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The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust
(Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen
cell and smog chamber system. The temperature dependence of the uptake coefficients was
studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake
coefficients decreased with the increasing of temperature for these two mineral dust
samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased
with the temperature increasing, and these temperature dependence functions were
obtained for the first time. In the smog chamber experiments at room temperature, the
steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur
dioxide initial concentration from 1.72 × 1012 to 6.15 × 1012 mol/cm3. Humid air had effect
on the steady state uptake coefficients of SO2 onto Inner Mongolia desert dust.
Consequences about the understanding of the uptake processes onto mineral dust
samples and the environmental implication were also discussed.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Mineral dust is recognized as one of the major aerosols in the
troposphere. Every year about 1000–3000 Tg mineral dust has been
emitted into the atmosphere (Dentener et al., 1996; Harrison et al.,
2001; Usher et al., 2003). Because of the transport distances and
long atmospheric lifetime, mineral dust can provide reactive sites
for surface-mediated heterogeneous reactions and influence the
balance of atmospheric species by reacting with various trace
gases (Prospero, 1999). Meanwhile, the thermodynamic and optical
properties of mineral dust will also be altered (Lack et al., 2009).

As a predominating sulfur-containing gas, sulfur dioxide is
one such critical pollutant, influencing the pH of rainwater and
leading to the formation of secondary sulfate aerosol. The
typical emitted SO2 concentrations are about 10 pptv in remote
regions, rising to several hundred ppb in polluted urban areas
(Seinfeld and Pandis, 1998). The lifetime of SO2 in the free
troposphere is up to 15 days (Hanke et al., 2003).

Dust plumes that originate in Saharan Africa or central Asian can
transport through or mix with air from more urbanized environ-
ment, so the chemical interactions between mineral dust aerosol
and pollutants are important in atmospheric processing (Sullivan et
al., 2007; Tang et al., 2004). From the already performed observations,
it is apparent that mineral dust affects the local gas-phase con-
centration of sulfur dioxide, either by physical adsorption or by
heterogeneous reaction. Many laboratory studies have focused on
SO2–dust interactions (Adams et al., 2005; Al-Hosney and Grassian,
2005; Baltrusaitis et al., 2007a,2007b; Goodman et al., 2001; Li et al.,
2006; Ma et al., 2008; Santschi and Rossi, 2006; Seisel et al., 2006;
Ullerstam et al., 2003). These series of results have important
implications for improving the treatment of dust in global chemistry
models and highlight many key processes that merit further
investigation through laboratory and field studies. Whereas the
experimental determination of rate constants for important
atmospheric reactions and how these rate constants vary with
temperature is still a crucial part of atmospheric science.

The temperature in the atmosphere varies with latitude,
longitude, and altitude above the earth's surface, as well as with
season and time of day. Therefore, the temperature dependence
of the uptake coefficients of sulfur dioxide on mineral dust was
further investigated over the temperature region of 253–313 K. In
this study, we have investigated the heterogeneous uptake of SO2

on two different types of powder samples which consist of
<75 μm diameter fractions representative of mineral dust from
the Inner Mongolia desert and Xinjiang arid region which are in
the northwest of China. The concentration and relative humidity
dependences of the steady state uptake coefficients of SO2 on
mineral dust have also been discussed.
c.c
n

1. Experimental section

1.1. Reactants

Inner Mongolia desert dust and Xinjiang sierozem used in this
laboratory study were purchased from Chinese Stander
Substance Center. The surface areas of these powders were
measured with a Quantachrome Autosob-1-C BET apparatus
(Quantachrome Instruments, autosorb-iQ, USA) that used a
multipoint Brunauer–Emmett–Teller (BET) analysis. The BET
 c.a

areas were determined to be 5.06 m2/g for Inner Mongolia
desert dust, and 20.98 m2/g for Xinjiang sierozem. X-ray
experiments were carried out using Rigaku D/max-2500
diffractometer (Japan) with Cu K-radiation at 50 kV and
100 mA. Scans were performed from 2.6° to 50° (2θ) at a rate
of 1° (2θ) per minute (Shen et al., 2009). The major peaks were
indexed to permit recognition of the minerals. The main
fractions of these mineral dusts are listed in Fig. 1.

