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The microbial community structures in an integrated two-phase anaerobic reactor (ITPAR)
were investigated by 16S rDNA clone library technology. The 75 L reactor was designed with
a 25 L rotating acidogenic unit at the top and a 50 L conventional upflowmethanogenic unit
at the bottom, with a recirculation connected to the two units. The reactor had been
operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a
very good biogas production and decomposition of cellulosic materials. The results showed
that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,
Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria
community diversities in the acidogenic unit. The methanogens were mostly related with
Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the
predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four
samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic
methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more
similar distribution of bacterial communities than that of methanogens between acidogenic
unit and methanogenic unit. The differentiation of methanogenic community composition in
two phases, as well as pH values and volatile fatty acid (VFA) concentrations confirmed the
phase separation of the ITPAR. Overall, the results of this study demonstrated that the special
designing of ITPAR maintained a sufficient number of methanogens, more diverse commu-
nities and stronger syntrophic associations among microorganisms, which made two phase
anaerobic digestion of cellulosic materials more efficient.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

The amount of agricultural wastes in China increased rapidly
in recent years. According to China Statistical Yearbook 2011,
ail.tsinghua.edu.cn (Jian

o-Environmental Science
a total amount of crop straw, which were mainly disposed
by uncontrolled incineration in China, was about 423 million
tons. Meanwhile, the fruit and vegetable wastes (FVWs), with
a high organic content for more than 60% and the volatile
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solid (VS) content is 80%–90%, often cause heavy odor
and plenty of leachate during collection and transportation
(Lin et al., 2011). These residual biomasses rich in cellulose
have constituted a major source of renewable energy for
generating biogas through anaerobic digestion (AD) (Hobson
and Feilden, 1982). In the AD process of residual biomass, the
rate-limiting step was hydrolysis (Mata-Alvarez et al., 2000),
and the materials containing cellulose often had troubles
such as generating scum and foam in most of the developed
technologies. These troubles usually resulted in low maxi-
mum loading rates and poor decomposition (Svensson et al.,
2007).

For optimizing AD process efficiently, the single-phase process
can be divided into two phases separately, with liquefaction
and acidification in the first phase and methanogenesis in the
second one (Mtz-viturtia et al., 1995; Weiland, 1993). Compared
with the single-phase AD process, the two-phase technique is
a feasible way to improve the biodegradation efficiency and
the overall energy productivity by selecting and enriching
special microbes in sequential reactors (Azbar and Speece,
2001). Meanwhile, the two-phase approach can ensure greater
stability of the overall anaerobic process. A controlled acidogenic
unit would provide a constant feed condition for methanogenic
unit to avoid inhibition on methanogens (Koutrouli et al., 2009).
However, the separation of fermentative and methanogenic
environments may lead changes to biological pathways and
intermediate metabolite formation. It is unclear whether all the
biological pathways involved in AD can be optimized or not in a
two-phase process when the acidogenic microbial consortia
separated from the methanogenic ones. Though the different
microbial groups differ in terms of physiology, nutritional needs,
growth kinetics, and sensitivity to environmental conditions,
they work altogether in the same environment of single-phase
AD (Pohland and Ghosh, 1971; Demirel and Yenigun, 2002). The
separation of acido/acetogenesis from methanogenesis may
negatively affect the syntrophic associations, above all by
preventing interspecies hydrogen transfer (Iannotti et al., 1973).

