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MnxCe1 − xO2 (x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal
catalytic oxidation of formaldehyde (HCHO). At x = 0.3 and 0.5, most of the manganese was
incorporated in the fluorite structure of CeO2 to form a solid solution. The catalytic activity
was best at x = 0.5, at which the temperature of 100% removal rate is the lowest (270°C). The
temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by
loading 5 wt.% CuOx into Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO (61 ppm) in
gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a
GHSV (gas hourly space velocity) of 10,000 hr−1 at 25°C. The effect of the molar ratio of O3 to
HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal
efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the
mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semi-
conductor (Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,
which significantly exceeded that of n-type oxide semiconductors such as TiO2, which had
a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000 hr−1, [O3]/[HCHO] = 3 and
temperature of 25°C, a high HCHO removal efficiency (≥81.2%) was maintained throughout
the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO
removal.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Indoor air quality (IAQ) is an issue of great public concern, because
lifestyle of people has changed from outdoor to indoor in recent
years, typically, people in metropolitan areas spend more than
80% of time in indoor environments. Consequently, governments
around theworld have strictly regulated indoor air quality to protect
human health. Indoor air pollutants are composed of different
substances, including volatile organic compounds (VOCs), carbonyl
compounds (CO, CO2), and bio-aerosol and they are emitted from
various sources such as burning and cooking, construction mate-
rials, the atmospheric environment and others (Shaughnessy et al.,
1994; Daisey et al., 2003). Among these indoor air pollutants,
formaldehyde (HCHO) is commonly detected in airtight buildings,
uen.ncu.edu.tw (Moo Bee

o-Environmental Science
and it has been recognized as a strong toxicity gas for human body.
Sources of HCHO are very wide such as construction materials,
paints, cosmetics, cleaning agents, disinfectants, cigarette smoke,
and printing ink. For short-term exposure, HCHO may irritate the
nose and eyes and it further causes burning sensations in the throat,
difficulty in breathing and serious diseases such as respiratory tract
and nasal tumors if exposed at a long-term.

Previous studies indicated that various methods including
physical adsorption and thermal catalytic oxidation (TCO) can be
utilized to reduce HCHO concentration (Imamura et al., 1994;
Sekine, 2002; Álvarez-Galván et al., 2004; Tang et al., 2006a; Zhang
et al., 2006; Li et al., 2008; Zhang et al., 2009; An et al., 2011; Ma et
al., 2011). However, adsorbents are effective for only a short period
owing to their limited adsorption capacities, therefore, it may not
jes
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be suited for controlling indoor air pollution, while TCO is re-
garded as one of the most promising approaches for removing
HCHO, and it involves oxidizing HCHO to harmless carbon dioxide
and water by using an appropriate catalyst. In past studies, noble
metal and transition metal oxides are commonly applied as a
catalyst for oxidation of HCHO. Noble metal catalysts (Pd, Au or Pt)
potentially exhibit high activity at moderate or even room tem-
peratures (Imamura et al., 1994; Álvarez-Galván et al., 2004; Li et
al., 2008; Zhang et al., 2009; Ma et al., 2011), but high cost limits
their application. Chen et al. (2013) applied Au/CeO2 as a catalyst
for the oxidation of HCHO at room temperature, with GHSV of
143,000 hr−1, RH of 50%, and inlet HCHO concentration of 80 ppm.
The results indicate that conversion efficiency of HCHO achieved
with Au/CeO2 reaches 100% (Chen et al., 2013). On the contrary,
transition metal oxides (including CuO, Co3O4, NiO, Fe2O3, and
MnOx) are relatively abundant and inexpensive (Sekine, 2002;
Tang et al., 2006b; An et al., 2011; Silva et al., 2004; Zhou et al.,
2011). Furthermore, activities of transition metal oxides can be
increased by doping other elements, and some investigations have
focused on their use in place of costly noblemetals (Sekine, 2002;Ma
et al., 2011; Zhou et al., 2011; Góra-Marek and Datka, 2008; Gracia et
al., 2000; Imamura et al., 1996; Luo et al., 1999). For example,
Mn-based catalyst shows good performance for oxidation of HCHO
at 75°C as Co is added into Mn (Shi et al., 2012a), in addition, CeO2 is
often used as a good promoter due to high oxygen storage capacity.
As CeO2 is added into MnOx, the partial substitution of Ce4+ with
Mn4+ in the lattice of CeO2 improves its oxygen storage capacity,
redoxproperties, thermal resistance, andcatalytic activity (Luoetal.,
1999). However, most studies indicate that transition metal oxides
must operate at high temperature (>200°C) for good performance.
Hence, it is not suitable for indoor air quality application. Further-
more, the storage-oxidation process can be also applied for the
oxidation of HCHO. The storage-oxidation process implies that
HCHO can be first adsorbed on the catalyst surface, and then
oxidized into CO2 and H2O which are further desorbed by increasing
temperature. Shi et al. (2012b) utilized Ag–MnOx–CeO2 as a catalyst
to adsorb and convert HCHO, and the results indicate that this
catalyst shows good performance for HCHO removal, but its
operating temperature has to be maintained at high than 80°C for
complete oxidation of HCHO (Shi et al., 2012b). Reducing the
temperature needed for the catalytic reactions is important to save
energy and enable their application in IAQmanagement.

