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Water biostability is of particular concern to water supply as a major limiting factor for
heterotrophic bacterial growth in water distribution systems. This study focused on
bacterial growth dynamics in the series dilution of water samples with TOC (total organic
carbon) values determined beforehand. The results showed that the specific growth rate of
Pseudomonas fluorescens P17 varied dramatically and irregularly with TOC value when TOC
concentrations were low enough during the initial periods of incubation under given
conditions. According to this relationship between bacterial growth rate and TOC, a dilution
incubation method was designed for the study of water biostability. With the method under
a given condition, a turning-point TOC value was found at a relatively fixed point in the
curve between bacterial growth rate and TOC of water sample, and the variation of growth
rate had different characteristics below the turning-point TOC value relative to that over
this value. A turning-point TOC value similarly existed in all experiments not only with tap
water, but also with acetate and mixed solutions. And in the dilution incubation method
study, the affections were analyzed by condition factors such as inoculum amount,
incubation time and nature of the organic carbon source. In very low organic carbon water
environments, the variation characteristics of bacterial growth rate will be useful to further
understand the meaning of water biostability.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Biostability is defined as the inability of water or material in
contact withwater to supportmicrobial growth in the absence of
a disinfectant (Rittmann and Snoeyink, 1984). Water biostability
is of particular concern to water utilities as the major limiting
factor for heterotrophic bacterial growth in water distribution
systems. To achieve biological stability of drinkingwater inwater
distribution systems, two strategies have usually been accepted,
which were maintaining enough residual disinfectant and
producing high quality drinking water, and both of them require
nu.cn (Kunlun Xin).

o-Environmental Science
to assess water biostability first. Many parameters have been
proposed to assess biostability of water, but the reliability and
operational convenience still need improvement.

In the last decades, many determination methods for water
biostability have been developed, which mainly measure the
increase of bacterial biomass (AOC, assimilable organic carbon;
MAP, microbially available phosphorus; BRP, bacterial regrowth
potential) or the decrease of biodegradable dissolved organic
carbon (BDOC) (Van der Kooij, 1982; Lehtola et al., 1999; Sathasivan
and Ohgaki, 1999; Frías et al., 1995; Escobar et al., 2001).

Van der Kooij (1982) first proposed the concept of AOC,
which was described as the organic compounds limiting
growth of heterotrophic microorganisms. AOC bioassay is
jes
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based on the linear relationship between AOC concentration and
the bacterial batchmaximumgrowth inwater from inoculation to
stationary phase. Generally, AOC value can be calculated by
converting the bacterial maximum growth of water samples into
acetate carbon (acetate-C) concentration according to a standard
curve derived from the relationship between bacterial batch
maximum growth and organic carbon concentrations of sodium
acetate standard solutions. Lehtola et al. (1999) also put forward
another biostability parameter, MAP, for phosphorus-limited
water. MAP measurement was based on the linear relationship
between the MAP value as the equivalent phosphate phosphorus
(phosphate-P) and the bacterial batch maximum growth.
Sathasivan and Ohgaki (1999) used an indigenous inoculum and
took the amount of themaximummicroorganism cells as the BRP
value directly. AOC,MAP and BRP are all based on the relationship
between substrate concentration and bacterial batch maximum
growth from inoculation to the stationary phase, therefore, such
bioassays are usually performed as “end-point” measurements,
like the AOC bioassay (Hammes and Egli, 2005), inwhich a relative
long-time bacterial batch culture process is necessary to get the
maximumgrowthof bacteria. BDOC canbe considered theportion
of theDOC (dissolved organic carbon) that could bemineralized by
heterotrophicmicroorganisms, given by the decrease inDOC in an
inoculated sample after a given period of incubation (Frías et al.,
1992; Joret and Levi, 1986; Lucena et al., 1990; Ribas et al., 1991;
Servais et al., 1987, 1989). Anumber ofmethodshave recently been
developed to measure BDOC of water samples. The problemwith
most of these is the length of time (from days to weeks) required
for the start up (colonization) and/or determination (Khan et al.,
2003). AOC and BDOC are conceptually different; while the BDOC
value corresponds to the difference between the initial DOC and
the minimum DOC reached in the bacterial growth period, the
AOC is the portion of DOC that can be converted to biomass (Huck,
1990), and so the parameters such as AOC are more often used to
assess water biostability than BDOC.