Gaseous sulfur dioxide (99.9%) purchased from Beijing
Huayuan Gas Chemical Industry Co., Ltd. was used directly
without any purification.

1.2. Knudsen cell experiments

The uptake coefficient of sulfur dioxide on the mineral dust
samples was measured by a Knudsen cell reactor coupled
with an EI quadrupole mass spectrometer (Hiden, HAL 3F 501,
UK). The detail of this experimental apparatus has been
described elsewhere (Wang et al., 2011; Zhou et al., 2012).

Briefly, the Knudsen cell reactor consists of a chamber with
four isolated sample compartments and a small escape
aperture linking to the quadrupole mass spectrometer. The
characteristics of the reactor are summarized in Table 1. The
uptake of sulfur dioxide onmineral dust samples aremonitored
by m/z = 64 and 34 channels. In a blank experiment, there was
no remarkable uptake due to the sample holder and the sample
cover, with the gas phase reactant passing through the reactor.
In addition, the parallel experiment using the four sample cells
to assure the repeatability of the kinetic results was performed
by loading the sameweight of themineral dust and entering the
same concentration of SO2. The effective area of the escape
aperture was about 0.211 mm2 in these experiments. The
powdered samples were prepared in the Teflon-coated metal
sample holders and the chamber can be either heated or cooled
from 253 to 313 K by a circulator.

1.3. Smog chamber experiments

The experimental setup consisted of a 360-L Teflon bag
located in a steel box to achieve a chemically inert environ-
ment. An inlet and an outlet made of Teflon are used for the
introduction of reactants and sampling. The reactor and the
analytical instruments are linked via Teflon tubes. In order to
reduce the interference from the wall effect, the reactor was
deactivated with SO2 for more than 24 hr beforehand. Then
the reactor was purged with purified zero-air. The relative
humidity (RH) of the stream was controlled by the addition of a
flow of humidified zero-air and the RH was recorded by a
hygrometer. Powdered dust samples were rapidly introduced
into the chamber through a pressurized sample line. A nozzle
and enough pressure in the flow path ensure efficient
deagglomeration of the sample and the mixing time of the
chamber contents is less than 30 sec. The concentrations of
sulfur dioxide in the entire chamber and the varying processes
jes
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Fig. 1 – The main fractions of mineral dust samples from Inner Mongolia desert dust and Xinjiang sierozem carried out by the
X-ray experiments.
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during the reactionsweremonitored by SO2–H2S analyzer (Model
450i, Thermo Electron Corporation, USA). Its flow rate and
precision were 0.7 L/min and 1 ppb, respectively. The measure-
ment lasted for about 30 min to make sure the volume change
less than 6%.

The absolute rate constant was governed by monitoring
the sulfur dioxide decay rates in the presence of known
concentrations of mineral dust. Under these conditions, the
overall sulfur dioxide decay was caused by its wall decay and
reaction with mineral dust. Before the dust was introduced
into the chamber, the subsequent loss of SO2 was less than
5%, and the wall losses can be neglected. The kinetics of sulfur
dioxide loss can be modeled as a simple adsorption and
reaction process with a rate constant, k (Mogili et al., 2006).

SO2 þ S→k
P

where, S represents the available surface sites in the reactor
volume, and P represents reaction product species, either
adsorption or reaction of gas phase.
c.a
c.c

n

Table 1 – Knudsen reactor parameters.

Knudsen reactor parameter Value

Volume 461 cm3

Temperature 253–313 K
Surface-to-volume ratio 0.57
Total pressure 1.5 × 10−3 Pa
Escape orifice diameter 3 mm
Escape orifice escape rate 0.297(T/M)1/2 sec−1

Sample surface area 5.3 cm2

Sample collision frequency 91.3 sec−1
2. Results and discussion

2.1. Knudsen cell experimental results

When one sample was exposed to sulfur dioxide, the signal of
sulfur dioxide parent ion monitored at m/z = 64 dropped
below its original value suddenly. An observed uptake
coefficient, γobs, can be derived from the Knudsen cell (Eq. (1)):

γobs ¼
Ah

As

I0−I
I

� �
ð1Þ

where, Ah represents the effective area of the escape hole, As

represents the geometric area of the sample holder, I0 and I
represent the QMS intensity detected when sample holder
was covered and exposed. From this equation the initial
uptake coefficients, γinit,obs, are obtained.

