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Batch experiments were conducted to investigate the phosphorus (P) adsorption and
desorption on five drinking water treatment residuals (WTRs) collected from different
regions in China. The physical and chemical characteristics of the five WTRs were
determined. Combined with rotated principal component analysis, multiple regression
analysis was used to analyze the relationship between the inherent properties of the WTRs
and their P adsorption capacities. The results showed that the maximum P adsorption
capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to
8.20 mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis
revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted
for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an
integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface
area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca,
P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P
desorption was limited and had a significant negative correlation with the (Feox + Alox) of
the WTRs (p < 0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large
surface areas were proposed to be the best choice for P adsorption in practical applications.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Excessive phosphorus (P) inwater bodies is one of themain causes of
eutrophication (Edwards and Withers, 2007). Chemical adsorption
can remove P effectively. Common adsorbents include natural
minerals, engineering materials and industry by-products (Pant et
al., 2001; Liu et al., 2007). Drinking water treatment residuals (WTRs)
are inevitable by-products of drinkingwater treatment plants, which
have attracted substantial attention in recent years due to their high
P adsorption capacity. The reuse of WTRs to remove P is a win–win
technology for waste management and water environment restora-
tion. Several applications for WTRs have been developed
(Agyin-Birikorang et al., 2007; Zhao et al., 2009; Wang et al., 2012a).
.edu.cn (Yuansheng Pei).

o-Environmental Science
Therefore, a comprehensive understanding of the P adsorption
capacity of WTRs is crucial to their effective utilization.

The factors affecting the P adsorption capacity of WTRs are
mainly derived from two categories. One is solution chemistry,
including pH, temperature, dissolved organic carbon, low molec-
ular weight organic acids and P species (Razali et al., 2007; Wang et
al., 2012b; Gao et al., 2013). The pH has been considered the most
important factor, exhibiting a negative correlation with the
adsorption capacity of WTRs (Wang et al., 2011a). The other
category is the inherent properties of the WTRs, such as their
surface area, particle size and contents of Fe, Al, P, Ca and other
elements (Dayton and Basta, 2005; Makris et al., 2005). The
physicochemical characteristics of WTRs are related to the source
jes
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water, the chemicals used for treatment and the strategy of
operations. However, limited data are available regarding the
influence of the inherent properties on the P adsorption of
WTRs.

Five types of WTRs were collected from different regions in
China. Their physicochemical properties were determined. Batch
experiments were carried out to investigate the P adsorption and
desorption on different WTRs. Afterward, the integrated relation-
ship of the inherent properties (contents and fractions of
elements, pH and surface area) and P adsorption characteristics
of the WTRs was calculated using statistical analysis. This work
could be beneficial toward understanding P adsorption on WTRs
and promoting their practical application.
c.c
n

1. Materials and methods

1.1. Preparation and characterization of the WTRs

The BJ1-WTRs and BJ2-WTRs were sampled from the Beijing
NO. 9 Water Treatment Plant in 2011 and 2012, respectively.
This plant used a combination of FeCl3 and polymeric
aluminium (PAC) as a coagulant, while supplying 60% of
the water requirement for Beijing. Active carbon was used as
an adsorbent for advanced treatment. The HZ-WTRs and
LZ-WTRs were sampled from the Hangzhou Yuxi Water
Treatment Plant and LanzhouWater Treatment Plant, respec-
tively. Both plants used PAC as a coagulant. The SD-WTRs
sampled from the Shandong Yuxing Water Treatment Plant
used PAC as a coagulant and Ca(HCO3)2 as a softening agent.
The five WTRs were air-dried and sieved (<2 mm) to create
homogeneous sub-samples before analysis.

