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To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere
(FAC)-supported CeO2–BiVO4 (CeO2–BiVO4/FAC) composite photocatalyst was prepared
by modified metalorganic decomposition and impregnation methods. The physical and
photophysical properties of the composite have been characterized by X-ray diffraction
(XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX),
X-ray photoelectron spectroscopy (XPS), and UV–Visible diffuse reflectance spectra. The
XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline
phases. The XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states
in CeO2 and dispersed on the surface of BiVO4 to constitute a p–n heterojunction composite.
The absorption threshold of the CeO2–BiVO4/FAC composite shifted to a longer wavelength
in the UV–Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The
composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation
under visible light irradiation. It was found that the 7.5 wt.% CeO2–BiVO4/FAC composite
showed the highest photocatalytic activity for MB dye wastewater treatment.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Visible-light-driven photocatalysis as a green energy technology
has attracted a great deal of research interest due to its potential
applications in water splitting and environmental remediation
(Jeong et al., 2013; Wang et al., 2012). Therefore the development
of photocatalysts responsive to visible light has attracted much
attention in recent years. Among the photocatalysts recently
reported, BiVO4, with a monoclinic scheelite structure, shows good
photocatalytic performance under visible light irradiation (Obregón
et al., 2012; Naya et al., 2011). Monoclinic BiVO4 has a band gap
energy of 2.4 eV and can absorb the solar spectrum fraction up to
blue light of ca. 520 nm, which is much more effective than that of
TiO2 photocatalyst (3.2 eV) for utilization of solar energy. However,
the photocatalytic activity of pure BiVO4 is unsatisfactory for
n (Qin Li).

o-Environmental Science
practical applications, due to its poor absorption performance and
difficult migration of photo-generated electron–hole pairs under
visible light irradiation (Zhao et al., 2012).

Many attempts have been made to improve the photocatalytic
activity of BiVO4 in visible light irradiation, such as phase/morpho-
logical control, doping, noble metal loading, and design of composite
materials (Ren et al., 2009; Won et al., 2012; Park et al., 2011;
Zhao et al., 2013). Composite semiconductors have been reported
to have potential as photocatalysts because they can reduce the
recombination of photogenerated electron–hole pairs, and therefore
can enhance the quantum yield (Ma et al., 2012). Zhou et al. (2012)
found that an Ag–AgCl/BiVO4 composite powder exhibited signifi-
cantly enhanced photocatalytic activity in dye degradation. Jang et al.
(2012) synthesizedMO (CuO, Co3O4 and NiO)/BiVO4 junction compos-
ites, and found that the photocatalysts could achieve efficient charge
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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separation and showed enhanced photocatalytic activity in Acid
Orange dye decomposition. Fu et al. (2011) reported that BiVO4/
graphene composites showed superior photoactivity in the degrada-
tion of dyes under visible light irradiation, and the significant
enhancement in photoactivity can be ascribed to the concerted
effects of BiVO4 and graphene sheets or their integrated properties.

In our present study, BiVO4 was coupled with CeO2 with the
expectation of obtaining a promising visible-light driven catalyst.
CeO2 itself has some properties like the commonly used photo-
catalyst TiO2, such as wide band gap, nontoxicity, high stability,
strong absorption in the UV region, and good photocatalytic activity
under UV irradiation (Shao and Ma, 2012; Hernández-Alonso et al.,
2004). In addition, CeO2 is a p-type semiconductor with the potential
to create sufficient conduction/valence band positions to promote
charge separation when in contact with an n-type semiconductor
(Kubacka et al., 2012). Such a possibility has been exploited to obtain
visible-active composite photocatalysts (Muńnoz-Batista et al., 2013;
Foletto et al., 2012).Wetchakunet al. (2012) sought tonarrow the band
gap energy of CeO2 photocatalysts by forming heterojunctions
between CeO2 and BiVO4 in order to generate visible light-driven
catalysts, and the as-prepared BiVO4/CeO2 nanocomposite exhibited
excellent photocatalytic activity in dye wastewater treatment.

