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This study investigated the filtration and continuous regeneration of a particulate filter system
on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel
particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for
continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to
100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was
sensitively influenced by the variation of the soot loading. This phenomenon provides amethod
for determining the balance point temperature by measuring the trend of SPN concentration.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Diesel engines are widely used as movers for vehicles, marines
and engineeringmachines due to its high power, high efficiency,
long durability and low fuel consumption. One of the challenges
for diesel engines is to reduce particulate matter (PM) and
nitrogen oxidizes (NOx) simultaneously with simple and low-
cost technologies. PM emissions are believed to have a series of
adverse effects on human health, environment and global
climate (Prasad and Bella, 2010). Many investigations indicate
that ultrafine particles are airborne and penetrate deep into the
lungs when breathed in, which makes them more hazardous
to human health than larger particles (Peters et al., 1997;
Alessandrini et al., 2006). Given the research and evidence on
the adverse effects of particulates, both PM mass and particle
number (PN) are limited strictly in emission regulations.

The wall-flow diesel particulate filter (DPF) is effective in
removing the PM by forcing the exhaust to flow through the
ghua.edu.cn (Shijin Shuai

o-Environmental Science
thin walls in the ceramic filter. To meet the Euro VI legislation
for heavy-duty diesel engines, the filtration behavior for both
PMmass and solid particle number (SPN) should be examined.
Because of sufficient sensitivity to measure the exhaust from
DPF, the SPN is used to evaluate DPF in place of mass-based
method gradually (Giechaskiel et al., 2014).

In Euro VI stage, the aftertreatment of a heavy-duty diesel
engine commonly consists of a diesel oxidation catalyst
(DOC), a catalyzed DPF (CDPF) followed with a selective reduc-
tion catalyst (SCR) system (Cloudt and Willems, 2011; Charlton
et al., 2010). The DPF system could reduce PN emission
significantly (Liu et al., 2012). The trapped soot in the filter can
be oxidized by NO2 to make the DPF regenerate continuously
(Copper and Thoss, 1989). A high conversion rate of NO to
NO2 can be supplied by DOC and CDPF, which helps contin-
uous regeneration achieve a high efficiency level. The NO2

slip at the outlet of the CDPF can be reduced by the
downstream SCR system. Most (or all) of the soot trapped
jes
c.a

c.c
n).

s, Chinese Academy of Sciences. Published by Elsevier B.V.
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in the filter for HD diesel engines is burned passively by NO2

(Johnson, 2013).
The engine-out PM is continuously trapped in theCDPF,while

the trapped soot is oxidized by the continuous regeneration. At
the equilibrium, the PM deposited in the filter is equal to the
oxidizedmass, and the soot loading of the filter remains constant
(Widdershoven et al., 1986). The balance point temperature (BPT)
at this equilibrium is a key parameter to evaluate the continuous
regeneration performance, and usually defined as the temper-
ature at which the pressure drop of the filter is not changed
(Oi-Uchisawa et al., 2003). A DPF systemwith continuous regen-
eration should try to decrease BPT, thus the soot can be oxidized
catalytically without frequent active regeneration.

In this study a DOC–CDPF integrated aftertreatment system
for heavy-duty diesel engines was tested on an engine dyna-
mometer. The effect of DOC and CDPF onNO2 concentrationwas
investigated and the filtration behavior for PMmass and PNwas
evaluated. The experiment results showed that the SPN down-
stream the CDPF was influenced by the soot loading in the filter,
which could be used to determine the BPT.
1. Experiment and method

1.1. Engine test bench

Theengine test benchwith theDOC–CDPFaftertreatment system
is presented in Fig. 1. The specifications of the engine are shown
in Table 1. The diesel fuel used in the experiment was purchased
in Beijing market with the sulfur content below 10 mg/kg.

The gaseous emissions were sampled from the raw
exhaust by AVL FTIR (AVL List GmbH, Graz, Austria),
Intake
Filter Flowmeter

Intercooler

Fig. 1 – Schematic diagram o
measuring hydrocarbons (HC), CO, NO, NO2 and N2O simulta-
neously. The PM mass and SPN were measured using AVL
SPC472 and AVL CPC489 (AVL List GmbH, Graz, Austria), and
the number-size spectrum of the particles was obtained by
DMS500 (Cambustion Ltd., Cambridge, Britain). The pressure
drop of the aftertreatment was monitored by differential
pressure sensor, and the temperatures upstream and down-
stream were measured with thermocouples. The engine was
connected to an AC electrical dynamometer FC2005 (Xiangyi
Power, Changsha, China). The engine operation parameters
and gaseous emissions were recorded by the dynamometer
control system.