The total Fe, Al and Ca contents of the WTRs were
determined using inductively coupled plasma atomic emis-
sion spectroscopy (ICP-AES, Jobin Yvon, Paris, France)
according to USEPA-METHOD 3051. Total P was determined
using ICP after digestion by a mixture of HNO3, HClO4 and HCl.
The 200 mmol/L oxalate-extractable Fe (Feox1), Al (Alox1), and P
(Pox1), and the 5 mmol/L oxalate-extractable Fe (Feox2), Al
(Alox2), and P (Pox2) were determined by ICP after extraction at
a 1:60 solid:solution ratio following the procedures described
in a previous study (Schoumans, 2000). The phosphorus sat-
uration index (PSI) was determined using the Pox1/(Alox1 +
Feox1), where the units of Pox1, Alox1 and Feox1 are mol/kg
(Elliott et al., 2002). The Mehlich 3 extractable Ca (CaM) was
determined as described in the literature (Mehlich, 1984). The
total carbon was determined using the Dumas method with a
1500 series dry combustion analyzer (Crilo Erba, Milan, Italy).
The organic matter (OM) was determined using a potassium
dichromate oxidation method (Nelson and Sommers, 1982).
The pH was determined in a 1:2 WTRs to 0.01 mol/L CaCl2
solution. The electrical conductivity (EC) was determined in a
1:2 WTRs to deionized water solution. The SEM, XRD and
surface area were analyzed to determine the structure of the
different WTRs. The tests were repeated twice, and the
average values are reported.

1.2. Adsorption characteristics

For adsorption experiment, P working solutions with initial
P concentrations (P0) at eight common levels (5, 10, 15,
 c.a

20, 30, 40, 50 and 100 mg/L) were prepared by dissolving
pre-determined amounts of KH2PO4 in a 0.01 mol/L KCl
solution.

The batch experiments were conducted by pouring 0.5 g of
the WTRs and 50 mL of the P working solutions with different
P0 into 100 mL plastic bottles. The pH values of the P working
solutions were adjusted to 5.0, 7.0 and 9.0 with 0.01 mol/L HCl
and 0.01 mol/L NaOH. The mixed samples were shaken at
200 r/min for 48 hr to attain equilibrium (Wang et al., 2012b).
Afterward, the samples were removed from the shaker and
filtered using a 0.45-μm millipore membrane filter to separate
the solid from the liquid. The residual P in suspensions was
measured using an ammonium molybdate spectrometry
method. The amount of P adsorbed (Q) was determined
using Eq. (1):

Q ¼ P0−Peð ÞV
m

ð1Þ

where, P0 (mg/L) and Pe (mg/L) are the initial P and final P
concentrations, respectively; V (L) is the solution volume, and
m (g) is the mass of WTRs.

The desorption was facilitated by adding 50 mL of
0.01 mol/L KCl solution to 0.5 g of P-loaded WTRs from
adsorption test that had been washed with ethanol three
times. The initial pH was maintained at 7. Afterward, the
samples were shaken at 200 r/min for 48 hr. The P concen-
trations of the suspensions were measured. The amounts of P
desorbed (Qd) were also determined using Eq. (1).

The Langmuir isotherm was used:

Qe ¼
QmaxbPe
1þ bPe

ð2Þ

where, Qe (mg/g) is the mass of P adsorbed per unit mass of
WTRs, b is an empirical constant related to the entropy,
Qmax (mg/g) is the maximum adsorption capacity, and
Pe (mg/L) is the equilibrium P concentration. It has been
proved that the P adsorption by WTRs fits the Langmuir
isotherm well (Dayton and Basta, 2005; Wang et al., 2011a).
The Qmax was calculated by fitting Eq. (2) to the experimen-
tal data.

1.3. Statistical analyses

The statistical analyses were performed using SPSS software
version 20 (SPSS Inc., Chicago, Illinois, USA). The measured
inherent characteristics of the five WTRs were analyzed using
rotated principal component analysis. This procedure re-
duced the number of independent variables from 12 individ-
ual abiotic variables to three or four principal component
factors, which were independent linear combinations of the
12 original variables. The resulting factor scores and pH values
of the P working solution were used as independent variables
during the multiple regression analysis while using the P
removal properties of the five WTRs as dependent variables.
Afterward, the relationship between the inherent properties
of the WTRs and their P adsorption capacities was obtained
(Arias et al., 2001).
jes
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2. Results and discussion

2.1. Characteristics of WTRs

The five WTRs had variable physicochemical properties
(Table 1). The weight percentage values ranged from 2.5%–
9.7% for Fe, 4.2%–9.4% for Al, 0.8%–13% for Ca, 2.9%–10.8% for
C, 0.1%–0.3% for P and 2.6%–6.8% for OM. The HZ-WTRs,
LZ-WTRs and SD-WTRs had a higher weight percentage of Al
than Fe. The weight percentages of Ca were low, except that
the percentages in the LZ-WTRs and SD-WTRs were 5% and
13%, respectively. The Fe and Al of the WTRs depended on the
species and dose of the coagulants during water treatment.
The Ca and C were derived from the Ca and suspended solids
in the raw water, respectively. Furthermore, the Ca content
increased significantly when Ca(HCO3)2 was used as a
softening agent (Gibbons and Gagnon, 2011).