Designing a new reactor for anaerobic digestion of plant
biomass should make the utilization of the agricultural biomass
to a greater extent possible. The integrated two-phase anaerobic
reactor (ITPAR) was a novel reactor better than single-phase
reactor and two-phase reactor in conventional sense. It was
suitable for anaerobic digestion of plant biomass that is rich in
cellulose fiber, difficult to hydrolyze and easy to be separated
from slurry. In the ITPAR, an integrated anaerobic digestion
happened with a solid phase of hydrolytic acidification in the
upper part and a liquid phase of methanogenesis in the lower
part. The half-submerged perforated roller, used for containing
cellulosic materials and enhancing mass retention and transfer,
was installed in the upper part of reactor. The roller could not
only avoid scum generation and separate the solids and liquids,
but also segregate most of the methanogenic microorganisms
(present in the lower part of reactor in the form of anaerobic
granular sludge) and the feedings (agricultural biomass) in the
same reactor. The dissolution and hydrolysis of submerged
organic waste were enhanced by retained microorganism in the
fermentation liquor. The hydrolysis products then got into liquid
phase that can be well used by bacteria and methanogens in the
middle and lower part of reactor. The methanogens in the
lower part would not be washed out along with the feeding and
discharging of reactor.

The objectives of this study are to evaluate both the methan-
ogen and bacterium community structures involved in the
different parts of ITPAR by 16S ribosomal ribonucleic acid (rRNA)
gene clone library technology. The present study could provide a
more precise view of the biological processes and the main
microbial communities involved in co-digestion of FVWs and
wheat straw (WS) in ITPAR and the mechanism of efficient
anaerobic digestion.
 c.a

1. Materials and methods

1.1. Reactor operating conditions and samples collection

The total volume of the newly designed ITPAR was 115 L, with
the efficient reaction volume of 75 L and the roller volume
of 25 L (Fig. 1). The half-submerged roller that was used to
contain solid waste, rotated at 5 r/min in the upper part of
reactor throughout the experiment. Inside the rotating roller,
six parts were divided by three clapboards which could
not only ensure complete mixing of raw materials but also
avoid fiber twining, scum and incrustation while mixing
materials with crude fiber. Many holes with 5 mm diameters
were evenly distributed on the surface of the roller to
allow sufficient transfer of hydrolysates and full contact of
mass with fermentation liquor. Between the acidogenic unit
and methanogenic unit installed, a recycling system used
to circulate the hydrolysates from the acidogenic unit to
the methanogenic unit, with an inner recycling flow of
0.45 m3/hr during the experiment. It could provide sufficient
substrates for the methanogenic unit and avoid the acid
accumulation in the acidogenic unit. The biogas was collect-
ed from the top of the reactor. The operating temperature
was kept at (35 ± 1)°C by a hot water jacket with hot water
recycling.

The anaerobic granular sludge with good methanogenesis
activity was used as inoculum,whichwas taken from a full-scale
Up-flowAnaerobic Sludge Bed (UASB) reactor (Qinhuangdao City,
Hebei, China) treating starch-processingwastewater at 35°C. Raw
FVWs were collected from a fruit/vegetable market in Beijing,
China, which mainly contained residues of vegetables such as
Chinese cabbage, carrot, lettuce, and different fruits, such as
apple, banana, pear, and watermelon. Raw WS were collected
fromwheat fields in a suburbanof Beijing, China. The FVWswere
shredded to small pieces after the fruit cores were removed and
the WS were sized to approximately 5 cm in length. The
characteristics of FVWs and WS were shown in Table 1. Both
the FVWs and WS were homogenized with a certain ratio
(calculated by VS) before feeding. The digester was operated
in a batch style in the acidogenic unit and a continuous style
in the methanogenic unit. The residence time for the mixed
waste in the acidogenic unit decreased from 24 to 17 days for
the first four stages (considered as start-up periods) and then
maintained at 10 days for the following seventeen stages. At
the end of each stage, all the solid residues in the roller were
removed and the additional water from raw materials (made
up roughly 6%–14% of the total fermented liquid) was
discharged from the liquid outlet respectively. The acclimat-
ed microorganisms retained in fermentation liquor would
rapidly decomposed the new feedings by dissolution and
hydrolysis.