1.2. DOC and CDPF specifications

The specifications of theDOC and the CDPF are listed in Table 2.
The DOC used a cordierite monolithic substrate coated with a
catalyst containing platinum (Pt) andpalladium (Pd), converting
NO to NO2 for continuous regeneration. The CDPF utilized a
wall-flow cordierite substrate, coated with Pt–Pd catalyst to
lower the soot oxidation temperature.

1.3. Test method

The DOC, the CDPF and the coupled DOC–CDPF were tested
individually on the bench to investigate their effects and
performance. The effects of the DOC and CDPF on gaseous
emissions were tested under different temperatures and space
velocities (SVs) by adjusting the engine operating conditions.

The number-size spectrum of the particles was measured
under separate steady state conditions of a 13-mode European
steady state cycle (ESC). The engine speeds at A, B and C points
jes
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n
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Tank

Dynamometer

f the engine test bench.
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Table 1 – Engine specifications.

Parameter Feature/value

Engine type 4-stroke, intercooling,
turbocharging, 6-cylinders in line

Bore (mm) 108
Stroke (mm) 130
Displacement (L) 7.14
Compression ratio 18:1
Fuel injection system High pressure common rail
Rated power 199 kW at 2300 r/min
Maximum torque 1000 Nm at 1400 r/min

Table 2 – Specifications of the DOC and CDPF.

Parameter DOC DPF

Substrate Cordierite Cordierite
Cell density (cells/in.2) 400 200
Diameter × length (mm × mm) Φ266.7 × 152.4 Φ266.7 × 304.8
Wall thickness (mm) 0.18 0.30
Volume (L) 8.5 17

1 in. = 2.54 cm.
DOC: diesel oxidation catalyst, DPF: diesel particulate filter.
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in the ESC test cycle were 1435, 1750, 2050 r/min, respectively.
The engine operation conditions of these steady states are
represented by the engine modes in the following text. For
instance, the enginemodeA25means that the engine ranunder
the A speed (1435 r/min) at 25% of full load.

The PM mass and SPN at the upstream and downstream of
the DOC–CDPF systemweremeasured in both ESC and European
transient cycle (ETC) and the filtration efficiency was calculated
based on the measurement. To examine the filtration and
continuous regeneration behavior, the PM emissions and pres-
sure drop of the filter were tested under different steady engine
operation conditions.
2. Results and discussion

2.1. Gaseous emissions

Fig. 2 shows the effect of the aftertreatment on gaseous
emissions with a constant SV equaling 30,000 hr−1 for the CDPF.
Both theDOC and the CDPF could convert NO to NO2 and remove
the HC and CO emissions. The NO2/NOx ratio in the engine-out
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Fig. 2 – Impact of DOC and CDPF on NO2/NOx (a), HC (b) and
exhaust was less than 10%. As the exhaust flowed through the
DOC, the NO2/NOx ratio was above 40% in the temperature range
of 300–350°C. In the CDPF, NO2 was consumed to oxidize the
trapped soot. Meanwhile, some part of NOwas converted to NO2

due to the Pt–Pd catalyst on the CDPF. Because the engine-out
NOx/PM ratio was high, the NO2 consumption by oxidizing the
trappedsoothad little effect onNO2/NOx ratio. In the experiment,
the NO2/NOx ratio was increased in the temperature range of
200–400°C as the exhaust flowed through the CDPF. When the
temperaturewas above 400°C, theNO2/NOx ratios at the outlet of
the DOC, the CDPF and the DOC–CDPF were similar, since the
conversion was limited by the chemical equilibrium (Olsson et
al., 1999).

The soot trapped in the filter can be oxidized by NO2 and
can produce CO or CO2 (Copper and Thoss, 1989; Majewski et
al., 1995). The test results showed that little CO existed at the
downstream of the CDPF (Fig. 2c), which was in agreement
with a previous study (Liu et al., 2011), indicating that CO2 was
the final product when the trapped soot was oxidized.