Availability of carbon/energy sources and temperature are the
two environmental factors that severely restrict heterotrophic
growth in most ecosystems. Egli (2010) demonstrated that
microbes had adapted and developed strategies to cope with
the conditions at very low substrate concentration. One of these
strategies is to perform a “multivorous” way of life by taking up
and metabolizing dozens of different carbon substrates
simultaneously; this “mixed substrate growth” equips the cell
with a kinetic advantage and metabolic flexibility. These studies
implied that the conditions at very low substrate concentration
can stimulate the bacterial cell's assimilability of carbon sources,
which makes the bacterial cell assimilate more kinds of carbon
sources than those at normal substrate concentration. According
to this concept, a bacterial cell can assimilate more kinds of
carbon sources at very low substrate concentration than that at
higher substrate concentration. Therefore, a method designed
using a dilution strategy to very low substrate concentration, as
in the present study, can reflect the bacterial assimilability to
more kinds of carbon resources in water sample.

Yu (2006) developed an equation for microbial growth
according to the thermodynamics of the microbial growth
process as the following:

⊿G ¼ ⊿GO−nRT lnSþ RT ln
μobs

μmax−μobs
ð1Þ
c.a

where, ⊿G is the total change of free energy of microbial
growth, ⊿G0 is the standard free energy change, S is the molar
concentration of substrate, n is a positive coefficient, μobs is
the observed specific growth rate, μmax is the maximum
specific growth rate, R is gas constant in the Gibbs free energy
function, and T is the temperature.

The function was based on the collision frequency theory
for microbial growth (Button, 1998) and the assumption that
cells had only a limited number of sites for taking up substrate
(Alberts et al., 2001; Button, 1998; Hammes, 2000). In this
article, the driving force of microbial growth, is influenced
jointly by the molar concentration of substrate and the
number of reactive sites on cells which can be described by
the difference between the maximum specific growth rate
(μmax) and the observed specific growth rate (μobs) under given
conditions as shown by the function above. This function
indicates that the growth rate is not steady with variation of
μobs, and depends on the conjunct effects of the molar
concentration of substrate and the difference between μobs
and μmax, moreover, the effect of the difference between μobs
and μmax may be weakened by the increase of the substrate
molar concentration, thus the growth rate will change more
dramatically when the substrate concentration is very low,
which was confirmed in our experimental study.

Eichinger et al. (2010) presented that increased bacterial
growth efficiencywith environmental variability emphasized the
importance of cell maintenance in bacterial growth dynamics. It
was found that the initial bacterial growth rate varied dramati-
cally, and they contributed it to population synchronization as
bacteriawith cellmaintenancewere constrained by the presence
or absence of food. By estimating specific activities of bacteria
facedwith a pulsed substrate supplywith a 48-hr interval period,
steady-state growth would be difficult to observe. O2 concentra-
tion measurements revealed that respiration rates sharply
increased as soon as substrate was introduced to the culture of
low substrate concentration. This increase was so rapid that the
potential O2 consumption, due to the time lag among substrate
addition in the culture, sampling, and respiration rate measure-
ments, may be underestimated. This conclusion was certainly
true for DOCmeasurements, because if bacterial respiration rates
increased so rapidly, they obviously consumed DOC very quickly
after substrate addition. Thus the low repeatability of initial
growth and the fact that the growth changed more dramatically
for fast DOC consumptionunder low substrate concentration can
be well explained, which was also confirmed by our study, but
the characteristics of the relationship between μ and TOC could
be repeated under the same given conditions. The fast DOC
consumption after substrate addition is necessary for bacteria to
cope with the in situ heterogeneity of a largely oligotrophic and
ever-changing environment, andmay result fromtheuncoupling
of anabolic and catabolic processes (del Giorgio and Cole, 1998).

The level of water biostability depends on a complex affection
of factors, mainly including concentration of biodegradable
organic carbon, water temperature, and residence time (Van der
Kooij, 2000; Eichler et al., 2006; Lautenschlager et al., 2010). In the
past decades, water biostability assessment has usually been
based on the result of a long microbe growth period and TOC
could not be used to draw conclusions on the organic
compounds' growth-promoting potential, because the biological
assimilability of a mixture of organic compounds depends on
jes
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both the nature of the substances and the amount of carbon. In
the current study, a dilution incubationmethod was designed to
studywater biostability (Egli, 2010; Yu, 2006; Eichinger et al., 2010).
This work conducted a series of experiments to investigate
the relationship between bacterial re-growth potential and
TOC concentration under different conditions. The findings
could be helpful for further understanding water biostability,
designing determination methods and building criteria to define
biostability.
1. Materials and methods