Formicrobial structure analysis, sludge sample 1 to sample
4 were collected from S1 to S4 (different heights of the reactor)
at the third day of stages 19, 20 and 21 (with the same
operation condition) (Fig. 1). For each sample, three 50 mL
mixed liquors were collected in three centrifuge tubes and
then were centrifuged at 15,000 r/min for 20 min at 4°C
(CR22G, HITACHI, Tokyo, Japan), the supernatants were
removed and the sediments were stored at 4°C in refrigerator.
jes
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Fig. 1 – Schematic of the integrated two-phase anaerobic reactor (ITPAR). (1) Top cover, (2) biogas outlet, (3) acidogenic reaction
roller, (4) holes on the surface of the roller, (5) inner clapboard, (6) rotation axis, (7) sampling orifice one to four, (8) rotation
motor, (9) temperature probe, (10) recycling pipe, (11) recycling pump, (12) recycling distributor, (13) water jacket, (14)
methanogenic unit, (15) anaerobic granular sludge.
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1.2. Clone library analysis

The deoxyribonucleic acids (DNAs) of different sludge samples
were extracted using the Fast DNA SPIN Kit for Soil (MP
Biomedicals LLC., califonia, USA). The DNAs of triplicate samples
were pooled together for furthermolecular analysis. Bacterial 16S
rRNAgeneswere amplifiedusingprimers 63F (5′-CAGGCCTAACA
CATGCAAGTC-3′) and 1387R (5′-GGGCGGWGTGTACAAGGC-3′)
(Marchesi et al., 1998). Archaea 16SrRNA genes were amplified
with archaea primers 109F (5′-ACKGCTCAGTAACACGT-3′) and
915R (5′-GTGCTCCCCCGCCAATTCCT-3′) (Grosskopf et al., 1998).
Polymerase chain reaction (PCR) conditions for bacterial 16S
rRNA genes were as follows: 94°C for 5 min, 8 cycles of 94°C for
1 min, annealing at 65 to 58°C (reducing the temperature by 1°C
per cycle) for 30 sec, and extension at 72°C for 2 min; additional
17 cycles of 94°C for 1 min, 58°C for 30 sec, and 72°C for 2 min;
and final extension at 72°C for 10 min. PCR conditions for
archaea 16S rRNA genes were as follows: 94°C for 5 min,
21 cycles of 94°C for 1 min, annealing at 62 to 52°C (reducing
the temperature by 0.5°C per cycle) for 0.5 sec, and extension at
72°C for 1 min; additional 9 cycles of 94°C for 1 min, 52°C for
30 sec, and 72°C for 1 min; and final extension at 72°C for
10 min. The PCR products were purified with QIA quick PCR
purification kit (Takara Biotechnology Co.,Ltd., Dalian, China)
and then cloned into )pGEM-T easy vector (Promega,Wisconsin,
USA). Clones were sequenced (completed by Shanghai Sangon
Table 1 – Characteristics of fruit/vegetable wastes (FVWs) and w

Substrate Total solid (%) Volatile solid (wt.% TS) El

C

FVWs 7.37 88.06 43.26
WS 94.47 88.63 42.22

TS: total solids.
Biotech, Co., Ltd., China ) using a 3730XL DNAAnalyzer (Applied
Biosystems Co., USA).

Chimeras were excluded from further analyses using
Mallard 1.02 (Cardiff School of Biosciences, United Kingdom)
(Ashelford et al., 2006). Sequences sharing identity greater
than 97% identity was grouped into one operational taxo-
nomic unit (OTU) using the Distance-Based OTU and Richness
(DOTUR) program. The DOTUR program was also used to
calculate the diversity indexes (Schloss and Handelsman,
2005). One representative clone was chosen from each selected
OTU, and then submitted to the BLASTN (NCBI, USA) to obtain
the closest relatives. Phylogenetic trees were constructed using
MEGA 5.10 (Center for Evolutionary Medicine and Informatics,
USA) (Tamura et al., 2011). Taxonomic identities of the clones in
each OTU were assigned using the Ribosomal Database Project
(RDP) II analysis tool “classifier” (Wang et al., 2007). The
beta-diversity index was calculated to determine the difference
between two communities (Legendre et al., 2005).
2. Results and discussion