Ozone has been widely used in various environmental applica-
tions both in the liquid and gas phases (Oyama, 2000). Previous
studies indicate that catalyst oxidation processes in which ozone
is utilized to produce oxidants have been investigated and have
potential for removing various hazardous compounds especially
at low-temperatures (<100°C), including VOCs, CO, cyclohexane,
and benzene, and even dioxins can be oxidized by ozone catalytic
oxidation process (OZCO) (Gervasini et al., 1996; Einaga and
Futamura, 2004a,b, 2005; Konova et al., 2006; Stoyanova et al.,
2006; Wang et al., 2011).

OZCO has many unique characteristics, including effectiveness
at low temperature and the use of inexpensive p-type transition
metal oxides (Dhandapani andOyama, 1997) as catalysts. Generally,
Mn-based is one of the most effective catalysts because it has high
activity in ozone decomposition at ambient temperature (Einaga
and Futamura, 2004a, 2005; Wang et al., 2011; Dhandapani and
Oyama, 1997).

In this work, we attempted to apply TCO and OZCO processes,
respectively, to remove HCHO by using Mn-based catalysts. In the
TCO process, MnxCe1− xO2 catalysts with various Mn/Ce ratios
and MnxCe1− xO2 mixed oxide with added copper are utilized to
decrease reaction temperature and to determine the effect of
various supports on the oxidation of HCHO. Then the MnxCe1− xO2

of optimum ratio is used to decompose ozone, and further achieve
oxidation of HCHO for OZCO process. The effects of O3/HCHO ratio
on HCHO removal are studied. Finally, the effectiveness of OZCO
in HCHO removal is compared with that of TCO.
 c.a

1. Experimental

1.1. Catalyst preparation

MnxCe1 − xO2 (Mn)/(Mn + Ce) (x: 0.3–0.9, molar ratio) was pre-
pared by the Pechini method. Cerium nitrate (Ce(NO3)3·6H2O),
manganese nitrate tetrahydrate (Mn(NO3)2·4H2O) and citric
acid (citric acid/(Mn + Ce) = 2.0, molar ratio) were dissolved in
water to form a 1 mol/L solution, which was gradually heated
to 85°C, and maintained for 1 hr with stirring. Then, ethylene
glycol was gradually added to the solution at 90°C for 2 hr with
stirring, forming a yellowish gel. The gel was dried at 110°C
for 12 hr and then calcined at 500°C for 6 hr with air. In
addition, the supportswith a copper loading of 5 wt.% CuOxwas
prepared by the classical incipient impregnation of an aqueous
solution of copper nitrate trihydrate (Cu(NO3)2·3H2O). It was
dried overnight at 110°C, and then calcined at 500°C for 6 hr
with air.

