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Acute toxicity of 21 quinolone antibiotics was monitored using photobacterium Vibrio fischeri
assay. The minimum IC20 (inhibitory concentration for 20% luminescence elimination) was
obtained at the least 18.86 μmol/L for the tested quinolones. A quantitative structure–activity
relationship model was established to investigate the possible mechanism for the acute
toxicity. The critical physicochemical descriptors, describing σ and π atom electronegativity,
implied that the electron transfer might occur between the quinolones and photobacterium
V. fischeri. Although the quinolones exhibited limited acute toxicity to photobacterium, toxicity
elevation was detected after their chlorination. Hence, chlorination disinfection treatment of
quinolone-containing water should be of concerns.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Antibiotics are one of the most widely used groups of pharmaceu-
ticals due to their potency against diseases in human, veterinary
and industrial farming (Cruz Moreno-Bondi et al., 2009; Kummerer,
2009; Pan et al., 2011). Quinolones are among the five classes of
antibiotics (β-lactam, macrolides, quinolones, sulfonamides, and
tetracyclines) used to treat a broad variety of Gram (+) and Gram (−)
bacterial infections. They kill target bacteria by inhibiting the
activity of bacterial DNA gyrases, which are required for replication
and transcription in prokaryotes (Bryan et al., 1989; Hooper, 2001).
Owing to the advantages of broad-spectrum antibacterial activity,
high potency, non-cross resistance and low price, quinolones have
been extensively used in recently years. However, due to the
incomplete assimilation and metabolism in organism, a consider-
able fraction of those drugs has been discharged into the environ-
ment. The removal of quinolones in municipal sewage treatment
plants plays a crucial rule in their pollution control (Jia et al., 2012),
while low removal efficiency and a high discharge from secondary
c.cn (Dongbin Wei).

o-Environmental Science
effluents lead to a serious pollution to the aquatic environment.
Consequently, quinolones have been frequently detected in various
environmental matrices. For example, eight quinolones were the
prominent contaminants in sediments and aquatic plants of the
Baiyangdian Lake, China, with the concentrations of 65.5–1166
and 8.37–6532 μg/kg, respectively (Li et al., 2012). Ciprofloxacin, one
of the most commercial quinolones, was found in Switzerland
hospital effluents as high as 89 μg/L (Hartmann et al., 1998). It was
reported that ciprofloxacin and enrofloxacin were not readily
biodegradable by sewage sludge organism (Ebert et al., 2011). The
hazard quotients (HQs) for the aquatic environment of ciprofloxacin
and ofloxacin were 3.5 and 1.5 to algae in Baiyangdian Lake,
indicating that those two compounds were harmful to algae in the
lake water (HQ > 1 means that the harmful ecological impact is
significant for the selected antibiotic) (Hernando et al., 2006; Li et al.,
2012). Hu et al. (2007) investigated genotoxicity potential of 20
quinolones by umuC bioassay; the result indicated that all the
tested compounds showed high toxicity with 10% of the maximum
response concentration (EC10) ranged from 0.61 to 2917 nmol/L. In
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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addition, it was reported that genotoxicity in the wastewater of the
hospital was mainly caused by quinolone antibiotics (Hartmann
et al., 1998). The removal of those compounds in sewage treatment
plants is a complex issue, and their toxicity patterns are flexible
under various treatment processes, such as ozonation, UV photol-
ysis and chlorination disinfection. Report regarding acute toxicity
elevation has been disclosed in levofloxacin chlorination process
(El Najjar et al., 2013). Therefore, it is necessary to consider the toxic
effects for not only quinolone precursors but also their transfor-
mation products. Biological test, which can reflect the toxicity
formation during the treatment process as a whole, would be an
efficient way to evaluate those toxicity risks to the environment.