However, both BiVO4-based composites and BiVO4/CeO2

nanocomposites have the same problems, including their fixation,
diffusion and recycling. Coating the particles onto a support is a
promising method to resolve this problem. In addition, supported
catalysis has been awarded the status of “green” chemistry because
it allows easy separation of the products and permits the recycling
and reuse of the catalysts, giving both operational and economical
advantages (Zhang et al., 2009). Herein, we attempt to support
a CeO2–BiVO4 composite over fly ash cenospheres (FACs), an
aluminosilicate-rich by-product of coal-fired power plants. FACs
have been used as substrates in many studies due to their
advantageous properties, such as low cost, chemical/physical
stability, low density and nontoxicity (Pang et al., 2012). In this
article, the composite, using FACs as the support for the CeO2–BiVO4

hybrid oxide, was synthesized by a combination of modified
metalorganic decomposition (MOD) and impregnation methods.
The physical and photophysical properties of the composite were
characterized, and its photocatalytic abilitywas evaluatedusing the
degradation of Methylene Blue (MB) in aqueous solution under
visible light irradiation. The as-prepared CeO2–BiVO4/FAC compos-
ites showed interesting photocatalytic activity, suggesting that
this CeO2–BiVO4/FAC system could be a promising environmental
catalyst system.
1. Materials and methods

1.1. Raw materials and reagents

FACs were obtained from Nanjing Jinling Petrochemical Compa-
ny. Then the FACs were sieved and the particles with the size
range of 100–125 μmwere chosen as the subsequent experimen-
tal material. The pretreatment and surface modification of FACs
were discussed in a previous paper (Zhang et al., 2013). All other
chemicals were of analytical grade and used without further
purification.

1.2. Preparation of CeO2–BiVO4/FAC composites

The BiVO4 films coated on FACs were prepared by the MOD
method (Galembeck and Alves, 2002). In a typical process,
7.27 g Bi(NO3)3·5H2O was dissolved in 75 mL acetic acid and
3.6 mL vanadium (V) tri-i-propoxy oxide was dissolved in
75 mL acetylacetone. The two resulting solutions were mixed
to form a dark-green sol, which was then stirred vigorously for
1 hr before 10.2 g FAC was added, and the mixture was stirred
for a further 3 hr at room temperature. The mixture thus
obtained was evaporated at 85°C in a water bath, dried at
110°C for 6 hr, and then annealed in air at 500°C for 2 hr. The
as-prepared samples are hereafter denoted BiVO4/FACs.

The CeO2–BiVO4/FAC catalysts were prepared using an
impregnation method. BiVO4/FACs and an appropriate amount
of aqueous Ce(NO3)3·6H2O solution were mixed in a ceramic
dish and the suspension was evaporated over a water bath at
85°C followed by calcination in air at 400°C for 4 hr to obtain
composites. The composites were denoted as x wt.% CeO2–
BiVO4/FACs (x = 2.5, 5, 7.5, 10).

1.3. Characterization

The crystal phases of the prepared composites were identified
using an X-ray diffractometer (XRD, X′-TRA, ARL, Switzerland)
with Cu Kα radiation (λ = 0.15418 nm). The surface morphol-
ogy and composition were observed with a scanning electron
spectroscope (S-3400NII, Hitachi, Japan) and energy dispersive
X-ray spectroscopy (EDX, EX-250, Horiba, Japan) attached to
this scanning electron microscope (SEM), respectively. The
surface electronic states were determined by X-ray photo-
electron spectroscopy (XPS, PHI5000, ULVAC-PHI, Japan) with
an Al Kα X-ray source (1486.6 eV). The optical properties were
analyzed by UV–vis diffuse reflectance spectroscopy (UV-2450,
Shimadzu, Japan).

1.4. Photocatalytic degradation of MB

The photocatalytic activity of the CeO2–BiVO4/FAC composite
was evaluated by the degradation of MB under visible light
irradiation using an XPA photochemical reactor (XPA-2,
Xujiang Factory of Electrical Engineering, China). The reaction
vessel was thermostated at 25°C with a water cooling jacket. A
500 W Xe lamp was used as the light source with a cut-off
filter to remove all wavelengths lower than 420 nm to ensure
irradiation with visible light only. For MB photodegradation
experiments: 0.2 g of the as-prepared CeO2–BiVO4/FAC catalyst
was dispersed in MB solution (50 mL, 10 mg/L) by ultrasonic
treatment. Prior to irradiation, the suspensions were magnet-
ically stirred in the dark for 30 min to obtain MB adsorption–
desorption equilibrium. At given time intervals, 4 mL of
the suspension was collected, the catalyst was separated
by filtration and the concentration (C) of the remaining MB
solution was determined from UV–vis absorption measure-
ments by using the Beer–Lambert law relation at themaximum
absorption wavelength (λmax) of 664 nm. For comparison, the
photocatalytic degradation of MB by the pure BiVO4 and pure
CeO2 was performed using the same procedure as above.
2. Results and discussion