Fig. 2 shows a typical QMS signal response of mineral dust
exposed to sulfur dioxide. The mass spectral intensity of
sulfur dioxide (m/z = 64) decreased immediately when the
sample holder was opened, then after a certain exposure time
the uptake was irreversible at a single value.

When assuming that the total number of the gas–surface
collisions is only with the top layer, the uptake coefficient γobs
can be determined using the geometric surface area of the
sample. The observed mass dependence depicted in Fig. 3
showed that the diffusion of the reactant gas to underlying
layers was also involved, resulting in an increase in the
number of collisions with the total surface area. These
experiments were done to ensure that flowing experiments
were conducted in the linear mass regime where the entire
sample participates in the reaction correlated with the BET
surface area (Underwood et al., 2000). Fig. 3 shows the region
where γobs is linearly dependent on the mass of samples.
From the plot, a mass independent uptake coefficient can be
derived as

γBET ¼ Ah

ABET

I0−I
I

� �
¼ γobs

As

ABET
ð2Þ

where, ABET represents the surface area of the sample, taken
as the BET area, which is equal to the specific BET area of the
powder times the sample mass (Underwood et al., 2001). The
results in Table 2 are derived from the experiments done in
this linear regime.

The influence of the sulfur dioxide concentration to the
uptake coefficient was also taken into account over the range
from 2.6 × 1011 to 7.4 × 1011 mol/cm3. By varying the initial
concentration of sulfur dioxide, there was no distinct depen-
dence of initial uptake coefficient on this range of sulfur
dioxide concentration. After a long time exposure, the uptake
jes
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Fig. 2 – Uptake curves of SO2 on Inner Mongolia desert dust and Xinjiang sierozem at 283 K in Knudsen cell reactor.
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of sulfur dioxide on mineral dust surface showed a saturated
state and became inactive to further SO2 decomposition; the
sulfur dioxide signal intensity could recover to a steady state
especially for Xinjiang sierozem.

The temperature dependence for the uptake coefficients of
heterogeneous reactions on these mineral dust samples was
further investigated over the temperature range of 253–313 K.
As shown in Table 2, the initial uptake coefficients of Inner
Mongolia desert dust are in the range of 4.71 × 10−5–1.64 × 10−5,
and the ones of Xinjiang sierozem are in the range of
1.39 × 10−5–5.66 × 10−6. It was obvious that the initial uptake
coefficients of sulfur dioxide on the mineral dust decreased
with the increasing of temperature. This trend of the initial
uptake coefficients with temperature agrees well with the
physical adsorption process. However, the steady state
uptake coefficients of Xinjiang sierozem are in the range of
0.75 × 10−6–1.75 × 10−6, which increased with the increasing
of temperature and meant that the reaction exists.

Now that the initial uptake coefficients showed negative
temperature dependence, the changes of observed enthalpy
(ΔHobs) and entropy (ΔSobs) for SO2 adsorption on mineral dust
and the reactive energy (Ea) for Xinjiang sierozem can be
0.0
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1.2×10-2

1.4×10-2
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Inner Mogolia desert dust

0 10 20 30 40 50

γ o
bs

Fig. 3 – Uptake coefficient for SO2 on Inner Mongolia desert dust a
area as the effective surface area as a function of sample mass.
obtained by the following equation (Hudson et al., 2002; Jayne
et al., 1991)

