6.285

1.3 Chemical analysis

The yields of tar and nicotine were determined according
to ISO 4387 (ISO, 2000).

1.4 Statistical analysis

The data were expressed as mean ± SD. One-way ANO-
VA analysis was applied to compare the results from
experiments. The value of P < 0.05 was considered as
statistically significant.

2 Results

2.1 Particle size distribution and concentration of
mainstream cigarette smoke from a whole cigarette

Figure 2 shows the particle size distribution and con-
centration of mainstream cigarette smoke from 3R4F
reference cigarettes generated by the smoking machine.
The aerodynamic diameters (D) of particles ranged from
0.021 to 1.956 µm. For different sizes of particles, the
number concentrations were on the order of 105–109 cm−3.
Figure 3a shows the particulate mass concentration of
smoke aerosol, and there were large differences in the par-
ticulate mass concentrations among different size particles.
The mass of particles of 0.021, 0.039, 0.070 or 0.119 µm
was less than 1% of total particulate mass, respectively.
The respective contribution to total particulate mass for
particles of 0.315, 0.483 or 0.761 µm was all more than
10%. And the mass of particles of 0.201, 1.231 or 1.956
µm was less than 10% but more than 1% of total particulate
mass, respectively (Fig. 3b).

Table 2 shows the comparison of the particle distri-
butions between the size category below 0.1 µm and the
category of 0.1–2.0 µm. Seven brands of commercial
cigarettes and 3R4F reference cigarettes were used for
analysis. The “Tar” yields of these cigarettes as labeled on
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Fig. 2 Particle size distribution and concentration of mainstream
cigarette smoke from 3R4F reference cigarettes. Mainstream cigarette
smoke from 3R4F reference cigarettes generated by smoking machine
was measured with the ELPI. The measurements were carried out in six
independent experiments, and the data are expressed as mean ± SD.

the packages ranged from 5 to 12 mg/cigarette. The total
particulate mass concentrations of mainstream cigarette
smoke from these cigarettes were between 27.88 and 48.38
µg/cm3, and the total particle number concentrations of
smoke aerosol were between 1.34 × 109 and 2.73 ×
109 cm−3. There was no significant difference in particle
number between the size category below 0.1 µm and the
category of 0.1–2.0 µm. However, there was significant
difference in particulate mass between the two categories
of particles (P < 0.01), and the particles in the size
category of 0.1–2.0 µm contributed extremely heavily to
total particulate mass.

2.2 Particle size distribution and concentration of puff-
by-puff mainstream cigarette smoke

Figure 4 shows the particle size distribution and con-
centration of puff-by-puff mainstream cigarette smoke
from 3R4F reference cigarettes generated by the smoking
machine. The 3R4F reference cigarette was smoked seven
puffs under the ISO smoking regimen. For every puff
of smoke, the aerodynamic diameters of particles ranged
from 0.021–1.956 µm. The particle size distribution and
concentration of puff-by-puff smoke were similar to those
of smoke aerosol generated from a whole cigarette. There
was no difference in the characteristics of particle size
distribution among puffs. The particulate mass concentra-
tion of every puff of smoke was similar to that of the
whole-cigarette smoke aerosol, as was the contribution
of different size particles to the total particulate mass for
every puff (Fig. 5).

2.3 Correlation between the concentration of particles
and tar yields or nicotine yields

Seven brands of commercial cigarettes and 3R4F reference
cigarettes were used for analysis. There was no linear
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Fig. 3 Particulate mass concentration of smoke aerosol (a) and the contribution of different size particles to total particulate mass (b). Mainstream
cigarette smoke from 3R4F reference cigarettes generated by smoking machine was measured with the ELPI. The measurements were carried out in six
independent experiments, and the data are expressed as mean ± SD.