2.1. X-ray diffraction

Fig. 1 presents the XRD diffraction patterns of the pristine
(uncoated) FACs, pure CeO2 and CeO2–BiVO4/FAC composites.
In Fig. 1 line c and line d, the characteristic peaks at 18.5, 35
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Fig. 1 – XRD diffraction patterns. (a) pristine FACs; (b) pure
CeO2; (c) 10 wt.% CeO2–BiVO4/FACs; (d) 7.5 wt.% CeO2–BiVO4/
FACs.
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and 46° are split, and peaks also observed at 28.6, 30.5, 39.7
and 53.1° are indexed to the monoclinic scheelite structure of
BiVO4 (JCPDS No. 14-0688). Diffraction peaks of pure CeO2 at 2θ
of 28.8, 33.3, 47.6, and 56.4° can be indexed as the (111), (200),
(220), and (311) planes of the face-centered cubic structure
of CeO2 (JCPDS No. 34-0394) (Wetchakun et al., 2012). The
XRD patterns of CeO2–BiVO4/FAC composites exhibited char-
acteristic diffraction peaks of both BiVO4 and CeO2 crystalline
phases.

2.2. SEM/EDX analysis

SEM micrographs of the FAC and CeO2–BiVO4/FAC composites
are shown in Fig. 2. It can be seen clearly from Fig. 2a and b that
ba

d

2 μm

2 μm

c

Fig. 2 – SEM micrographs of a pristine FAC at low (a) and high m
(d) magnification; EDX spectra of pristine FAC (e) and CeO2–BiVO
the pristine FACs have a regular spherical surface morphology
with diameter of 100–120 μm, and the cenosphere surface is
smooth. The chemical composition of the cenospheres was
revealed by EDX analysis (Fig. 2e) and shows that they are
composed mainly of Si, Al, C, and O elements, with small
amounts of elements such as Mg, Fe, Ti and K also observed.
Comparedwith the smooth surface of the pristine cenospheres,
Fig. 2c and d shows that the surface of the FACs is covered with
a layer of CeO2–BiVO4 composite particles. The size of particles
roughly estimated is about 200–300 nm. The corresponding EDX
spectrum (Fig. 2f) exhibits the characteristic peaks of elemental
Bi, V and Ce in the composites. The combined results of SEM
and EDX suggest that the CeO2–BiVO4 junction compositeswere
coated successfully on the surface of FACs by this MOD and
impregnation method.

2.3. XPS analysis

To evaluate the electronic state of the as-prepared CeO2–
BiVO4/FAC composites, XPS techniques were employed in this
study. Fig. 3 shows the XPS spectra of the pristine FACs, BiVO4

film coated FACs (BiVO4/FACs), and the CeO2–BiVO4/FAC
composites. The surface of the pristine FACs is composed
mainly of Si, Al, O and C, while new Bi 4f, V 2p, and Ce 3d
peaks at bonding energies (BE) of around 160, 520, and 900 eV,
respectively, became clearly visible in the XPS spectra of the
CeO2–BiVO4/FAC composite.

Fig. 4a and d shows Bi4f, V2p, Ce3d and O1s high-resolution
XPS spectra of the as-fabricated CeO2–BiVO4/FAC composites. In
Fig. 4a, the sample exhibits spin-orbit splitting signals of Bi 4f7/2
and Bi 4f5/2 at BE = 158 and 163 eV, which were characteristic
of Bi3+. The XPS spectra of V2p (Fig. 4b) show that two peaks
were present; the first peak situated around 516 eV is ascribed
to V 2p3/2; the other peak at approximately 523 eV is ascribed to
V 2p1/2. Fig. 4c presents the XPS spectra for the Ce 3d region
of the CeO2–BiVO4/FAC composites. In Fig. 4c, peaks labeled
e

f

50 μm

50 μm

agnification (b), CeO2–BiVO4/FACs at low (c) and high
4/FAC samples (f).
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Fig. 3 – XPS spectra of pristine FACs (a); BiVO4/FACs (b), and
CeO2–BiVO4/FAC samples (c).
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as v arise from 3d5/2 photoemissions, whereas associated 3d3/2

emissions are labeled as u. Spin–orbit peaks of v‴ and u‴ at 897.5
and 916.0 eV with 18.5 eV separation are attributed to primary
photoionization from Ce4+ with Ce3d94f0O2p6 final state. Lower
binding energy states of v″ (886.6 eV)–u″ (906.7 eV) and v
(881.8 eV)–u (899.8 eV) have been assigned to the Ce3d94f1O2p5