Limited research has been conducted on the aquatic ecotoxicity
of quinolone antibiotics. Therefore, the main aim of this study is
to provide basic toxicity data for quinolone antibiotics towards
the photobacterium Vibrio fischeri, which is a standard aquatic
toxicity model species representing decomposer trophic level. The
21 quinolones examined in this study were chosen on the basis of
their wide usage in human and veterinary, aswell as their detection
levels in the environment. As all the compounds share the same
quinolone skeleton, the quantitative structure–activity relationship
(QSAR) method was used to investigate the relationship between
toxicity and molecular structure. Finally, the acute toxicities of
those quinolones after chlorination were measured to evaluate
their toxicity changes during chlorination disinfection treatment.
This study could provide useful information on evaluating the
potential risks of quinolones towards the aquatic environment.
1. Materials and methods

1.1. Reagents and chemicals

Based on their usage in human and veterinary as well as their
availability from the manufactory, 21 quinolone antibiotics
were chosen in this study. Cinoxacin (CIN), ciprofloxacin (CIP),
danofloxacin (DAN), difloxacin hydrochloride (DIF), enoxacin
(ENO), enrofloxacin (ENR), fleroxacin (FLE), levofloxacin (LEV),
lomefloxacin hydrochloride (LOM), moxifloxacin hydrochlo-
ride (MOX), norfloxacin (NOR), ofloxacin (OFL), pazufloxacin
(PAZ), pipemidic acid (PIP), sarafloxacin hydrochloride (SAR)
and sparfloxacin (SPA) were purchased from Sigma-Aldrich
as HPLC or analytical reagent (>98% purity, MO, USA).
Balofloxacin (BAL), gatifloxacin (GAT), nadifloxacin (NAD) and
pefloxacin (PEF) were obtained from the National Institutes for
FoodandDrugControl of China (at least 97%purity, Beijing, China).
Rufloxacin hydrochloride (RUF)with 99%puritywas obtained from
International Laboratory (USA). The NaClO (8%) aqueous solution
wasobtained fromWakoCo. (Tokyo, Japan).All reagentswereused
directly without further purification. The stock solutions of all
studied compoundswere prepared in ultrapurewater produced by
a Milli-Q ultrapure water system (Millipore MA, USA).

1.2. Chlorination disinfection

The chlorination experiments were performed in borosilicate
glass bottles. Water bath and magnetic stirring apparatus
were used to maintain the reaction temperature at 25 °C. In
order to investigate the formation characteristics of disinfec-
tion byproducts in chlorination disinfection treatment of
quinolones, the conception and significance of disinfection
byproducts formation potential recommended by APHA (1998)
were referenced. In addition, it was reported that OFL, CIP
and NOR were labile during chlorination treatment within
pH 6.0–8.0 (Li and Zhang, 2012). Therefore, in this study, the
chlorination treatment on the target compound was per-
formed with 10 molar equivalents of free available chlorine
at pH 7. The 0.02 mol/L phosphate buffer solution was used
to maintain the pH at 7 during the reaction period. After
60 min, sodiumsulfite solution (1.5 equivalents to free available
chlorine) was added to quench reaction. The quenched reaction
solution was freeze-dried; 10 mL of mixed solvent methanol/
acetone (1/1, V/V) was added to extract organic components.
Supernatants were collected and dried with gentle N2 flow,
dissolved with dimethyl sulfoxide for toxicity test. The chlorina-
tion experiment for eachquinolone compoundwas conducted in
triplicate. A blank control without adding free available chlorine
was set as well.

1.3. Toxicity test

The photobacterium acute toxicity test quantifies the effects
of pollutants by measuring the decrease of luminescence
intensity of the test bacteria. The test bacteria strain (V. fischeri,
freeze-dried powder) was provided by the Institute of Soil
Science, Chinese Academy of Sciences (Nanjing, China). The
quinolone samples (both before and after chlorination) were
diluted into a series of exposure solutions, and 20% inhibition
concentration (IC20) was calculated after the 15 min exposure.
For each test, a dose–response curve of Hg2+ (HgCl2) as positive
control was conducted as well.

1.4. QSAR method

TheADRIANA.Code program (Ver 2.2.4) was applied to calculate
physicochemical parameters of the target molecules. In total,
8 shape descriptors, 29 global molecular descriptors and 88 2D
property-weighted autocorrelation (or topological) descriptors
were calculated. All calculated descriptors were selected as
independent variables and pIC20 (−logIC20) values were selected
as dependent variables. Stepwise multiple linear regression
method was used to establish QSARmodel.
2. Results and discussion

2.1. Acute toxicities of 21 quinolones

The toxicity values for 21 quinolone compounds are listed in
Table 1. The IC20 values for all the tested compounds ranged
from 18.86 to >700 μmol/L. Among those compounds, DIF and
MOX exhibited a notable higher toxic effect than the others,
with IC20 values of 18.86 and 22.85 μmol/L, respectively. It is
interesting to note that DIF and MOX are the third generation
of quinolones with wider antimicrobial activity and stronger
potency than those of the first and second generation ones.
However, CIN, one of the first generation quinolones with
limited antimicrobial activity, is the second toxic compound
(with IC20 value of 35.02 μmol/L) among all the tested ones.
Thismay attribute tomore O atoms contained in CIN structure
(a substituent of 1,3-dioxolane at 6- and 7-positions), and
this will be explained later (Section 2.2). Hu et al. (2007) have
found that the genotoxic potential of the earliest quinolones



Table 1 – Acute toxicity values of tested compounds and molecular structure descriptors involved in QSAR model.