1.2. Characterization of catalysts

X-ray diffraction (XRD) patterns were recorded using an X-ray
diffractometer (D8AXRD Bruker, Germany) with Cu-Kα radia-
tion. The radiation (ë = 1.5415 Å)was generated by anX-ray gun
that was operated at 40 kV and 40 mA. Diffraction patterns
were obtained within a 2è rang of 10°–70° at a scanning rate of
6°/min.

Brunauer Emmett Teller (BET) surface areas, pore diame-
ter, and pore volume were measured using an ASAP2010
(ASAP2010 Micromeritics, USA). Sample morphology and
dispersion were characterized by scanning electron micros-
copy (S80 JEOL, Japan). An energy dispersive spectroscopic
(EDS) analysis yielded the precise elemental composition of
materials with a high spatial resolution.

1.3. Catalytic activity measurement

The catalytic activity of the catalysts in the oxidation of HCHO
was evaluated in a fixed-bed reactor at atmospheric pressure.
The reactor was equipped with a temperature controller,
which was used to maintain in the range 25–450°C. The
internal diameter of the reactor was 1.3 cm and 300 mg of
catalyst (75–100 mesh) was loaded into it. Gaseous HCHO was
generated by passing a stream of air through the formalin
solution in a thermostatic water bath. A mixture of air with 33
and 61 ppm HCHO, respectively, was introduced into the
reactor to serve as reactants. Fig. 1 shows the experimental
system used to evaluate the HCHO removal by TCO or OZCO.
Ozone was synthesized with pure oxygen supplied by O2

cylinder using an ozone generator (OZSD-3000A Ebara, Japan).
The total flow rate of the feeding gas was 0.6 L/min, yielding a
gas hourly space velocity (GHSV) of approximately 10,000 hr−1.
The HCHO and O3 concentrations of exhaust were measured
by using a spectrophotometer (GENESYS 10S UV–Vis Thermo
Scientific, USA).

Gaseous products of catalytic oxidation were analyzed
using a Fourier transform infrared spectrophotometer (Nicolet
6700 Thermo Scientific, USA). Data were collected when
the catalytic reaction reached steady-state conditions. The
jes
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efficiencies of HCHO removal, ozone decomposition and
mineralization are calculated, respectively, by the following
equations:

HCHO removal ¼ HCHO½ �inlet− HCHO½ �outlet
HCHO½ �inlet

� 100% ð1Þ

Ozone decomposition %ð Þ ¼ Ozone½ �inlet− Ozone½ �outlet
Ozone½ �inlet

� 100% ð2Þ

Mineralization efficiency %ð Þ ¼ CO2½ �outlet
HCHO½ �inlet

� 100% ð3Þ

where, [ ]inlet and [ ]outlet are species concentrations measured
before and after the reactor, respectively.
2. Results and discussion

2.1. Characterization of the catalysts

Fig. 2 displays the X-ray powder diffraction patterns of the
MnxCe1 − xO2 catalysts. In the XRD patterns of pure MnOx and
CeO2, the major sharp diffractions at 2θ = 12.7, 18.0, 25.6, 37.4,
41.8 and 49.7° are primarily attributed to MnO2 (Tang et al.,
2006b). For XRD pattern of the pure fluorite-type oxide, the
diffraction peaks at 2θ = 28.5, 33.0, 47.4 and 56.4° are attribut-
ed to CeO2 (Tang et al., 2006b). Fig. 2 shows that the samples
with Mn fractions (x) of less than 0.5 yielded only diffraction
peaks associated with the cubic fluorite structure. However,
those with Mn fractions (x) greater than 0.5 yielded weak
diffraction peaks associated with MnO2 along with broader
diffraction peaks from cubic CeO2. The diffraction pattern of
MnxCe1 − xO2 at Mn/(Mn + Ce) is <0.5, implying that Mn was
incorporated into CeO2 lattice to form a solid solution that
maintained the fluorite structure. This result is consistent
with a recent report on the structural features of MnxCe1 − xO2

mixed oxides, which revealed that the crystalline phase
MFC

HCHO
Mixing chamAir

AirO2

MFC

MFC

Ozone generator

Catalytic system

Catalyst  

Fig. 1 – Schematic diagram of the experimenta
depended strongly on the molar proportions of manganese
and cerium oxides (Tang et al., 2006b).