1.1. Bacterial strain and water samples

The inoculum bacterium was Pseudomonas fluorescens (P17), and
its storage, revival, adaptation, and working stock culture were
prepared according to the method of LeChevallier et al. (1993)
with minor modifications. Briefly, the storage condition was a
solution of 20% glycerol–2% peptone at −20 °C. Prior to use, the
cultures were retrieved on R2A agar, and incubated at 22 °C for
5 days. For adaptation, an isolated colony was inoculated into
100 mL of sterile, chlorine-neutralized tap water, which was
then incubated at 22 °C for 7 days. An aliquot (0.1 mL) of the tap
water-adapted culturewas used to inoculate 100 mLof a sodium
acetate solution with 2000 μg acetate-C/L. The sodium acetate
solution was incubated at room temperature for 2–6 months.
Bacterial counts of inoculum were generally in the range of
6.4 × 106 to 8.3 × 106 CFU/mL. The sodium acetate solution was
used as aworking stock culture to inoculate the dilution series of
the water samples and the sodium acetate solution.

The study was carried out with three kinds of the water
samples, which were the sodium acetate solution as standard
substrate, stagnant tapwater samples, and fishpeptone solutions.

1.2. Preparation of TOC-free material

For the TOC determination and the dilution incubation method
designed in the study, borosilicate glass vials (45 mL) with screw
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Fig. 1 – Relationships between specific growth rate (μ) and TOC (T
V is the slope between two adjacent TOC values in the curve bet
6-month-culture inoculums with raw TOC concentration of 1500
TOC concentration of 2000 μg C/L; (line c) 25 μL 3-month-culture
caps containing TFE-lined silicone septa were used. Carbon-free
bottles and vials were rinsedwith tapwater, submerged in a 10%
(wt/vol) potassium persulfate solution for 30 min, and rinsed
with nanopure water 3 times before being heated at 60 or 260 °C
in a constant temperature drying box for at least 8 hr. After
rinsing the screw capswith nanopurewater, theywere soaked in
a 10% (wt/vol) potassium persulfate solution at room tempera-
ture for 1 hr. Then, they were rinsed more than 3 times with
nanopure water and finally air-dried at 60 °C.

1.3. Total adenosine tri-phosphate and TOC determination
To determine ATP, 100 μL water samples were mixed thor-
oughly with 100 μL of BacTiter-Glo™ solution (Promega
Corporation, USA) and incubated at room temperature for
20 sec. Luminescence of the samples was measured in two
kinds of luminometers (GloMax 20/20 and 96 GLO). The data
were collected as absolute light units (AU) to calculate μ of P17.

TOC was measured as non-purgeable organic carbon with
a total carbon analyzer TOC-5000(A) (Shimadzu, Japan).
Aliquots of the water solutions (20 mL) filtered with a
0.22 μm filter were transferred into a C-free TOC vial. After
stripping CO2 with CO2-free air, triplicate 50 μL samples were
injected into the TOC analyzer for measurement. The TOC
concentration of the sample was the average of the three
measurements. To prepare a calibration curve a stock solution
of sodium acetate solution with 2000 μg acetate-C/L was
diluted by nanopure water to obtain solutions with carbon
concentrations between 0 and 2000 μg acetate-C/L.

1.4. Dilution incubation method

After TOC determination, water samples filtered with a
0.22 μm filter were first diluted (most subjected to a series of
successive two-fold dilutions) to a total volume of 10 mL in
the borosilicate glass vials (45 mL) with the following buffer:
7.0 mg of K2HPO4, 3.0 mg of KH2PO4, 0.1 mg of MgSO4·7H2O,
1.0 mg of (NH4)2SO4, 0.1 mg of NaCl, and 1.0 μg of FeSO4 (all
jes
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quantities are per liter). In the series, the TOC value of the
maximum dilution should be low enough to show fluctuating
changes of the relationship between μ and TOC values of the
diluted solutions. The diluted solutions were inoculated
respectively with 20, 25, 50, 100, and 200 μL of the working
stock culture, respectively, and then incubated at 30 °C for
5–30 min, 1 hr and 2 hr. Just before the specified time, the
dilutions were shaken for 10 sec and then 0.1 mL was
sampled for the ATP determination, and the two contiguous
ATP values expressed in AU at the beginning (AU0) and end
(AU1) of the incubation period were used to calculate the
bacterial growth rate for the different incubation periods (⊿t).
The specific growth rate (μ) was calculated by Eq. (2):