ln
γBET

1−γBET

� �
¼ −

ΔHobs

RT
þ ΔSobs

R
ð3Þ

ln
γss

1−γss

� �
¼ −

Ea
RT

þ A ð4Þ

consequently, from the plot of the left side of Eq. (3) versus
inverse temperature, as shown in Fig. 4, the enthalpy (ΔHobs)
and entropy (ΔSobs) were determined to be −(10.9 ± 2.2) kJ/mol
and −(125.6 ± 25.1) J K/mol for Inner Mongolia desert dust;
−(9.3 ± 1.9) kJ/mol and −(129.4 ± 25.9) kJ/mol for Xinjiang
sierozem. The reactive energy (Ea) for Xinjiang sierozem is
12.87 kJ/mol. Usually, for a given reaction in the atmosphere,
when the activation energy is lower than 20 kJ/mol, the
importance of the reaction in atmospheric chemistry cannot
be ignored (Liu et al., 2008; Smith, 2003). The ΔHobs value can
demonstrate that SO2 adsorbs on mineral dust in a similar
capacity. The empirical formula between γBET of sulfur dioxide
uptake on mineral dust and temperature can be calculated as:
jes
c.a
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Table 2 – Summary of the uptake coefficients of SO2 on mineral dust at different temperatures.

Temperature
(K)

γBET,int (×10−5) a of Inner Mongolia
desert dust

γBET,int (×10−6) a of Xinjiang
sierozem

γBET,ss (×10−6) a of Xinjiang
sierozem

253 4.71 ± 0.95 13.9 ± 2.8
268 3.54 ± 0.71 12.0 ± 2.4 0.75 ± 0.15
283 2.95 ± 0.59 9.65 ± 1.93 1.06 ± 0.21
298 2.41 ± 0.48 8.34 ± 1.67 1.33 ± 0.27
313 1.64 ± 0.33 5.66 ± 1.13 1.75 ± 0.35

a Each value is the average of at least three measurements, and the error corresponds to one standard deviation (σ).
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For Inner Mongolia desert dust:

γBET ¼ exp 1309:0=T−15:1ð Þ
1þ exp 1309:0=T−15:1ð Þ ð5Þ

For Xinjiang calciferous dust:

γ
BET ; int ¼

exp 1123:8=T−15:6ð Þ
1þ exp 1123:8=T−15:6ð Þ ð6Þ

For Xinjiang calciderous dust:

γBET; ss ¼ e −1548:0
T −8:3ð Þ ð7Þ

where, T is the temperature (K). Thus, the γBET at other
temperature can be obtained using these equations. At 253 K,
the initial uptake coefficients of mineral dust were approxi-
mately two times larger than those at 298 K.

For Xinjiang sierozem, desorption rate constants (kdes) at
different temperature can be calculated using the following
equations (Liu et al., 2010; Seisel et al., 2004), based on the
uptake profiles as shown in Fig. 1.

F tð Þ ¼ Ah P= 2πMRTð Þ1=2
h i

ð8Þ

Fdes tð Þ ¼ F tð Þ 1þ kini=kescð Þ−F0 ð9Þ

Fdes tð Þ ¼ kdesNads tð Þ ð10Þ

where, F(t) (mol/sec) represents the flux out of the reactor at
time t; P (mTorr) represents the pressure of the gas; T (K)
represents the absolute temperature, Fdes(t) represents the
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Fig. 4 – Plot to determine the temperature dependence of SO2 on t
using the uptake coefficients.
desorption flux of SO2 from the surface at time t (molecules·s−1);
kini represents the initial rate constant and equal to kads (sec−1);
kesc represents the escape rate constant of theKnudsencell (sec−1),
and kesc = ω·Ah, ω represents the collision frequency of SO2 with
mineral oxide. kdes represents the desorption rate constant (sec−1);
F0 represents the flux into the reactor (mol/sec−1);Nads(t) represents
the number of molecules adsorbed on the surface at time t,
Nads(t) can be determined by integrating the QMS-signal
between t = 0 and the desired time t. The temperature
dependence of kdes is shown in Fig. 5. According to the slope of
this plot, the activation energy for desorption (Edes) of SO2 on
Xinjiang sierozem was calculated to be (6.9 ± 1.0) KJ/mol.

2.2. Smog chamber experimental results

The smog chamber experiments were performed to monitor
the kinetics of sulfur dioxide uptake at atmospheric pressure
and room temperature, in a concentration range from
1.7 × 1012 to 6.15 × 1012 mol/cm3.