2.1. Bioreactor performance

The ITPAR has been operated to anaerobically co-digest FVWs
and WS for 21 stages at different organic loading rates and
jes
c.a
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n

heat straw (WS).

emental compositions
(wt.% TS)

C/N ratio Particle size (mm)

H O N

5.18 33.01 2.77 15.60 <5
5.36 39.68 0.85 49.67 <50
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WS/FVWs ratios. During the experimental period, the organic
loading rate reached 1.37 kg VS/(m3·day), with the maximum
daily biogas generation rate of 328 L/day on the first day of
the stage. The methane contents in the biogas generated
ranged from 64.9% to 76.7% in each stage and the VS removal
efficiency was higher than 85%. The maximum biogas produc-
tion was approximately 760 L/kg VS (removed). These results
were comparable with those obtained from grass silage
digestion in certain two-phase anaerobic reactors (Nizami et
al., 2010; Nizami and Murphy, 2011).

The final three stages (stage 19 to stage 21) were operated
with the same operation condition. The feeding amount and
the reactor efficiency from stages 19 to 21 were summarized
in Table 2. The average value and the standard deviation of VS
removal efficiency and total biogas production indicated that
the reactor had a stable performance under similar operation
condition.

Considering that the daily biogas production, pH and VFA
concentration from all stages showed similar trends, we only
presented the data in stage 19 to illustrate the operation state
of ITPAR. As shown in Fig. 2, the daily biogas production
peaked in the first day and kept higher in the first three days.
It was possible that the retention of acclimated microorgan-
isms in ITPAR was critical to the quickly startup of each stage.
The pH values were more volatile in the acidogenic unit than
those in the methanogenic unit. Methanogens that were
subject to the environmental fluctuations kept stable and
active in the optimized conditions of methanogenic unit to
ensure the efficient conversion of VFAs. The variant VFA
concentrations in the two units and the less VFA accumula-
tion indicated the efficient mass transfer of the reactor. The
acidogenic and methanogenic units can be separated in a
combined reactor but can also be combined via mass transfer
to achieve efficient anaerobic digestion.

2.2. Evaluation of 16S rDNA clone library

Based on ARDRA and sequence analysis, OTUs and diversity
indexes were both determined at the 3% sequence difference
level using the DOTUR program (Table 3). The 55, 31, 23 and 22
OTUs were recovered from sample 1 to sample 4 of bacterial
community, and 23, 23, 15 and 18 OTUs were recovered from
sample 1 to sample 4 of archaea community. The coverage
and Shannon–Wiener index of these libraries were showed in
Table 3. Shannon index presented a reducing trend from
c.c
n

Table 2 – Feeding amount and efficiency of the reactor in
sampling stages.

Stagea Removal
efficiency of

total VS

Average Total biogas
production

(m3)

Average

19 87.4% 88.8% ±
1.3%

0.641 0.689 m3 ±
0.055%20 89.1% 0.677

21 90.0% 0.749

a Stage 19 to stage 21 were operated in the same operation
condition. The loading rate was 1.37 kg VS/(m3·day), the VSWS:
VSFVWs in feeding was 0.22:1 with 0.19 kg VSWS and 0.84 kg VSFVWs.

VS: volatile solids.
c.a

sample 1 to sample 4 in both bacterial and archaea clone
libraries, indicating the richness and diversity of microbial
communities were decreasing from top to bottom of the
reactor, i.e., themicrobial (both bacteria and archaea) diversity
was richer in acidogenic unit than that in methanogenic unit.
Coverage C proved that these libraries were large enough to
yield unbiased estimates (Kemp and Aller, 2004).