μ ¼ ln AU1=AU0ð Þ
⊿t

ð2Þ

V ¼ μn−μn−1
TOCn−TOCn−1

ð3Þ

where, V is the slope between two adjacent TOC values in the
curve between μ and TOC; n is the ordinal number of TOC
determination points from the minimum to the maximum;
TOCn is the responding TOC value at the ordinal n point on
X-axis of the curve; μn is specific growth rate value to TOCn

value; μn − 1 is specific growth rate before μn; TOCn − 1 is TOC
value before TOCn.
0

1

2

a

μ 
(h

r-1
)

2. Results and discussion

2.1. Relationship between μ and TOC values of the twofold
dilution series of acetate solutions
c.c
n
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Fig. 2 – Comparison of the relationships between μ and TOC
(Total Organic Carbon) values of the peptone dilutions (A)
and the stagnant tap water dilutions (B) with 25 μL inoculum
per 10 mL solution for 15 min (line a) and 1 hr (line b)
incubation periods respectively.
Fig. 1 shows the results of the dilution incubation method
with 20 and 25 μL inoculum per 10 mL acetate diluted solution
for 1 hr incubation. Fig. 1A shows that the curve of the
relationship between μ and TOC values of the acetate solution
had a slope change when the TOC values decreased below the
turning-point TOC value. The turning-point TOC value is the
value at the point on the X-axis, which was the dividing point
from the unsteady part to a relatively straight part on the
curve of μ and TOC (or V and TOC). To make this change easy
to find, Fig. 1A was converted into Fig. 1B by Eq. (3). The
turning-points of TOC values were 11.72 (line a of Fig. 1B) and
15.625 μg C/L (line b of Fig. 1B) for 20 μL 6-month-culture
inoculumswith raw TOC concentrations 1500 and 2000 μg C/L,
respectively, while it was 88.9 μg C/L (line c of Fig. 1B) with
25 μL 3-month-culture inoculum. The fluctuating changes of
the growth were consistent with the growth change reflected
by the thermodynamics of bacterial growth proposed by Yu
(2006). The results showed that the smaller gradient of
dilution should get a more accurate turning-point TOC value
under given conditions. Although it was difficult to repeat the
bacterial growth rate value at a certain substrate concentra-
tion under the given condition, the relationship characteris-
tics could be repeated between μ and TOC or between V and
TOC under a given condition with the dilution incubation
method designed in the study, and these characteristics also
were observed in mixed solutions such as the peptone
solution or tap water (Fig. 2).
 c.a

2.2. Influences of incubation period and inoculation amount

Fig. 2A shows the turning-point TOC values of peptone solution,
which were 214.8 or 1718 μg C/L for 15 min incubation period
and 214.8 μg C/L for 1 hr incubation period. Fig. 2B shows the
turning-point TOC values of stagnant tapwater solution, which
were 220.9 or 441.9 μg C/L for 15 min incubation period and
were in the range of 220.9–883.7 μg C/L for 1 hr incubation
period. Fig. 3 shows the turning-point TOC values of sodium
acetate solution, which were 250, 15.625, and 62.5 μg C/L for
0.5, 1 and 2 hr incubation periods respectively. As regards the
influence of incubation, the above results showed that the
jes
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relationship between μ and TOC values for the 1 hr incubation
period was more stable with a smaller turning-point TOC
value in all incubation periods, therefore a 1 hr incubation
period was the best choice for the bioassay, which might be
due to the complex changes of bacterial growth and substrate
concentration.

To further elucidate the relationship between the
turning-point TOC values and water biostability, the amount
of the inoculation culture was gradually increased from 20 to
200 μL (Fig. 4). The turning-point values shownwith arrows on
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Fig. 4 – Comparison of the relationships between μ and TOC (To
(where, V is the slope between two adjacent TOC values in the cur
(a, A), 50 μL (b, B), 100 μL (c, C) and 200 μL (d, D) inocula respect
the curves were 31.25 μg C/L for 20 μL inoculum (Fig. 4A),
almost 31.25 μg C/L for 50 μL inoculum (Fig. 4B) with more
variations, 125 μg C/L for 100 μL inoculum (Fig. 4C) and 222.8
to 445.7 μg C/L for 200 μL inoculum (Fig. 4D). The results
indicated that the turning-point TOC value increased with
increasing inoculum amount. The result (Fig. 5) for peptone
solution showed that the turning-point value (214.8 μg C/L)
with 25 μL inoculumwas smaller than that (234.7 to 939 μg C/L)
with 50 μL inoculum. The explanation might be that more
organisms to be supported require more organic carbon, and
the turning-point TOC value might represent a limitation for
bacterial growth. Hence, there might be some relationship
between the turn-point TOC value and water biostability and it
requires more study. The results in both Figs. 4 and 5 show that
the larger amount of inoculum should not be chosen to obtain a
more stable and accurate curve for the dilution incubation
method. In this study, the best inoculum amount was 25 μL for
10 mL dilution solution.