The range of P contents in five WTRs was similar to the
result of a former study encompassing 21 WTRs in Oklahoma
utilities (0.2–4.0 mg/g) (Dayton et al., 2003). The inherent P of
the WTRs was higher than that of common soil because the P
in the raw water accumulated after treatment (Elliott et al.,
2002). The Feox1, Alox1 and Pox1 of five WTRs accounted for
14%–84%, 36%–94% and 14%–80% of the total Fe, Al and P,
respectively. The PSIs of the five WTRs were relatively low
(≤2.69%). Moreover, the contents of Feox2, Alox2 and Pox2 were
limited: 0.01–0.11 mg/g for Feox2, 0.03–0.33 mg/g for Alox2 and
0.01 mg/g for Pox2. The CaM was approximately 42%–92% of the
total Ca, and the SD-WTRs had the highest value. The
oxalate-extractable Fe and Al were closely related to the
structure of the WTRs. The amorphous structure of the WTRs
was affirmed by the high fraction of Feox1 and Alox1. Moreover,
the Feox2 and Alox2 were uncorrelated with the Feox1 and Alox1.
For instance, the Feox1 of the BJ2-WTRs was higher than that
of the HZ-WTRs, while the Feox2 was lower. Similarly, the Alox1
of the LZ-WTRs was lower than that of the SD-WTRs, while
Table 1 – General physicochemical properties of the five drinkin

Properties BJ1-WTRs BJ2-WTRs

Fe (mg/g) 80.10 97.10
Al (mg/g) 42.20 74.25
Ca (mg/g) 8.21 16.54
C (mg/g) 107.74 106.33
P (mg/g) 1.41 1.31
OM (mg/g) 65.72 68.24
Feox1 (mg/g) 58.80 82.00
Alox1 (mg/g) 39.69 62.00
Pox1 (mg/g) 0.34 0.19
PSI (%) 0.44 0.16
Feox2 (mg/g) 0.11 0.02
Alox2 (mg/g) 0.33 0.03
Pox2 (mg/g) 0.01 0.01
CaM (mg/g) 7.55 14.03
EC (ms/cm) 0.74 1.25
Surface area (m2/g) 74 61
pH 7.23 7.30

BJ1-WTRs: samples collected from Beijing in 2011; BJ2-WTRs: samples
Hangzhou; LZ-WTRs: samples collected from Lanzhou; SD-WTRs: samp
saturation index; EC: electrical conductivity; ox1: 200 mmol/L oxalate ext
the Alox2 was higher. The lack of correlation indicated that the
Feox2 and Alox2 may be dependent on other factors, such as the
aging effect (Agyin-Birikorang and O'Connor, 2009). In addi-
tion, the average PSI of the five WTRs (<1.64%) was a useful
tool to characterize P saturation, and suggested that the
inherent P content was far from the saturated adsorption
capacity. Consequently, it was concluded that the five WTRs
had a large potential for P adsorption.

The ECs of the five WTRs were 0.50–1.25 mS/cm, making
them well below the 4.00 ms/cm associated with the salinity
of soil for salt-sensitive plants (Brady and Weil, 1996).
Moreover, a leaching test was conducted and the results
showed that the five WTRs were non-hazardous (Table S1).
The pH values of the five WTRs were moderate at 7.23–7.90.
The surface areas of the BJ1-WTRs (74 m2/g) and BJ2-WTRs
(61 m2/g) were larger than the others (21–52 m2/g) because the
activated carbon residuals had an expanded surface area. In
addition, the XRD and SEM analyses showed that the five
WTRs were amorphous and had rough surfaces (Appendix A
Fig. S1), making P easily transportable to the micropores.
Therefore, the physical properties of theWTRswere beneficial
for adsorbing P.