2.3. Identification of microbial community structures

The compositions of bacterial family in four samples were
illustrated in Fig. 3a. The total sequenced clones could fall
into seven families. Bacteroidales formed the most frequent
order in the clone library, which accounted the 62.1%, 66.6%,
77.9% and 81.3% of the total clones in four samples. Four
strictly anaerobic families making up the Bacteroidales were
Bacteroidaceae, Rikenellaceae, Porphyromonadaceae and
Prevotellaceae (Suzuki et al., 1999). The mesophilic anaerobe
Bacteroidaceae possessing the ability to degrade cellulose
(Khan et al., 1980), accounted for a vast majority of the total
number of Bacteroidales. The prevalence of them reflected
the ability to metabolize a variety of organic compounds
including protein, lignin, cellulose, sugars, lipids and amino
acids. Rikenellaceae was a type shown to ferment carbohy-
drates such as glucose to produce propionic acid and succinic
acid (Svensson et al., 2007), suggesting that they were
involved in acidogenesis. The groups Porphyromonadaceae
and Prevotellaceae were much less than the two above groups.
Previous studies showed that protein hydrolysate could signif-
icantly stimulate the growth of Porphyromonadaceae and
Prevotellaceae, and they could break down some sugars in
anaerobic conditions (Tao et al., 2007). Other dominant families
were Clostridiaceae and Syntrophomonadaceae that belonged
to the order Clostridiales, while Syntrophaceae belonged to the
order Syntrophobacterales. The genus Clostridium was known
for degradation of complex organic materials such as cellulose,
starches and lipids (Rintala and Puhakka, 1994) and often
predominated in high concentrations of acetic acid. The genus
Syntrophomonas was reported as those which were able to
produce acetic acid from butyrate (Schmidt et al., 2013).
Syntrophaceae was able to degrade propionic acid to acetic
acid (Tang et al., 2007). The even distribution of Clostridiaceae
andSyntrophomonadaceae explained a syntrophic relationship
of hydrolysis/acidogenesis and acetogenesis between the two
groups of microorganisms throughout the reactor. On the
whole, the acidogenic unit had more diverse communities and
greater metabolic diversity. The different trophic groups that
recovered from acidogenic unit suggested the co-digestion
FVWs and WS mainly supported acetate, propionic and
butyrate-producing bacteria.

The compositions of archaea genus in four samples
were illustrated in Fig. 3b. The Methanosaeta constituted the
dominant genus (accounted for 40.5%, 54.2%, 73.6% and 78.7%
of the total clones in four samples) in the clone library,
followed by Methanosarcina (accounted for 19%, 14.4%, 8.26%
and 5.6% of the total clones in four samples). The lower
part of the reactor had a relatively higher abundance of
Methanosaeta known to use acetate as the only substrate for
methanogenesis. Species from the Methanosarcina preferred
methylated compounds such as methanol and methylamines
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as substrate for producing methane (Shin et al., 2010). Because
of the high co-digestion efficiency in ITPAR for the first three
days of stage, there was a low acetic acid concentration during
the last few days of stage in the reactor (especially in the
methanogenic unit). Over time, the low acetic acid concentra-
tionmade theMethanosaeta finally outcompetedMethanosarcina
to be the dominant population for its higher half-saturation
constant (Ks, 0.44 mmol/L) and lower maximum growth rate
(Umax, 0.11 per day) (Harper and Pohland, 1986). This hypothesis
may explain the predominance of Methanosaeta in the ITPAR
especially in the methanogenic unit. The relative abundance of
hydrogenotrophic methanogens decreased in four samples.
The Methanobacterium and Methanoculleus accounted for 15.5%,
10.4%, 5.0%, 5.6% and 12.1%, 6.8%, 6.6%, 3.2% in four samples
Table 3 – Operational Taxonomic Units (OTUs) and diversity i
bacterial clone libraries.