In the wall effect experiment, SO2 decay rate constant was
quite small, so the SO2 loss caused by background decay in
this work is negligible. Fig. 6 represents the sulfur dioxide
concentration decay as a function of time for different
mineral dust samples. The plot shows that sulfur dioxide
concentration decreases significantly, when the samples are
injected, and then reactive losses due to the presence of the
mineral dust continued. After logarithmic conversion, the
logarithms of the ratios of the concentrations in the presence
of reactants were plotted for different reaction time. The
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Fig. 5 – Plot to determine the dependence of desorption rate
constant (Kdes) of Xinjiang sierozem on temperature.

0 500 1000 1500 2000 2500
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

ln
 ([

SO
2]

0/
[S

O
2]

)

Time (sec)

 Inner Mongolia desert dust
 Xinjiang sierozem

Fig. 7 – The pseudo first-order plots for SO2 with different
mineral dust samples of Inner Mongolia desert dust and
Xinjiang sierozem. The slope of such plots yields the pseudo
first-order rate constant.
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straight lines obtained on the time scale are represented in
Fig. 7, which shows the typical plots obtained for reaction at
298 K. The slope of such plots yields the pseudo-first-order
rate constant. The data shows that the concentration of SO2

got from the analyzer had come to a steady state.
From the results above, the kinetics of sulfur dioxide loss

can be modeled as a simple adsorption/reaction process with
a rate constant, k1 and k2 (Prince et al., 2002).

SO2 gð Þ þ S⇄
k1

k‐1
SO2 � S½ � ð11Þ

SO2 � S½ �→k2 product ð12Þ

When the system got a balance, the rate constants can be
calculated by the equations below:

d SO2 � S½ �
dt

¼ k1 SO2 gð Þ
� �

S½ �−k‐1 SO2 � S½ �−k2 SO2 � S½ � ¼ 0 ð13Þ
c.c
n
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Fig. 6 – Sulfur dioxide concentration decay as a function of
time for different mineral dust samples of Inner Mongolia
desert dust and Xinjiang sierozem.
 c.a

r2 ¼ k2 SO2 � S½ � ¼ k1k2
k−1 þ k2

SO2 gð Þ
� �

S½ � ¼ k SO2 gð Þ
� � ð14Þ

k ¼ k1k2
k−1 þ k2

S½ � ð15Þ

where, S represents the available surface sites in the reactor
volume, which is correlated to themass of dust loadings. These
processes can be characterized in terms of a heterogeneous
uptake coefficient γ which is the fraction of gas–surface
collisions that lead to successful reaction. Assuming pseudo
first-order conditions, γ can be determined from the following
Eq. (16) (Mogili et al., 2006).

γ ¼ 4k
cSBETι Cmass½ � ð16Þ

where, c is the mean speed of sulfur dioxide, Cmass is the mass
concentration of the mineral dust sample, and SBET is the
specific surface area of the mineral dust, preciously mea-
sured by a BET analysis. The characteristic decay time, τ = 1/k,
k (sec−1) can be determined by correcting kobs for diffusion.
1/k = 1/kobs − 1/kdiff, kobs is determined from the fit of an
exponential function to the sulfur dioxide time course data.
Fig. 8 shows the slope of which plots yield the pseudo-
first-order rate constant kobs. Assuming that the K2CO3 powder
was a perfectly depositing surface for SO2 (Sorimachi and
Sakamoto, 2007; Sorimachi et al., 2004), the quick rate constant
has been measured as 0.049 sec−1.

The observed mass dependence involves the diffusion of
the reactant gas, resulting in an increase in the number of
collisions with the total surface area. Thus, it is an important
factor in determining the reaction constants, which was done
to ensure that experimental results were calculated in the
linear mass regime where the entire sample participates in
the reaction in the BET surface area. The calculated uptake
coefficients when the concentrations of sulfur dioxides were
fixed at about 3.44 × 1012 molecule cm−3 are shown in Fig. 8.
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Several experiments were conducted to make a comparison
among these two types of mineral dust in a range of initial
concentration 1.72 × 1012–6.15 × 1012 mol/cm3. The uptake
coefficients reported in Table 3 are the result of fits to the
data with a single exponential function. The uptake coeffi-
cients of these two mineral dust samples were obviously
correlatedwith the initial concentrations of the sulfur dioxide.
As shown in Fig. 9, the higher initial sulfur dioxide concen-
tration leads to a smaller steady state uptake coefficient.
From the trend plots, the steady state uptake coefficients of
each mineral dust could be calculated in the following
equations.