2.2. Characteristics of adsorption

The residual P concentration in the suspended solution was too
low to be detected when P0 was below 50 mg/L (Appendix A
Table S2); therefore, only the adsorption capacities for P0 of 50
and 100 mg/L are displayed (Fig. 1). The results show that the five
WTRs exhibited varying removal efficiencies for P. For a P0 of
50 mg/L, the BJ2-WTRs had the highest removal efficiency:
approximately 100% at pH 5, followed by HZ-WTRs (99%),
BJ1-WTRs (88%), SD-WTRs (77%) and LZ-WTRs (74%), while the
P removal efficiencies at pH 9 decreased to 97%, 95%, 70%, 58%
and 54% respectively. Moreover, the adsorption capacities of the
fiveWTRs for P0 of 100 mg/L (Q2) exceeded those for P0 of 50 mg/L
(Q1). The (Q2–Q1) values at pH 5 were 4.76, 4.06, 2.94, 1.85 and
jes
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g water treatment residuals (WTRs).

HZ-WTRs LZ-WTRs SD-WTRs

28.13 39.54 25.60
94.48 49.79 47.27
4.87 49.65 129.83

41.41 28.77 62.54
2.86 1.21 1.91

40.50 26.25 44.41
8.90 5.70 6.16

70.00 18.00 26.73
2.29 0.61 0.81
2.69 2.57 2.36
0.05 0.01 0.01
0.46 0.04 0.03
0.01 0.01 0.01
3.76 40.28 40.01
0.73 0.72 0.50

52 34 21
7.40 7.90 7.60

collected from Beijing in 2012; HZ-WTRs: samples collected from
les collected from Shandong; OM: organic matter; PSI: phosphorus
ractant; ox2: 5 mmol/L oxalate extractant; M: Mehlich 3 extractant.
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Fig. 1 – P adsorption of the five WTRs at different pH levels.
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1.77 mg/g for BJ2-WTRs, HZ-WTRs, BJ1-WTRs, SD-WTRs and
LZ-WTRs, respectively. The Langmuir isothermwasutilized to fit
the experimental data. The maximum P adsorption capacities
(Qmax) for the five WTRs at pH 5 were 5.01–9.14 mg/g. The
variations in Qmax followed a trend similar to Q1 and Q2,
exhibiting an average decrease of 30% when the pH increased
from 5 to 9. Overall, the Q1, Q2 and Qmax of the five WTRs
showed a consistent trend (BJ2-WTRs > HZ-WTRs > BJ1-WTRs >
LZ-WTRs > SD-WTRs) at the three pH levels.

Themechanism of P adsorption byWTRswas complicated,
including ligand exchange, hydroxide exchange, surface
complexation, and co-precipitation. Among them, the ligand
exchange between P in solution and reactive functional
 c.a

groups (i.e., –OH, –Cl, –SO4 and humic substances) on the
WTRs' surface was reported to be the dominating pathway
(Yang et al., 2006). Thus with the increase of solution pH, the
change in surface potential and competitive adsorption be-
tween the P and –OH reduced the P adsorption capacity (Guan et
al., 2007). In addition, the higher adsorption capacity for higher
P0 can be attributed to the increased concentration gradient
between the aqueous solution and solid phase, resulting in
more contact and diffusion. Overall, the P adsorption process of
WTRs was more favorable under acidic conditions.

The desorption of the five P-loaded WTRs at three pH
levels followed a similar pattern of adsorption. The P
desorption for P0 < 50 mg/L was also below the detected levels
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Fig. 2 – P desorption of the five WTRs at different pH levels (P0: the initial P concentrations).

Table 2 – Principal component analysis of the
physicochemical properties and contents of the five
WTRs.