It is worth noting that at 160°C the NO2/NOx ratio decreased
across the DOC and the CDPF. Previous studies show that NO2 is
preferentially consumed relative to O2 for the oxidation of HC
over Pt–Pd/Al2O3 catalyst (Irani et al., 2009). At low temperatures
the DOC can be a net consumer of NO2 for oxidizing CO and HC,
and the loss of NO2 increases with DOC aging (Katare et al.,
2007).

2.2. Particle emissions and filtration behavior

To understand the filtration behavior on the particles with
different sizes, particle number-size distributions were tested
under each of the steady-state engine modes according to ESC
test cycle. The typical test results at the engine mode C25 and
C100 are represented in Fig. 3. The number-size distributions of
the engine-out PMhad a bimodal character, with the correspond-
ing particle types referred to as the nucleation mode and the
accumulation mode. The particles in accumulation mode are
carbonaceous agglomerates and associated adsorbed materials,
while the nucleation mode consists of volatile organic and
inorganic components like sulfates, and maybe also some soot
and metal compounds (Kittelson, 1998). After the filter, both the
nucleation and accumulation mode particles were reduced
significantly.

By fitting each log-normally distributed mode from the
number-size spectrum, the nucleation and accumulation mode
particles were discriminated automatically by the DMS500
software (Symonds et al., 2007). The break specific PN of these
jes
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Fig. 3 – Number-size distributions of diesel particles.

Table 3 – Filtration of PM mass and SPN in ESC and ETC.

Parameter ESC test ETC test

Engine-out BSPM (g/kW/h) 0.019 0.021
Post-CDPF BSPM (g/kW/h) 0.008 0.005
PM mass filtration efficiency (%) 58 76
Engine-out BSPN (#/kW/h) 1.63 × 1013 1.9 × 1013

Post-CDPF BSPN (#/kW/h) 1.17 × 1011 4.6 × 109

SPN filtration efficiency (%) 99.3 99.98
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twomodes upstream and downstream are shown in Fig. 4. After
the DOC–CDPF, the brake specific particle number (BSPC) of
nucleation mode was much lower than that of accumulation
mode at each engine steady state. Most of the volatile compo-
nents of the nucleation particleswere oxidizedwith theDOCand
CDPF. The smaller solid particles, including the nucleationmode
particles, were efficiently removed by diffusional deposition in
the filter due to their faster Brownian movement (Filippo and
Maricq, 2008).

The brake specific PM mass (BSPM) and BSPN of solid
particles weremeasured in ESC and ETC (Table 3). The filtration
efficiency of the CDPF on SPN was higher than 99%, while the
efficiency on PM mass was relatively low. The PM emissions
from the engine contained large part of soluble organic fraction
(SOF) and inorganic oxides. The SOF filtration of the CDPF was
not as effective as the soot filtration, because the volatile
fractions of PM could be vaporized and could flow through the
filter as gases, and because they condensed when the PM was
collected for weighting (Giechaskiel et al., 2012).

The relationship between the PMmassand the SPNemissions
at each steady state of ESC are represented in Fig. 5. In the raw
exhaust from the engine, the BSPM and BSPN emissions had a
positive correlation. At the outlet of the CDPF, the BSPM showed
no correlationwith BSPN, as the BSPMwasmainly determined by
the SOFand inorganic components instead of thenumber of solid
particles.
25 50 75 100
0
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6×1013

8×1013

1×1014

B
S 

PN
/(1

/k
W

h)

Engine load (%)
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a

Fig. 4 – Particle number emissions in nucleation and accumulati
particle number. A, B, C speeds: 1435, 1750, and 2050 r/min of en
2.3. Equilibrium regeneration process

The experimental results indicated that the pressure drop
increment of the CDPF was less than 0.1 kPa when the engine
was operated at each of steady stateswith low temperatures for
1 hr, which was caused by the low engine-out PM emission and
slow soot accumulation in the large-sized CDPF. However, the
SPN at the downstream of the CDPF changed obviously and the
trend of SPN change was dependent on engine operating
conditions (Fig. 6). The SPN decreased at the engine modes B25
and B50 and increased at B75 and B100. The variation of the SPN
downstreamat steady engine conditionswas in response to the
change of filtration efficiency, which could be improvedwith an
increase of soot loading (Giechaskiel et al., 2007).