and Ce3d94f2O2p4 final state shake-down satellite features
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Fig. 4 – High resolution XPS spectrum analysis of Bi 4f (a); V 2p (b
sample.
(Fernandes et al., 2012; Mullins et al., 1998; Zhou et al., 2010).
Satellites are caused by the facilitation of ligand (O2p) to metal
(Ce4f) charge transfer by the primary photoionization process.
Peaks labeled as v′ and u′ at 884.3 and 902.8 eV are associated
with Ce3+ final states, which are assigned to the main photo-
ionization from the Ce3d94f1O2p6 final state (Fernandes et al.,
2012; Mullins et al., 1998; Anandan et al., 2013). XPS data
are useful in interpretation of the results of XRD analysis,
displaying the film diffraction peaks that correspond only to
CeO2. Taking into account XPS findings, this can be explained by
the completely oxidized (CeO2) top surface layer as well as by
the mixed CeO2 + Ce2O3 oxide region under it (Ershov et al.,
2013; Paparazzo et al., 1991). In Fig. 4d, O1s spectra were fitted
with two peaks; the components at BE = 528.6 eV are charac-
teristic of the lattice oxide (OI) species, while the components
at BE = 531.1 eV belong to the adsorbed oxygen (OII) species
(Yang et al., 2005).

2.4. DRS analysis

The UV–vis diffuse reflection spectra of pure BiVO4, pure CeO2

and CeO2–BiVO4/FAC composite are depicted in Fig. 5. The
absorption edge of the CeO2–BiVO4/FAC composites shows a
shift toward the visible region, and the CeO2–BiVO4/FAC com-
posites exhibit enhanced absorption compared to that of with
pure BiVO4 and pure CeO2 within the region 525–800 nm. The
bandgapabsorptionedgesof pureCeO2, pureBiVO4, and7.5 wt.%
CeO2–BiVO4/FAC composite are at about 449, 527, and 601 nm,
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and their band gap energies (Eg) are calculated to be 2.78, 2.37 and
2.08 eV, respectively. These results indicate that the CeO2–BiVO4/
FAC composites can be photoexcited to generate more electron–
hole pairs under visible-light irradiation, which would result in
higher photocatalytic degradation efficiency (Wetchakun et al.,
2012).

2.5. Photocatalytic activity testing

The photocatalytic activity of the sampleswas evaluated by the
degradation of MB aqueous solution. Fig. 6 displays the
degradation ofMBsolution in thepresence of different samples.
As seen in Fig. 6a, a blank test without the photocatalyst under
visible light irradiation shows that the photolysis of MB was
negligible. As a comparison, the photodegradation of MB with
pure BiVO4, pure CeO2, BiVO4/FACs and CeO2/FACs was also
performed. About 22%, 40%, 43% and 70% of MB were removed
over the pure CeO2, CeO2/FACs, pure BiVO4 and BiVO4/FAC
catalysts within 180 min, respectively. It was obvious that a
synergistic effect occurred betweenBiVO4 and the FACs, leading
to the enhancement of photocatalytic activity.

Moreover, it was found that the CeO2–BiVO4/FAC composites
showed better photocatalytic activities than the pure BiVO4,
indicating that the CeO2 loading on BiVO4 played a role in the
0.0

0.2

0.4

0.6

0.8

1.0

C
t /

C
0

Irradiation time (min)

 MB photolysis
 Pure CeO2

 CeO2/FACs
 Pure CeO2

 BiVO4/FACs
 2.5 wt%CeO2-
 5 wt%CeO2-
 7.5 wt%CeO2-
 10 wt%CeO2-

a

0 60 120 180 240 300

Fig. 6 – Photocatalytic activity of different samples (a) and va
enhancement of photocatalytic activity. The optimal content of
CeO2 on BiVO4/FACs was about 7.5 wt.% from our experimental
results; and less photocatalytic activity was observed with
higher CeO2 content. The best photodegradation rate was as
high as 90% over the 7.5 wt.% CeO2–BiVO4/FAC photocatalyst in
180 min. Further increasing the cerium content up to 10 wt.%
led to a decline in the catalytic activity. There are two factors
that limited performance at high Ce loading: (1) blockage
of active sites by excess amounts of Ce introduced in the
photocatalysts and (2) an increase in opacity and light
scattering of CeO2–BiVO2 nanoparticles at a high concentration
leads to a decrease in the passage of light through the sample
(Ghasemi et al., 2012; Yang et al., 2007).

It has been demonstrated that the photocatalytic degrada-
tion of MB follows Langmuir–Hinshelwood first-order reaction
kinetics behavior (Hiroaki et al., 1998; Fu et al., 2011). The rate
constant (k) can be calculated for the photocatalytic degrada-
tion of MB under visible-light irradiation at 25°C according to
Eq. (1).

k ¼ 1
t
1n

C0

Ct
ð1Þ

where, k (min−1) is the first-order rate constant, and C0 and Ct

are the concentration of MB when reaction time is 0 and t
(min), respectively.