Eigenvalue Proportion of
variance (%)

Cumulative
proportion of
variance (%)

Principle component
PC1 7.321 48.80 48.80
PC2 1.488 9.92 58.72
PC3 5.293 35.28 94.00

Rotated factor pattern

PC1 PC2 PC3

Variable
pH −0.746 −0.312 −0.469
Surface area 0.773 0.136 0.570
Fe 0.978 −0.092 −0.038
Feox1 0.999 0.018 −0.028
Feox2 0.364 −0.184 0.911
Al −0.010 0.991 0.049
Alox1 0.406 0.877 0.249
Alox2 −0.064 0.424 0.903
Ca −0.493 −0.396 −0.513
CaM −0.523 −0.542 −0.656
P −0.473 0.4 0.711
Pox1 −0.604 0.396 0.689
Pox2 −0.165 0.501 0.850
C 0.933 −0.151 0.108
OM 0.932 0.026 0.147

Bold values: the highest loadings of principal components on the
physicochemical properties and contents of WTRs.
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for BJ1-WTRs, BJ2-WTRs and HZ-WTRs (Table S3); so only the
data for P0 of 50 and 100 mg/L are shown (Fig. 2). For P0 of
50 mg/L, the LZ-WTRs desorbed the highest proportion of
adsorbed P (0.70%) at pH 5, followed by the SD-WTRs (0.62%),
BJ1-WTRs (0.13%), HZ-WTRs (0.10%) and BJ2-WTRs (0.10%). An
inverse trend was found in the P adsorption and desorption of
the five WTRs. The LZ-WTRs desorbed the greatest amount of
P while adsorbing the least amount of P. Furthermore, P desorp-
tion increased with increasing solution pH and P0. For instance,
for P0 of 50 mg/L, increasing pH from 5 to 9 increased the P
desorption forHZ-WTR from0.7 × 10−3 to 4.8 × 10−3 mg/L. The P
desorption increased further to 0.11 mg/L at P0 of 100 mg/L.

The result was similar to a former study that reported a
minimal percentage of desorbed P (<0.20%), even after a
long-term desorption over 211 days (Ippolito et al., 2003). The
reason may be that P in WTRs was mainly in the form of Fe/
Al-bound P, while the loosely bound P only accounted for a
small proportion (Babatunde and Zhao, 2009). Moreover,
larger quantities of P desorbed at higher pH values because
the Fe/Al-bound P is easily desorbed under alkaline conditions
(Christophoridis and Fytianos, 2006). In addition, the P release
from the P-saturated WTRs could be divided into three stages:
an initial rapid P desorption stage, followed by a P
re-adsorption stage, and a P desorption balance stage (Wang
et al., 2012c). Overall, the limited desorption suggested a low
risk of P release from saturated WTRs, favoring the develop-
ment of real applications for WTRs, such as the restoration of
lake sediment and soil amendments.

2.3. Relationship analysis

2.3.1. Relationship between the characteristics of the WTRs and
P adsorption capacity
To identify which of the inherent characteristics of WTRs
were most related to the P adsorption capacity, principal
component analysis was conducted on the characteristics of
the five WTRs. These factors can be classified into three
groups (Table 2): (1) PC1 is related to pH, Fe, surface area, C and
OM (high loadings for pH, Fe, Feox1, surface area, C and OM),
accounting for 48.80% of the total variance; (2) PC2 is related to
Al (high loadings for Al and Alox1), accounting for 9.92% of the
total variance, and (3) PC3 is related to other properties (high
loadings for Ca, CaM, P, Pox1, Pox2, Feox2 and Alox2), accounting
for 35.28% of the total variance. Overall, PC1, PC2 and PC3
accounted for 94.00% of the total variance.

The principal components and solution pH were used as
independent variables during the multiple regression analysis.
The P adsorption capacities (Q1, Q2 and Qmax) of the five WTRs
were used as dependent variables, respectively. The results
show that the PC1, PC2 and solution pH were significant in
multiple regressions (p < 0.01) (Table 3). In the multiple regres-
sion of Q1, PC2 entered the multiple regression first, accounting
for 58.0% of the variation in the P adsorption (p < 0.005).
Afterward, PC1 entered the multiple regression, accounting for
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Table 3 – Results of multiple regression describing the relationship between the principal factors and the P adsorption.