Inner Mongolia desert dust:

γBET ¼ 1:26� 1014 � SO2½ �0−1:70 ð17Þ

Xinjiang calciferous dust:

γBET ¼ 1:15� 108 � SO2½ �0−1:15: ð18Þ

When the initial concentration of SO2 is approximately
6.15 × 1011 mol/cm3, the steady state uptake coefficients de-
rived from the above equations for the Inner Mongolia desert
dust and Xinjiang sierozem are 1.60 × 10−6 and 3.66 × 10−6

respectively, which can be comparable to the results got from
the Knudsen cell experiments.

In the ambient atmospheric condition high relative hu-
midity might have an influence on these reactions, which
cause more complex processes in the atmosphere. Al-Hosney
et al. have found that adsorbed water significantly influences
Table 3 – Summary of the uptake coefficients of SO2 on minera

Inner Mongolia desert dust

[SO2]0(1012 mol/cm3) γBET,ss (×10−7) a

1.72 1.99 ± 0.10
2.46 1.17 ± 0.06
3.44 0.69 ± 0.03
4.92 0.33 ± 0.02

a Each value is the average of at least three measurements, and the erro
the uptake of most pollutant gases onto carbonate component
of mineral dust aerosols (Al-Hosney and Grassian, 2005).
However, the uptake coefficient of SO2 on Saharan dust was
not affected by an increase in relative humidity from 0% to
27%. (Adams et al., 2005). In the study of Ma et al. (2012),
adsorbed water molecules have little enhancement effect for
the conversion of SO2 to sulfate species on the dust storm
particles. In our smog chamber system, the relative humidity
(RH) dependence of uptake coefficients of SO2 onto mineral
dust was also investigated. During the experiments, SO2

(2.46 × 1012 mol/cm3) with different RH (20%–80%) was
preadjusted well in the chamber, and then 450 mg dust was
sprayed into the chamber to start the reaction. As shown in
Fig. 10, the steady state uptake coefficients of SO2 onto Inner
Mongolia desert dust have obvious dependence with RH. At
RH = 40% the uptake coefficients of SO2 are about five times
larger than in dry condition. But the influence of RH to Xinjiang
sierozem is little. The various structures of the dust samples
may provide the different active sites and hygroscopic proper-
ties for the samples. Al-Hosney and Grassian have found that
the adsorbedwater filmassists in the enhanceduptake of sulfur
dioxide on CaCO3 (Al-Hosney and Grassian, 2005). However, the
uptake process is not influenced by the presence of humidity
for Saharan dust (Adams et al., 2005). Depending on the size
of the mineral dust inclusion and the mineralogy of the
inclusion, sulfate coatings on mineral dust undergo efflores-
cence (crystallization) at different relative humidity (Usher
et al., 2003). These reasons may lead to the different effects
on uptake coefficients onto mineral dust.
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l dust with different [SO2]0 in smog chamber.

Xinjiang sierozem

[SO2]0 (×1012 mol/cm3) γBET,ss (×10−7) a

2.71 5.59 ± 0.28
3.44 4.91 ± 0.25
4.92 2.96 ± 0.15
6.15 2.25 ± 0.11

r corresponds to one standard deviation (σ).
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uptake coefficient.
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2.3. Uptakes onto different mineral dust

Compared with the experimental data of sulfur dioxide
uptake on different mineral dusts, the results presented that
the uptake processes of these two Chinese mineral dust
samples had a similar phenomenon. For the two dusts, sulfur
dioxide was firstly major absorbed on the surface of the dust
and then performed a further reaction. The initial absorbable
trend was closely correlated with the BET areas of each
mineral dust. In Knudsen cell or in smog chamber experi-
ments, Xinjiang sierozem shows an apparently quicker initial
uptake for sulfur dioxide because of a larger BET area. However,
the continued reactions were tightly related to the active sites
on the mineral dust.