Library Number of clones Number of OTU

Bacteria 1 132 55
Bacteria 2 135 31
Bacteria 3 131 23
Bacteria 4 139 22
Archaea 1 116 23
Archaea 2 118 23
Archaea 3 121 15
Archaea 4 126 18
respectively. The Methanospirillum appeared primarily in the
upper part of reactor (sample 1 and sample 2). All these results
indicated that methanogenesis was mainly carried out by
acetoclastic methanogens throughout the reactor. Meanwhile,
hydrogenotrophswere also involved in the biogas production
especially in the acidogenic unit. This was different from the
results in other studies that the hydrogenotrophs
methanogens were the major microbials of acidogenic unit
in the conventional two-phase anaerobic digester. (Shimada
et al., 2011).

The co-digestion of ITPAR gave rise to diverse microbial
communities and metabolic pathways in the reactor. The
transient accumulation of VFAs and the hydrogen partial
pressure in acidogenic unit after feeding led to an increase of
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relative abundance of Methanosarcina and hydrogenotrophic
methanogens and a corresponding decrease of Methanosaeta
in the upper part of the reactor. Meanwhile, the Methanosaeta,
proved to be the major microbes for methanogenesis in the
reactor, outcompeted to be dominant by the neutral condi-
tions (pH 6.8–7.5) and the low concentration of acetic acid in
most time of stage. Also, the ITPAR maintaining syntrophic
associations among microorganisms in two units and guar-
anteeing sufficient number of methanogens in methanogen-
ic unit ensured the efficiency in AD process.

Beta diversity index was calculated to determine the
community difference between each two samples. The beta-
diversity characterizations between each pair samples (S1–
S2, S2–S3, S3–S4, S1–S3, S2–S4, S1–S4) were shown in
Fig. 4. Both the archaea and bacterial diversity indexes were
augmented with sampling distance increase and the overall
archaea indexes were higher than that of bacterial. Among
the adjacent samples, S1–S2 reached the maximum value
in bacterial clone while S2–S3 was in maximum index in
archaea clone, illustrating that the bacterial composition in
sample one was much different from other samples, and the
composition difference of methanogens were more similar in
both acidogenic unit (sample 1 and sample 2) and methano-
genic unit (sample 3 and sample 4) than between them (sample
2 and sample 3). On the whole, there existed a more even
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bacterial distribution but an obvious methanogens variation
between acidogenic unit andmethanogenic unit in the reactor.
The differentiation of methanogenic community composition
in acidogenic unit and methanogenic unit, as well as pH values
and VFA concentrations indicated the successful phase separa-
tion in the integrated reactor. Meanwhile, the co-existence
of the anaerobes as well as many intermediate metabolites
in one reactor will be good for syntrophic associations among
microorganisms.

2.4. Phylogenetic analysis of the major OTUs

The phylogenetic relationship of the presentative sequences
of each major OTU (with at least three clones) was submitted
to Genbank database for phylogenetic analysis. In Fig. 5a, the
phylogenetic tree of archaea 16S rRNA gene sequences showed
that the methanogens were grouped mainly with the genus
Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum
and Methanobacterium. The sequence belonging to Methanosaeta
showed a 100% identity with related to Methanosaeta concilii, a
kind of acetoclastic methanogens that can directly use acetate.
The sequence belonging to Methanosarcina shared a 100%
similarity to Methanosarcina mazei, the substrates of which
were variety such as H2/CO2, acetate, all methylamines and
methanol (Osumi et al., 2008). Among the hydrogen-utilizing
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methanogens, Methanobacterium was with 95% identity related
to Methanobacterium beijingense that uses H2/CO2 and formates
for its growth and methane production (Ma et al., 2005).
Methanospirillumwaswith 99% identity related toMethanospirillum
hungatei (Iino et al., 2010). The sequences affiliated with
Methanoculleus had high identity to methanogenic archaea in
stable anaerobic cellulose-degrading reactor (Chin et al., 1999).