PC2 PC1 pH PC3 R1
2

Multiple regression
Q1 58.0% 21.4% 12.8% Reject 0.924
Q2 46.1% 31.1% 21.4% Reject 0.986
Qmax 36.5% 28.5% 29.7% Reject 0.947

Significance Equation R2
2

Regression equation
Q1 <0.001 Q1 = 5.185 + 0.396PC1 + 0.669PC2 − 0.16 pH 0.938
Q2 <0.001 Q2 = 9.822 + 1.11PC1 + 1.419PC2 − 0.472 pH 0.971
Qmax <0.001 Qmax = 9.892 + 1.085PC1 + 1.292PC2 − 0.561 pH 0.958

Q1 and Q2: the P adsorption capacity of WTRs under an initial P concentration of 50 and 100 mg/L, respectively; Qmax: themaximum P adsorption
capacity; R1

2: R-squared of multiple regression; R2
2: R-squared of predicted model.
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another 21.4% (p < 0.005); the solution pH accounted for an
additional 12.8% of the variation in P adsorption (p < 0.001).
However, the PC3 related to other properties was rejected.
Therefore, 92.2% of the variation in the P adsorption was
explained using PC1, PC2 and solution pH. A similar pattern
was also found during themultiple regression analysis of Q2 and
Qmax; however, the R12 values of Q2 and Qmax were slightly higher
than that of Q1. In addition, the equations yielded frommultiple
regressions. The test results revealed good correlations between
the predicted and actual values. Therefore, the inherent
characteristics of the WTRs had a remarkable influence on
their P adsorption capacities.

A previous study indicated that there was a significant
linear relationship between Qmax and Alox1 (extracted at a
solid to liquid ratio of 1:100) for the Al-basedWTRs (R2 = 0.916,
p < 0.001), while adding Feox1 had no effect on the significance
level (Dayton and Basta, 2005). However, that conclusion was
not appropriate for the Fe-based WTRs. This study showed
that PC1 and PC2 contributed a similar proportion of the
various P adsorption capacities; in addition to Al, other
inherent characteristics of WTRs (Fe, surface area, pH and
OM) also played important roles. The dominant role of Fe and
Al was attributed to the ligand exchange. The positive loading
of the surface area indicated that a large surface area
increased the P adsorption capacity by providing enough
area for P attachment (Makris et al., 2004). However, since the
pH variation of the five WTRs had a small range (7.23–7.90),
the effect of pH on P adsorption needs further study in detail.
In addition, the C in the WTRs mainly existed in organic form,
which could inhibit the crystallization of Fe and Al and be
beneficial to maintaining the high P adsorption capability
(Dodor and Oya, 2000), thus the P adsorption was positively
affected by the contents of C and OM. Consequently, the
factors related to Fe and Al as well as the roles of the surface
area and OM should be considered regarding the P adsorption
capacity of the WTRs.

The long-term transformation of P in WTRs was related to
the fraction of Ca, while the formation of soluble calcium
phosphate was time dependent. A previous study reported
that calcium phosphate began to form and transform in the
WTRs after 28 days of a P adsorption experiment (Ippolito et
al., 2003). However, the equilibrium time for this study was
2 days, making the contribution of Ca to the P adsorption
 c.a

capacity minor. In addition, Feox2 and Alox2 had a weak
relationship with the P adsorption capacity because Feox2
and Alox2 represented the most reactive fraction, while the
total amorphous Fe and Al had binding capability for P.
Furthermore, crystalline Fe and Al could become amorphous
under acidic conditions (Wang et al., 2011b). Therefore, the
5 mmol/L oxalate-extractable Fe and Al were unsuitable as an
index to assess the P adsorption of the WTRs.

2.3.2. Relationship between the characteristics of the WTRs and
P desorption capacity
While using the principal components (PC1, PC2 and PC3) and
the solution pH as independent variables during multiple
regression analysis, the quantities of P desorbed at P0 of 50
and 100 mg/L were used as dependent variables, respectively.
The R2 and the significance were low (R2 = 0.43, p = 0.04) below
P0 of 50 mg/L, suggesting that multiple regression analysis
combined with principal component analysis was not suitable
for P desorption. A linear fit was shown for P0 of 50 and
100 mg/L; the P desorption was strongly negatively correlated
with the (Feox1 + Alox1) of WTRs (p < 0.05) (Fig. 3). The R2 at the
three pH levels all exceeded 0.90. Moreover, the slope of the
fitted curve decreased when the pH increased from 5 to 9. In
addition, the correlations for the P desorption and PSI were
weak at the three pH levels. A low correlation (R2 < 0.16) was
also apparent for P desorption versus (Feox2 + Alox2). Overall,
the (Feox1 + Alox1) was a key factor that influenced the P
desorption capacity of the WTRs.