In this study the experiments were mostly performed
under dry condition. Nevertheless, some adsorbed water will
be still present in the dust sample. Different types of water-
related-reactive sites are present on the surface in form of O− or
OH group. The surface adsorbed water present during the
experiment has not been quantified. The formation of absorbed
c.c
n
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uptake coefficients of SO2 on Chinese mineral dust of Inner
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 c.a

sulfate/bisulfate on the oxide particles is consistent with the
reaction of gas-phase SO2 with surface (Usher et al., 2002)

SO2 gð Þ þ O2− sð Þ→SO3
2−

SO2 gð Þ þ OH− sð Þ→HSO3
−:

A previous study of the uptake of SO2 proposed a two step
mechanism for the oxidation of SO2 where the first step is a
reversible adsorption of SO2 onto the surface followed by a
second, irreversible reaction in which adsorbed SO2 is oxidized
to sulfate (Ullerstam et al., 2002).

OH � þSO2⇄OH � � � �SO2 adsð Þ

This mechanismwas also well proved by the smog chamber
experimental results. Uptake coefficient of SO2 onmineral is an
important parameter on understanding heterogeneous process
of SO2 in the atmosphere. Many works were taken using
different methods such as Knudsen cell, DRIFTS and flow tube
with FT-IR. In the last decades, a series of experiments have
been done to get the uptake coefficients of sulfur dioxide on
mineral dust surfaces, the preferred value is assumed to be
4 × 10−5 (Crowley et al., 2010). Goodman et al. and Usher et al.
have got the uptake coefficients of SO2 on a series of mineral
oxides. The values of γBET,int were determined to be (9.5 ±
0.3) × 10−5 and (2.6 ± 0.2) × 10−4 for SO2 uptake on α-Al2O3 and
MgO, <1 × 10−7 for SiO2 with a Knudsen cell reactor 2. Usher
et al. (2002) also calculated the value of 3 × 10−5 for Chinese
loess. Ullerstam et al. (2002) have used DRIFTS to study on
mineral dust samples from the Cape Verde Islands, where the
main contents of the samples are quartz and potassic feldspars.
The values of γBET,int were in the order of 10−3 using the
geometric surface area, or 10−7 using the BET surface area
(Ullerstam et al., 2002). The values of γBET,int = (6.6 ± 0.8) × 10−5

for Saharan dust weremeasured at 298 K by Adams et al. using
a flow tube (Adams et al., 2005). Compared with the initial
uptake coefficients of SO2 on realmineral, they agreedwellwith
our results. These resultsmostly concentrate on the initial part,
but neglect the steady state, which is a thorough depletion of
the sulfur dioxide in the atmosphere. Although the steady state
uptake coefficients of SO2 on mineral dust are not big enough,
jes
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the consumption of SO2 on mineral dust is limited, but in the
presence of O3, NO2 or H2O2 further oxidation of sulphite to SO4

2−

and HSO4
− occurs (Li et al., 2006; Liu et al., 2012).

2.4. Decomposition measurement with different systems

Compared with the two types of experimental measurement
system, both of them have advantages in ascertaining the
uptake coefficients of sulfur dioxide on mineral dust. As a low
pressure reactor, Knudsen cell can simplify the experimental
condition to eliminate some other interference during measur-
ing process. At the same time, the temperature of the experi-
ments is easily controlled to investigate the temperature
dependence of these uptake processes. Whereas the smog
chamber system can provide an experimental condition more
approaching to the actual environment and the results could be
more close to the real one.

In this study, sulfur dioxide uptake onto mineral dust was
measured using these two different systems. Using Eqs. (17)
and (18), when the initial concentration of SO2 is approxi-
mately 6.2 × 1011 molecule/cm3, the steady state uptake
coefficients derived from the above equations for the Inner
Mongolia desert dust and Xinjiang sierozem are 1.60 × 10−6

and 3.66 × 10−6 respectively, which can be comparable to the
results got from the Knudsen cell experiments, which is
(1.33 ± 0.27) × 10−6 for Xinjiang sierozem. Because of the
different systems used in the experiments, the differences in
the results can hardly be avoided. Although the results had
some diversity, they were still comparable.