Table 2 Comparison of the particle distribution between the size category below 0.1 µm and the category of 0.1–2.0 µm

Cigarette ID “Tar”# Replicates Particulate mass Concentration of Percentage of number (%) Percentage of mass (%)

(mg/cigarette) (n) concentration (µg/cm3) particle (× 109 cm−3) < 0.1 µm 0.1–2.0 µma < 0.1 µm 0.1–2.0 µmb

3R4F 9.5 6 37.71 ± 3.73 2.19 ± 0.28 51.8 ± 7.8 48.2 ± 7.8 0.3 ± 0.1 99.7 ± 0.1

DB (blended type) 10 5 37.77 ± 1.74 2.32 ± 0.22 47.1 ± 7.2 52.9 ± 7.2 0.3 ± 0.0 99.7 ± 0.0

ZHNH (blended type) 10 5 33.03 ± 2.59 1.87 ± 0.21 45.8 ± 11.8 54.2 ± 11.8 0.3 ± 0.0 99.7 ± 0.0

TF (Virginia type) 12 6 40.36 ± 4.55 1.83 ± 0.40 43.5 ± 10.7 56.5 ± 10.7 0.1 ± 0.0 99.9 ± 0.0

WBL (blended type) 12 6 37.82 ± 3.86 2.48 ± 0.71 52.1 ± 13.3 47.9 ± 13.3 0.2 ± 0.1 99.8 ± 0.1

ZHH (Virginia type) 12 3 48.38 ± 4.86 1.87 ± 0.33 34.4 ± 0.8 65.6 ± 0.8 0.1 ± 0.0 99.9 ± 0.0

CHBS (Virginia type) 5 3 31.21 ± 5.83 1.34 ± 0.25 35.0 ± 0.9 65.0 ± 0.9 0.1 ± 0.0 99.9 ± 0.0

ZHNH (blended type) 5 3 27.88 ± 7.55 2.73 ± 0.37 67.2 ± 2.4 32.8 ± 2.4 0.4 ± 0.0 99.6 ± 0.0

The data were expressed as mean ± SD.
# The “Tar” values are as labeled on packages of cigarettes.
a No significant difference between particle number of size category < 0.1 µm and 0.1–2.0 µm (P = 0.29), b significant difference between particulate
mass of size category < 0.1 µm and 0.1–2.0 µm (P < 0.01).

1 2 3 4 5 6 7

 

1.00E+10

1.00E+09

1.00E+08

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

C
o
n
ce

n
tr

at
io

n
 o

f 
p
ar

ti
cl

es
 (

cm
-
3
) 

Puff number

 0.021 μm

 0.039 μm

 0.070 μm

 0.119 μm

 0.201 μm

 0.315 μm

 0.483 μm

 0.761 μm

 1.231 μm

 1.956 μm

1.00E+00

Fig. 4 Particle size distribution and concentration of puff-by-puff mainstream cigarette smoke.
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Fig. 5 Particulate mass concentration of puff-by-puff mainstream cigarette smoke (a) and the contribution of different size particles to total particulate
mass for every puff (b).

correlation between the concentration of total particles
and tar yields per cigarette (Fig. 6a), nor between the
concentration of total particles and nicotine yields per
cigarette (Fig. 6b). When tar yields were expressed on a
per-mg of nicotine basis, the tar yields showed an approx-
imately linear increase with increasing concentration of
total particles (R2 = 0.684) (Fig. 6c).

3 Discussion

Cigarette smoke is a complex aerosol comprised of a
particulate phase and gas vapor phase. Particles in smoke,
carrying toxicants, are inhaled into the respiratory tract and
cause smoking-related diseases. The particle size distribu-
tion of smoke aerosol is related closely to the chemical
composition and biological effects of particulate matter.
The ELPI is a real-time particle size spectrometer designed
at the Tampere University of Technology for measurement
of aerosol particle size distribution (Keskinen et al., 1992).
This instrument can monitor airborne particle size distri-

butions in the range of 7 nm with filter stages to 10 µm,
and is qualified for different applications, such as automo-
tive exhaust emissions (Liu et al., 2011), pharmaceutical
studies (Ali, 2010) and combustion research (Nussbaum
et al., 2009). In this study, the particle size distribution of
mainstream cigarette smoke generated by a smoking ma-
chine was measured by an ELPI. The results showed that
the aerodynamic diameters (D) of particles ranged from
0.021 to 1.956 µm, and the number concentrations were on
the order of 105–109 cm−3 for different sizes of particles.
The total particle number concentration was on the order
of 109 cm−3, which is consistent with previous reports
(Bernstein, 2004; Kane et al., 2010). Large differences in
the particulate mass concentration were observed among
different size particles.