Comp. Acute toxicity
values

QSAR

IC20

(μmol/L)
pIC20

(mol/L)
3DACorr_PiEN_3

(×10−2)
3DACorr_SigEN_3

(×103)
3DACorr_PiChg_3

(×102)
pIC20

(Pred.)
Residual

CIN 35.02 4.40 −1.95 2.41 7.04 4.33 0.07
CIP 281.87 3.55 −5.34 2.58 5.60 3.38 0.17
DAN 212.51 3.25 −5.33 2.81 5.67 3.55 −0.29
DIF 18.86 4.70 −5.82 3.30 9.65 4.67 0.02
ENO 590.41 3.23 −7.11 2.59 6.14 3.14 0.09
ENR 289.91 3.54 −5.34 2.78 5.60 3.51 0.03
LEV 564.08 3.68 −5.49 2.94 6.26 3.73 −0.05
LOM 229.70 3.64 −5.45 2.92 6.21 3.72 −0.08
MOX 22.85 4.70 −5.44 4.03 6.34 4.44 0.26
NAD 487.67 3.31 −5.32 2.75 5.58 3.48 −0.17
NOR 583.44 3.24 −5.41 2.52 5.57 3.32 −0.09
OFL 478.64 3.32 −5.49 2.94 6.26 3.73 −0.41
PAZ 116.22 3.92 −4.49 3.03 6.37 4.03 −0.11
PEF 263.74 3.59 −5.41 2.65 5.57 3.41 0.18
PIP 334.14 3.48 −5.42 2.29 5.66 3.20 0.28

Compounds BAL, FLE, GAT, RUF, SAR and SPA showed low inhibition effect at 700 μmol/L and were removed from QSAR model.
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Fig. 1 – Basic structure of quinolones.
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were lower than that of the new generation ones, while this
trend was not obvious for the acute toxicity data. Six com-
pounds BAL, FLE, GAT, RUF, SAR and SPA exhibited weak acute
toxicity, and their luminescence elimination was less than
10% even at 700 μmol/L of exposure concentration. Therefore,
there were no satisfactory dose–response curves and exact IC20

values for these six compounds.
Previous studies demonstrated that cyanobacterium

Microcystis aeruginosa and Anabaena flosaquae are the most
sensitive species to quinolones, the EC50 ranged from 0.02 to
7.50 μmol/L (for 7 tested quinolones) and 0.03 to 0.48 μmol/L
(for CIP and ENR), respectively. Duckweed (Lemna minor) was
also confirmed to be the sensitive species with EC50 values
of 0.14, 0.17 and 0.30 μmol/L to LEV, CLI (Clinafloxacin) and
LOM, respectively. In addition, the green alga Pseudokirchneriella
subcapitata, dicotyledonous macrophyte Myriophyllum spicatum,
crustacean Daphnia magna and Artemia salina, and fathead
minnow Pimephales promelas showed limited toxicity to quino-
lones,with several μmol/L EC50 or no observed effect to the tested
compounds (Ebert et al., 2011;Migliore et al., 1997; Robinsonet al.,
2005; Yang et al., 2008). Compared with the organisms involved
above, the short term test of bioluminescence inhibition assay
with V. fischeri is not sensitive to quinolone antibiotics. On the
viewpoint of the trophic level of test species, the sensitivity order
for quinolone test was producers (cyanobacterium, green alga,
and duckweed) > primary consumers (crustacean) > advanced
consumers (fathead minnow) ≈ decomposers (photobacterium).