2.3. Comparison experiments with the standard sodium
acetate solution

Because the turning-point TOC value of water samples was
found to be sensitive to the experimental conditions, a standard
solution should be designed to obtain a basis for comparison.
The AOC bioassay is designedwith the sodium acetate solution
as standard solution, so to convert the turning-point TOC value
directly into an AOC value, the sodium acetate solution was
accepted as the standard solution in the dilution incubation
method. The first experiment was the comparison of peptone
solutions and sodium acetate solution using the dilution
jes
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incubation method under the same conditions. The second
experiment was the comparison of the stagnant tap water
sample and sodium acetate solution. The results are shown in
Table 1. The experimental result of the comparison of the
peptone solution and the sodium acetate solution as standard
solution for the method, showing that the turning-point TOC
value (214.8 μg C/L) of the peptone solution was clearly larger
than that (88.9 μg C/L) of the standard solution. The turning-
point TOC values (204.26 and 204 μg C/L) of the stagnant tap
water solution were obviously larger than those (55.7 μg C/L) of
the standard solution (acetate solution). In the second experi-
ment, the turning-point TOC values of the stagnant tap water
sample showed high repeatability. The TOC values of both the
peptone solution and stagnant tap water solution were
converted into equivalent values (1422.1 μg C/L for peptone
solution; 445.6 μg C/L for stagnant tap water sample) as
acetate-C (acetate carbon) by Eq. (4).

Acetate‐C ¼ TOC� TOCt

TOCt0
ð4Þ

where, TOC is total organic carbon of the water sample; TOCt is
the turning-point TOC value of the water sample; TOCt0 is the
turning-point TOC value of the standard solution.
Table 1 – Results of the dilution incubation bioassay of the
water samples.

Experiment Water
sample

TOC
(μg C/L)

TOCt value of
water sample

(μg C/L)

Acetate-C
(μg C/L)

1 Peptone
solution

3436 214.8 1422.1

Acetate
solution

2538 88.9

2 Tap water 1632 204 445.6
Tap water 1634 204.26 445.6
Acetate
solution

891.5 55.7

TOC (Total Organic Carbon) is the TOC value of the raw water
sample without dilution; TOCt is the turning-point TOC value of the
water sample.
Therefore in causing the same growth changes on the
curve of μ and TOC, the acetate-C value of peptone was
1422.1 μg C/L, which was more than the 445.6 μg C/L value of
the stagnant tap water sample, which should be related to the
assimilability of the organic carbon. The turning-point TOC
values (88.9, 55.7 μg C/L) of the standard solutions were equal
to the same AOC values with higher biostability, which
implied that a water sample with TOC value below the
turning-point TOC value had higher biostability.
3. Conclusions

In this study, the dilution incubationmethodwas designed to be
applied in the researchofwater biostability, combining bioassay
and chemical TOC analysis based on bacterial growth dynamics
in water. The experimental studies on bacterial growth dynam-
ics demonstrated that growth change occurred simultaneously
when the starved bacteria contacted substrate. It was found that
there was a special growth rate change below a turning-point
TOC value on the relationship curve between μ and TOC of the
water sample. The turning-point TOC value is the value at the
point on the X-axis where the straight curve became a
fluctuating curve of μ and TOC (or V and TOC). It was found
that the turning-point TOC value was related to inoculum
amount, bacterial age, and incubation period. The turning-point
TOC value would increase when the amount of inoculum
increased, and a 1 hr incubation period with 25 μL inoculum
was selected in the method to get better results. The experi-
mental results showed some changes of the turning-point TOC
value with the kind of water samples such as tapwater samples
and peptone solution, and compared the results with that of the
standard sodium acetate solution. By taking sodium acetate
solution as the standard solution, a relationship was built
between the turning-pointTOCvalueof sodiumacetate solution
and the AOC value. The turning-point TOC values (88.9, 55.7 μg
C/L) of the standard solutions were equal to the same AOC
values with higher biostability, which implied that a water
sample with TOC value below the turning-point TOC value had
higher biostability. Therefore, the dilution incubation method
has the potential to further studies on water biostability.
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