Phylogenetic tree of bacterial 16S rRNA gene sequences
was shown in Fig. 5b. Members of the phyla Bacteroidetes,
Firmicutes and Proteobacteria were involved in the co-
digestion of FVWs and WS. Sequences BaA12, A15, B33, C22,
B27, C12 and A33 were particularly abundant through the
entire reactor suggesting that theywere key components of the
community. BaA12 belonging to the family Bacteroidaceae
was related with 96% identity to several cultured sequences
such as the novel anaerobic cellulolytic Bacteroides sp.
(AY554420.1) isolated from a landfill leachate bioreactor.
Another Bacteroides sp. (NR_041642.1), a xylanolytic anaerobe
isolated from a methanogenic reactor treating cattle waste
 c.a

(Nishiyamaet al., 2009), also shared 96% similaritywith sequence
BaA12. This strictly anaerobic bacterial strain produced acetate,
propionate and succinate by utilizing xylan and sugars includ-
ing arabinose, xylose, glucose, mannose, cellobiose, raffinose
and pectin. All of these were in accordance with the major
components of ITPAR feedstock (FVWs andWS), which contain
high concentrations of cellulose and saccharides. The sequence
BaA15 belonging to the family Rikenellaceae showed to be
99% identical with Petrimonas sulfuriphila, which is a kind of
H2-producing acetogens that have to grow fairly close to the
hydrogen-utilizing Methanobacteriales to produce acetate,
hydrogen and CO2 during glucose fermentation (Grabowski et
al., 2005). The sequence BaB33 belonging to the family
Porphyromonadaceae showed to be 99% identical with uncul-
tured bacterial CU926326 and EU358691, but only shared 89%
identical with Paludibacter propionicigenes, a strictly anaerobic,
propionate-producing bacteria utilized various sugars and
produced propionate and acetate as major fermentation
products with a small amount of succinate (Ueki et al., 2006).
jes
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The sequence BaC22 belonging to the family Prevotellaceae
had 99% similarity with uncultured bacterial GQ327017 and
EU381797, it showed to be 94% identical with Prevotella
sp. which was identified as FOS- and GOS-degrading bacteria.
Firmicutes (e.g., Clostridium) known to produce cellulases,
lipases, proteases and other extracellular enzymes (Leven et
al., 2007) suggested that they were involved in hydrolysis and
acidogenesis. The sequence BaB27 belonging to the family
Clostridiaceae was 98% identical with uncultured bacterial
JQ087151 and 92% identical with Clostridium clariflavum,
formatting of either ethanol acetate and formate as principal
fermentation products as well as lactate and glycerol
as minor products by utilizing cellulose and xylan (Sizova et
al., 2011). The sequence BaC12 belonging to the family
Syntrophomonadaceae could be co-cultured with the
hydrogenotrophic methanogen M. hungatei to oxidize
straight-chain saturated fatty acids with carbon chain
lengths of C4–C18 (Hatamoto et al., 2007). The sequence
BaA33 belonging to the family Syntrophaceae was 95%
identical with Syntrophus sp. (AJ133795) and 100% identical
with uncultured bacterial CU921054.
3. Conclusions

In the present study, microorganisms were acclimated in an
innovative ITPAR. Based on the 16S ribosomal DNA clone library
analysis, the archaea and bacterial compositions were identified
in different parts of the reactor. The co-digestionof FVWsandWS
mainly supported lignocellulose and sugar degradable bacteria.
The upper part of the reactor had more diverse communities
and metabolic pathways. Methanogenesis was mainly carried
out by acetoclastic methanogens in the reactor, though
hydrogenotrophs also involved in the biogas production espe-
cially in the acidogenic unit. The differentiation of methanogen
community composition in acidogenic unit and methanogenic
unit, as well as pH values and VFA concentrations indicated the
successful separation of the acidogenic unit from the methano-
genic unit in the ITPAR. The diverse acclimated microbial
communities, strong syntrophic associations among microorgan-
isms alongwith the stable and activemethanogens resulted in the
efficient anaerobic co-digestion of cellulosic wastes in the ITPAR.
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