2.2. Possible toxicity mechanism

The studied quinolones contain the same skeleton (basic
structure shows in Fig. 1). The spectrum and potency of
antibacterial activities are mainly dominated by the type of
substituent and the substituted positions on quinolone skele-
ton. Therefore, QSAR technique can exert its advantages
on discovering the relationship between the quinolone molec-
ular structures and their acute toxicities (Wang et al., 2010).
Involving 15 compounds (excluding the six compounds BAL,
FLE, GAT, RUF, SAR and SPA), a statistical model (Eq. (1))
between the acute toxicities (pIC20 values) and physicochemical
descriptors was developed by stepwise multiple linear regres-
sion analysis. The plot of observed vs. predicted pIC20 values is
shown in Fig. 2.

pIC20 ¼ 1:587 �0:540ð Þ þ 0:002 �0:001ð Þ � 3DACorr−PiEN−3
þ 0:001 �0:0002ð Þ � 3DACorr−SigEN−3þ 21:215 �5:893ð Þ
� 3DACorr−PiChg−3

N ¼ 15;R2 ¼ 0:851;R2
adj ¼ 0:810; SE ¼ 0:22; F ¼ 20:87;p < 0:001

ð1Þ

where, N represents the number of compounds, R2 is multiple
correlation coefficient, Radj2 is multiple correlation coefficient
adjusted by the degree of freedom, SE is standard error, F is the
F-test value for analysis of variable, and p is the significance.

Three physicochemical descriptors were involved in Eq. (1).
3DACorr_PiEN_3, 3DACorr_SigEN_3 and 3DACorr_PiChg_3 are
the 3D autocorrelation weighted by π atom electronegativity,
σ atom electronegativity and π atom charges, respectively.
The detailed calculation methods for those parameters are
provided in the reference (Wang et al., 2012).

As shown in Eq. (1), the acute toxicity of quinolones was
heavily dependent on the atom charge and electronegativity.



3.0 

3.5 

4.0 

4.5 

5.0 

3.0 3.5 4.0 4.5 5.0

Pr
ed

ic
te

d 
pI

C
20

 (m
ol

/L
)

Observed pIC20 (mol/L)

Fig. 2 – Plot of observed vs. predicted pIC20 values in QSAR
model.

1840 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 6 ( 2 0 1 4 ) 1 8 3 7 – 1 8 4 2
In quinolone molecule, π atom charge and electronegativity
derived from the structure analog of 2-benzoylacrylic, which
is composed of a big conjugation system containing 12 π
electrons; σ atom electronegativity derived from C, O, S, N,
and F atoms, and so on. All structure descriptors involved in
Eq. (1) are concerning atom charge and electronegativity,
indicating that electron transfer may happen when the test
bacteria are expose to quinolone antibiotics. This conclusion
can be further evidenced by the luminance mechanism of
V. fischeri, which is described as follows:

FMNH2 þ RCHOþ O2→
Bacterial

fluroenzyme

FMNþ RCOOHþH2Oþ Light:

ð2Þ

FMNH2 is flavin mononucleotide with reduced phase; it can
transfer hydrogen and be oxidized to FMN. The \NH2 is an
active group in FMNH2 molecule, it can easily form a hydrogen
bond with some functional groups which contained high
electronegativity atoms, such as O and N; then the hydrogen
transfer in the luminance process mentioned in Eq. (2) is
hindered and the light emission of V. fischeri is inhibited (Wei et
al., 2002). In present study, all three parameters describing σ
and π atomelectronegativity in Eq. (1) take positive contribution
to pIC20. This can be explained by the fact that some atomswith
highelectronegativity inquinolonemolecules, such asN, O, and
F, donate electron and accept protonH fromFMNH2, resulting in
the luminance inhibition. A similar electron transfer mecha-
nism was previously reported in the genotoxicity test of
quinolones using umuC bioassay (Hu et al., 2007). They pointed
out that DNA accepted electron from quinolone antibiotics
when quinolones interact with DNA or protein.

Although all the chemical structures of tested compounds
based on the same quinolone skeleton, the substituent on
the quinolone ring could affect their toxicity quite a bit.
Overall, compounds like DIF, CIN and MOX exhibited high
acute toxicity at μmol/L level, while compounds BAL, FLE,
GAT, RUF, SAR and SPA could not reach 10% inhibition ratio
even at 700 μmol/L. In order to get a reliable QSAR model,
the six compounds without exact IC20 were excluded. As to
the toxicity mechanism of those compounds, further research
is needed.