The discrepancy of the results may be caused by the
differences of the systems. Knudsen cell is a low pressure
reactor, which was used to investigate SO2 uptake to mineral
dust substrates and have concluded that pore diffusion is not
important; sample surface morphology means that the BET
area is the assumed area with which collisions are taking place.
However, the smog chamber system is kept at atmospheric
pressure; the diffuse effect cannot be neglected simply. It can be
seen from Fig. 6 that there is a time dependence of the uptake
coefficient which indicates surface saturation. Subjected to the
volume of the chamber, the lower time resolutions during smog
chamber experiments were inevitable.
c.c
n

3. Conclusions and atmospheric implications

At present, atmospheric modeling studies have shown that
mineral aerosol has a potentially important role in the
chemistry of the troposphere, by interacting with trace atmo-
spheric gases such as NO2 and SO2. In this work, the uptake
coefficients of sulfur dioxide on two types of mineral dust were
investigated using both Knudsen cell reactor and smog cham-
ber system. As a function of temperature, the initial uptake
coefficients decrease with the increasing of temperature for
these mineral dusts and the steady state uptake coefficients
increase with the Xinjiang sierozem in the Knudsen cell study.
While the initial uptake coefficients of mineral dust showed no
observable dependence on the concentration of SO2 in a range
of 2.6 × 1011–7.4 × 1011 molecule/cm3. The initial uptake coeffi-
cient varied significantly with temperature. At 253 K, the initial
uptake coefficients of mineral dust were approximately two
times larger than those at 298 K, and it can be expressed as
Eqs. (5) and (6). Based on the temperature dependence of uptake
coefficients, the activation energy for desorption (Edes) of SO2 on
Xinjiang sierozem was calculated to be (6.9 ± 1.0) kJ/mol. In the
smog chamber, the uptake coefficients ofmineral sampleswere
achieved over the sulfur dioxide concentration range from
1.72 × 1012 to 6.15 × 1012 mol/cm3, and the effect of relative
humidity on the uptake processes was also studied.

In addition, owning to the diversity of measure methods,
Knudsen cell reactor can detect lower concentration of
oxidative gas approaching to the ambient one which was
about 20 ppb in the atmosphere (Jackson, 1999). The rate of
removal of sulfur dioxide by uptake onto mineral dust can be
estimated in a simple model. The lifetime of sulfur dioxide
due to uptake onto Inner Mongolia desert dust and Xinjiang
sierozem can be estimated by

τ ¼ 4
γcA

ð19Þ

where,A is the dust surface area density in cm2/cm3,cis themean
molecular speed, and γ is the uptake coefficient. Supposing that a
conservatively low dust loading is 5 μg/m3 and a high dust
loading is 600 μg/m3 (Aymoz et al., 2004; Guo et al., 2013; Li et al.,
2012), we obtained A ≈ 2.5 × 10−5 to 3.0 × 10−3 m2/m3 for Inner
Mongolia desert dust and A ≈ 1.05 × 10−4 to 1.3 × 10−2 m2/m3 for
Xinjiang sierozem. Our measured uptake coefficients are about
2.41 × 10−5 and 8.34 × 10−6 at 298 K for Inner Mongolia desert
dust and Xinjiang sierozem, respectively, which lead to the
corresponding atmospheric lifetimeswith respect to processing
by Inner Mongolia desert dust and Xinjiang sierozem of 2.1 to
246.3 days, 1.4 to 170.1 days, respectively. The uptake coeffi-
cients calculated from our experiments were based on BET
surface area of the dust samples, which represent the lower
limit. Compared with the lifetime of 15 days for mean atmo-
spheric lifetime of sulfur dioxide, the interaction between
mineral aerosol and sulfur dioxide can still influence the
concentration of sulfur dioxide in the atmosphere, especially at
low temperature and consequently contribute to variability in
predicting thechangeofaerosols in troposphere sulfate formation.
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