The release of P from the saturated WTRs can be assessed
using their (Feox1 + Alox1). The negative relationship occurred
because the P desorption from theWTRswas prevented by the
formation of stable P–Fe/Al complexes. Additional P–Fe/Al
complexes were formed under acidic conditions; thus, the
slope increased with a decrease in pH (Yang et al., 2006).
Moreover, PSI was used as an index to assess the P leaching
risk of soil (Kleinman and Sharpley, 2002). However, the PSI of
the WTRs was far below that of common soil and was not a
reliable index of P desorption. A former study found no
significant correlations between the (Feox1 + Alox1) of seven
WTRs and their long-term (80 days) P adsorption capacities
(Makris et al., 2005). Therefore, (Feox1 + Alox1) could serve as an
index for the P desorption capacity of WTRs, though not the P
adsorption capacity.
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Fig. 3 – Relationship between the P desorption and the inherent properties of the five WTRs at different pH levels.
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2.4. Implications

The WTRs have been used successfully as substrates for
constructed wetlands and lake sediment to control P. A low
dose and a high efficiency are preferable and essential for
practical applications. However, the varying characteristics of
WTRs induce a wide range of P adsorption capacities.
Therefore, assessing the P adsorption of WTRs with different
physicochemical properties is essential when choosing an
application. The P saturation potential has been generally
assessed by PSI. When PSI increased, more P was released or
leached. However, the P adsorption capacities of 28 soils had a
non-significant relationship with their PSIs (p > 0.05) (Zhang
et al., 2005). A similar result was also found in this study
(Appendix A Fig. S2). Therefore, PSI was not suitable as an
index when assessing the P adsorption capacity. The P
 c.a

adsorption of Al-based WTRs was positively correlated with
the Al and Alox1 (Dayton and Basta, 2005). However, for the
Fe-based WTRs and Ca-based WTRs, not only Al and Alox1 but
other inherent properties should be considered to improve
accuracy. This study shows that the P adsorption capabilities
of the five WTRs were remarkably different. An integrated
factor (related to Fe, Feox1, surface area and OM) played a role
similar to Al and Alox1 with variation of Qmax. High Fe and
Feox1, as well as a large surface area, and a high OM yielded a
high adsorption capacity for P. The adsorption also increased
with decreasing solution pH. In contrast, the influence of the
other inherent properties (Ca, CaM, P, Pox1, Pox2, Feox2 and
Alox2) was minor. In addition, the quantity of P desorbed from
the saturated WTRs showed a negative correlation with
(Feox1 + Alox1). Based on the risk of P leaching after the WTRs
were saturated, a high (Feox1 + Alox1) favored P retention.
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Consequently, the WTRs produced from water treatment
plants that used a high dosage of Fe/Al coagulant were more
appropriate for this application. However, Ca-based WTRs
from water treatment plants that used Ca salts as the main
coagulant and softening agents showed a low efficiency for P
adsorption.
3. Conclusions

Understanding the influence of the inherent properties of the
WTRs on their P adsorption capacities is necessary for their
practical application. The physical and chemical properties of
five WTRs were determined and classified into three factors
using principle component analysis. The relationship be-
tween the P adsorption capacities of the WTRs and their
inherent properties was analyzed using multiple regression
analysis. The factor related to Al and Alox1 contributed the
largest proportion (36.5%) of variation for Qmax, followed by
factors related to Fe, Feox1, surface area and OM (28.5%).
However, the contribution of the factors related to other
inherent properties (Ca, CaM, P, Pox1, Pox2, Feox2 and Alox2) was
minor. Furthermore, the P desorption capacities of the
saturated WTRs were negatively correlated with (Feox1 + Alox1),
suggesting that (Feox1 + Alox1) was a useful index when
assessing the P leaching risk of WTRs. Therefore, the inherent
properties of theWTRs including the Fe, Al, surface area andOM
should be considered when evaluating the P adsorption
capacity.
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