2.3. Potential risk analysis

2.3.1. Toxicity of quinolones in aquatic environment
The environmental concentrations of quinolones are up to
120 ng/L, 500 ng/L and 125 μg/L in surface waters, secondary
wastewater effluents of sewage treatment plants and untreated
hospital wastewater (Golet et al., 2002, 2003; Hartmann et al.,
1998, 1999; Kolpin et al., 2002; Miao et al., 2004; Renew and
Huang, 2004). From the current study, it is reasonable to infer
that quinolones, which at residual level of environment, cannot
lead to short-term acute toxicity to photobacterium V. fischeri.
However, multiple quinolones coexisted in the environmental
matrices inmany cases, and their joint biological effects should
be of concerns. Backhaus et al. (2000) measured the single
and mixture toxicity of 10 quinolones by a long term (with an
exposure duration of 24 hr) bioluminescence inhibition assay
withV. fischeri. Itwas found that the concentration additionwas
feasible to predict themixture toxicity of quinolones. Therefore,
it is reasonable to assume that even low concentrations of
single compounds may lead to a significant overall toxicity
effect when they act simultaneously.

2.3.2. Toxicity of quinolones after chlorination treatment
Although quinolones exhibited limited acute toxicity to
V. fischeri, an acute toxicity (using photobacterium assay)
elevation was observed after chlorination treatment on LEV
(El Najjar et al., 2013), which was attributed to the formation of
toxic transformation products. Chlorine, as a strong oxidant,
is widely used in the disinfection processes of drinking water
treatment, wastewater reclamation treatment and hospital
wastewater treatment to prevent the spread of harmful
pathogens. Considering the wide presence and high concen-
tration of quinolone antibiotics in sewage and hospital
wastewater bodies, the toxicity feature of quinolones after
chlorination disinfection process should be of concerns.

In this study, a typical chlorination treatment on each
quinolone was conducted to simulate the disinfection pro-
cess in the practical wastewater treatment plants. The
photobacterium acute toxicity of the 21 quinolones after
chlorination was also tested. In order to easily compare the
toxicity before and after chlorination treatment on quino-
lones, the toxicity value of each compound after chlorination
was standardized to equivalence of its precursor, and the
results are listed in Table 2. Among all the tested quinolones,
15 compounds exhibited an acute toxicity increase after
chlorination treatment, especially compounds PAZ and SPA.
The possible reactions of decarboxylation at 3-position
(carboxy group), dealkylation at 7-position (piperazine ring)
and electrophilic halogenation have been reported in LEV,
CIP and ENR chlorination processes (Dodd et al., 2005; El
Najjar et al., 2013; Zhou et al., 2011). Indeed, oxidation and
Cl atom electrophilic substitution are the typical reactions
occurring in chlorination disinfection treatment, which can



Table 2 – Acute toxicity values of tested compounds after
chlorination disinfection.

Comp. IC20
a Comp. IC20 Comp. IC20 Comp. IC20

BAL 250.25 ENO 431.57 LOM 139.40 PEF 166.03
CIN 155.20 ENR 200.70 MOX 124.15 RUF 364.83
CIP 344.74 FLE 148.21 NAD 269.50 SAR 181.49
DAN 124.43 GAT 512.67 OFL 192.99 SPA 23.49
DIF 146.15 LEV 284.12 PAZ 16.37 NOR/PIP NDb

a IC20 in μmol/L unit.
b ND means not-detected.
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significantly change the atom electronegativity distribution
of target molecules. This may be responsible for the acute
toxicity elevation. Therefore, attention should be paid to the
potential risk of quinolone chlorination disinfection.
3. Conclusions

The acute toxicity of 21 quinolone antibiotics was measured
using photobacterium assay. The result suggested that DIF,
MOX and CIN showed relatively high acute toxicity among
all tested compounds, with IC20 values of 18.86, 22.85 and
35.02 μmol/L respectively. Additionally, the action mode of
quinolones to V. fischeri was investigated with the established
QSAR model. The electronegative atoms contained in quino-
lone molecules, such as F, N, and O atoms, donated electrons
to photobacterium and thus inhibited the luminance emis-
sion. Although the quinolones showed limited acute toxicity,
the coexistence of multiple quinolones in environmental
matrices may lead to severe overall toxicity. Furthermore,
the toxicity elevation during quinolone chlorination process
poses potential ecological risk to chlorination disinfection
treatment on quinolone-containing (waste) water. This should
be of great concerns and need further investigation.
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