The first-order kinetics dependence of the photocatalytic
degradation ratio for the different samples is shown in
Fig. 6b. In Table 1, the values of rate constant (k) are 0.00155,
0.00284, 0.00295, 0.00601, and 0.01307 min−1 corresponding
to the pure CeO2, CeO2/FACs, pure BiVO4, BiVO4/FACs and
7.5 wt.% CeO2–BiVO4/FACs, respectively. Clearly, the k
value of 7.5 wt.% CeO2–BiVO4/FACs was 4.4 and 2.1 times
greater than that of pure BiVO4 and BiVO4/FAC samples,
respectively.

The enhanced photocatalytic activity over the CeO2–BiVO4/
FAC composite photocatalyst may be attributable to the
following: (1) Cerium oxide has a multi-functional role. It
traps electrons, which retards electron–hole recombination and
increases the amount of UO2

− for degradation of the pollutants by
Reactions (2)–(6) (Ghasemi et al., 2012); and (2) the p–n-type
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Table 1 – Rate constants of MB photodecomposition and linear regression coefficients from a plot of ln(C0 / Ct) = kt with
different samples.

Photocatalysts Regression equation R2 k (min−1)

Pure CeO2 y = 0.00155x + 0.03404 0.9743 0.00155
CeO2/FACs y = 0.00284x − 0.00671 0.9951 0.00284
Pure BiVO4 y = 0.00295x + 0.03709 0.9916 0.00295
BiVO4/FACs y = 0.00601x + 0.1570 0.9547 0.00601
7.5 wt.% CeO2–BiVO4/FACs y = 0.01303x + 0.07682 0.9831 0.01303
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heterojunction formed between CeO2 and BiVO4. The holes (h+)
on the valence band of n-type BiVO4 transfer to that of p-type
CeO2, while the photogenerated electrons (e−) in the conduction
band of n-type BiVO4 cannot transfer to that of p-type CeO2,
improving the separation of photoinduced electron–hole pairs
in BiVO4, resulting in higher photocatalytic activity (Wetchakun
et al., 2012; Jang et al., 2012); (3) the introduction of FACs helps
avoid aggregation of particles, which contributes to making full
use of light for photocatalysis (Phanikrishna et al., 2008); and
(4) the concerted effects of BiVO4 and FACs or their integrated
properties (Fu et al., 2011).

BiVO4 þ hν→eCBˉþ hVB
þ ð2Þ

Ce4þ þ eCBˉ→Ce3þ ð3Þ

Ce3þ þ O2→Ce4þ þ :O2ˉ ð4Þ

:O2ˉþ 2H2O→:OHþ OHˉ ð5Þ

MBþ :OH→degradation products: ð6Þ

It is well known that the stability of a practical photo-
catalyst is very important as well as its photocatalytic activity.
The as-prepared 7.5 wt.% CeO2–BiVO4/FAC photocatalyst was
further investigated in recycling experiments. After the 1st
cycle, the catalyst was removed from aqueous solution, and
then it was washed with water and dried at 110°C for 2 hr.
Fig. 7 shows results from five successive runs for the
photodegradation of MB under the same experimental
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Fig. 7 – Recycling test of 7.5 wt.% CeO2–BiVO4/FACs under
visible light irradiation (photocatalyst of 4 g/L; MB of 10 mg/L
and irradiation time of 180 min).
conditions. However, after 5 runs a slight decrease of
photocatalytic efficiency for degradation of MB dyes could be
observed. This effect is attributed to two main reasons: one is
the loss of some BiVO4 from the surface; the other is fouling of
the catalyst by the by-products of degradation. Such fouling of
the catalyst surface also occurs for suspended BiVO4, and can
be partly cleaned by exposing the catalyst for a long time of
irradiation (Rao et al., 2004).
3. Conclusions
Novel CeO2–BiVO4/FAC composite photocatalysts were suc-
cessfully prepared by MOD and impregnation methods. Ce
loading enhanced the visible-light absorption of the cata-
lysts, and the Ce-loaded samples exhibited higher photocat-
alytic activity in comparison with pure BiVO4 and pure CeO2.
The 7.5 wt.% CeO2–BiVO4/FAC composite showed the highest
photocatalytic activity for MB degradation under visible light
irradiation. The composites can be easily separated from
water after the reaction due to their low density. The
recycling test revealed that the composites were quite stable
after repeated use for more than 5 times. Thus, the CeO2–
BiVO4/FAC catalyst is a promising candidate for the
photodegradation of dyes from wastewater.
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