An interesting result was found when all particles in
smoke were classified into two categories, the size category
below 0.1 µm and the category of 0.1–2.0 µm. There
was no significant difference in particle number between
the two categories, while the particulate mass of particles
in the category of 0.1–2.0 µm was more than 99% of
total particulate mass. These results were consistent in all
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Fig. 6 Correlation between the concentration of particles and tar yields or nicotine yields. (a) correlation between the concentration of total particles
and tar yields per cigarette; (b) correlation between the concentration of total particles and nicotine yields per cigarette; (c) correlation between the
concentration of total particles and tar yield on a per-mg of nicotine basis. The concentration of particles as well as the values of tar or nicotine yields is
the mean value for each brand of cigarettes. The correlation analysis was conducted using Microsoft Office Excel 2007.
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test cigarettes. Particles smaller than 0.1 µm are labeled
ultrafine particles, and particles between 0.1 and 2.5 µm are
termed fine particles (Wichmann et al., 2000). Wichmann
et al. (2000) concluded that both fine particles (represented
by particle mass) and ultrafine particles (represented by
particle number) showed independent effects on mortality
at ambient concentrations. Epidemiological and toxico-
logical studies show that inhalation of fine and ultrafine
particles may cause adverse health effects, which might
be related to factors including mass, surface area and
number concentration of particles (Brouwer et al., 2004).
The data obtained from this study showed that the smoke
aerosol was composed of fine and ultrafine particles, and
the particulate mass was dominated by fine particles and
the contribution to particle number was similar for both
fine particles and ultrafine particles.

The particulate matter in cigarette smoke carries a va-
riety of chemical constituents, which form the tar, as well
as nicotine and water. The study of tar has been generally
focused on its toxicological effects, and nicotine is the
addictive component of cigarette smoke. In the present
study, we carried out a preliminary study on the correlation
between the concentration of particles and tar yields or
nicotine yields. There was no linear correlation between
the concentration of total particles and tar yields per
cigarette or with nicotine yields per cigarette. McCusker
et al. (1983) previously reported that the number concen-
tration of smoke particles from some “low” tar cigarettes
was found to be similar to that of some “medium” tar
cigarettes. The World Health Organization Study Group on
Tobacco Product Regulation (TobReg) recommends that
toxicant yields be normalized per milligram of nicotine
for the regulation of tobacco products. The purpose of this
normalization is to shift the interpretation of measurements
away from the quantity of smoke generated per cigarette
and the misleading use of the machine-measured yields
as data of smoker exposure and risk (TobReg, 2008).
Reporting results on a per nicotine basis represents the-
oretically a calculation to correct for a smoker’s nicotine
intake based on the assumption that consumers smoke
cigarettes to titrate their blood nicotine levels (Johnson
et al., 2009). Hence, we normalized tar yields on a per-
mg of nicotine basis, and found that the shifted tar yields
showed an approximately linear increase with increasing
concentration of total particles. The results suggest that
decreasing the concentration of total particles in cigarette
smoke might reduce the tar yields on a per-mg of nicotine
basis. Certainly, the small number of test samples is a
limitation for this result, so there needs to be further work
with a large number of brands of cigarettes to confirm the
above results in the future. In addition, we recommend
further analysis of the chemical characteristics of smoke
particulate matter so that the physicochemical properties
of smoke aerosol can be explained explicitly.

4 Conclusions

The number concentrations for different size of particles in
cigarette smoke generated by a smoking machine are on
the order of 105–109 cm−3, and there are large differences
in the particulate mass concentration among different size
particles. The particle number of the size category below
0.1 µm approximates that of the category of 0.1–2.0 µm.
However, the particles in the size category of 0.1–2.0 µm
contribute extremely heavily to total particulate mass. In
addition, this study with small sample size indicates that
the tar yields normalized on a per-mg of nicotine basis
show an approximately linear increase with increasing
concentration of total particles. In the present study, all
particle size measurements were performed under the
ISO machine-smoking regimen. It is well known that no
machine-smoking regimen can represent all human smok-
ing behaviors. However, machine-smoking testing is useful
to characterize cigarette emissions for product design and
regulatory purposes. Therefore, the data obtained from this
work could provide a referenced insight into the physical
properties of fresh cigarette smoke aerosol. The further
study of chemical characteristics and biological responses
of particles of different sizes associated with the physical
properties of cigarette smoke will provide information
for a comprehensive understanding of the mechanisms of
smoking-related diseases.
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