When the exhaust temperature was lower than BPT, the soot
oxidation rate was slower than the soot accumulation and the
soot loading in the filter increased, resulting in an increase of
filtration efficiency and a decrease of SPN downstream. Similarly
at higher temperatures the SPN downstream increased. At B50
and B75, SPN changed more slowly than those at B25 and B100,
indicating that the exhaust temperature was closer to the BPT. It
can be proposed that the slope of the SPN downstream is zero at
the equilibrium process, which could be used to define the BPT.
To assess BPT of the CDPF for this HD diesel engine, the time
consumptionwasmuch less bymeasuring the SPN downstream
than by testing pressure drop of the filter.

Actually, theBPTof a continuously regeneratingDPF system is
a function ofmany operation parameters, including soot loading,
inlet gas composition, SV and test procedure (Schejbala et al.,
2010). The BPT of the CDPF, defined as the temperature at which
the SPN downstream remained constant, was measured at
different SVs with or without DOC (Fig. 7). It was demonstrated
that theDOCcouldhelp reduce theBPTofCDPF fornearly 50°C, as
jes
c.a

c.c
n

, nucleation mode  C speed, nucleation mode

 accumulation mode C speed, accumulation mode

25 50 75 100
0

1×1010

2×1010

1×1012

2×1012

3×1012 b

B
SP

N
/(1

/k
W

h)

Engine load (%)

on mode. (a) upstream; (b) downstream. BSPN: brake specific
gine speeds at points A, B, and C.

http://www.jesc.ac.cn


0.00 0.01 0.02 0.03 0.041010

1011

1012

1013

1014

 Upstream
 Downstream

)h
Wk/1( 

NPS
B

BSPM (g/kWh)

Fig. 5 – Relationship between PM mass and solid particle
number. BSPM: brake specific particle mass. BSPN: brake
specific SPN particle number.

2.0 2.5 3.0 3.5 4.0
280

300

320

340

360

380

)
C°( erutar ep

met ecnala
B

SV (104/hr)

 CDPF
 DOC-CDPF

Fig. 7 – Balance point temperature of CDPF with and without
DOC at different SVs. SV: space velocity.

2438 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 6 ( 2 0 1 4 ) 2 4 3 4 – 2 4 3 9
the DOC increased NO2 concentration through the CDPF (Fig. 2).
The BPT of the CDPF without DOC increased at a higher SV
because the residual time for the oxidation of NO to NO2 was
shorter, and the NO2 concentration was not sufficient to oxidize
the soot loaded in the upstream part of the CDPF. For the
DOC–CDPF system, theNO2 concentration at the inlet of theCDPF
was already high, so the influence of SV on BPTwas not obvious.
3. Conclusions

A DOC–CDPF systemwas investigated to examine its filtration
behavior and passive regeneration process by NO2. Both the DOC
and the CDPF helped to increase the NO2/NOx ratio. The CDPF
located downstream of the DOC led to more oxidation of NO to
NO2 at lower temperature, while the conversion was limited by
the chemical equilibriumwhen exhaust temperature was higher
than 350°C. The DOC–CDPF system almost completely oxidized
the pollutants CO and HC. When the temperature was below
200°C,NO2 acrossDOCandCDPFwas consumed for theoxidation
of CO and HC.

When the DOC–CDPF was tested on a HD diesel engine, most
of the particles downstream were in accumulation mode. The
filtration efficiency for the particle number was close to 100%
in both steady and transient test cycles, while the filtration
efficiency for PMmass was relatively low. A positive correlation
was found between PMmass and SPN in the raw exhaust, but at
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Fig. 6 – Solid particle number profiles downstream of the
DOC–CDPF. PN: particle number.
the downstream of the CDPF the correlation was not obvious,
because most of the PM was SOF and inorganic components.

The SPN at the downstream of the CDPF changed as the soot
loading varied. Because the downstream SPN was sensitively
influenced by the soot loading, the BPT can be identified by
monitoring the trendof SPN. TheBPT for theDOC–CDPF system is
303°C at 30,000 hr−1, and increased to 356°C for the CDPFwithout
DOC. The BPT of the CDPF without DOC increased slightly with
higher SV.
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