Table 1 summarizes BET surface areas of the catalysts. The
results indicate that the Cu-loaded catalysts had a smaller
surface area because Cu partially blocks pore of supports. The
surface areas of Cu/MnxCe1 − xO2 and MnxCe1 − xO2 were only
39.2 and 39.3 m2/g, respectively, because the gel of manganese
and cerium hydroxides and the possible interaction during
calcination effectively produce crystal growth solid solution of
the MnxCe1 − xO2 mixed oxide. The activities of these catalysts
for HCHO oxidation will be discussed in a later section.

2.2. Effect of manganese loading on HCHO removal

In order to determine the effects of the fraction of incor-
porated manganese on the oxidation of HCHO, modified
MnxCe1 − xO2 was prepared by the Pechini method for testing.
As presented in Fig. 3, the HCHO removal efficiency changed
with the modified catalysts and temperature. Increasing
temperature not only provides more energy and the effective
probability of collision, but also excites oxygen deep in the
catalyst lattice to the surface of the catalyst, where it is
desorbed, then forming oxygen vacancies. Fig. 3 shows that
MnxCe1 − xO2 must be utilized at approximately 300°C to
ensure complete HCHO oxidation. The activity of the mixed
oxides clearly depended on the amount of Mn present. The
relevant curves are frequently characterized by two parame-
ters T50 and T100. T50 is defined as the temperature required to
remove 50% of the pollutant, while T100 is the temperature
required to achieve 100% removal. The T100 values for the
removal HCHO of MnxCe1 − xO2, with x = 0.3, 0.5, 0.7, and 0.9
are 285, 270, 295 and 310°C, respectively. The fractions of
Mn in descending order of activity are: x = 0.5 > x = 0.3 > x =
0.7 > x = 0.9. Interestingly, x = 0.5 has the lowest T100 of 270°C,
this is 40°C lower than that of x = 0.9, at which the highest
T100 of 310°C is observed. From the above results, incorporat-
ing a suitable amount of manganese increases the catalytic
jes
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activity and reduces T100. A previous study indicated that it
has good solid solution as the fraction of incorporated
manganese is fixed at 0.5 (Tang et al., 2006b), which result is
consistent with XRD analysis and identification.

2.3. HCHO removal by TCO with various supports

Cu is loaded onto various supports including Mn0.5Ce0.5O2,
TiO2, γ-Al2O3 and CeO2 for effective HCHO removal. Fig. 4
shows that the catalytic activity of supported Cu catalysts of
HCHO oxidation depended significantly on the support materi-
al. The mixed oxide CuOx/Mn0.5Ce0.5O2 exhibited the highest
activity in HCHO oxidation. The T100 of HCHO oxidation
over 5 wt.% CuOx/Mn0.5Ce0.5O2 (230°C) is lower than that of
Mn0.5Ce0.5O2 (T100 = 270°C) by 40°C.

Furthermore, various supports (CeO2, TiO2 and γ-Al2O3) are
compared. As indicated in Fig. 4, T100 of 270°C can be achieved
with 5 wt.% CuOx/CeO2, in addition, the support TiO2 performs
worst with a T100 of 430°C, followed by γ-Al2O3 with a T100 of
340°C. The activities of the copper that was loaded onto CeO2

and Mn0.5Ce0.5O2 markedly exceeded TiO2 and γ-Al2O3. The
high activity was attributed to the redox interaction between
CuOx and Mn0.5Ce0.5O2. Obviously, support is one of the
important parameters that affect catalytic activity, and an
increase in the redox property of the support enhances
catalytic activity. MnOx is favorable because it is easily
reduced. Cerium oxide is well known for its better oxygen
releasing oxygen storage capacity than other fluorite-type
Table 1 – Characterization of the catalysts.

Catalyst EDS (wt.%) BET
(m2/g)

Cu Mn Al Ti Ce O

5 wt.% CuOx/γ-Al2O3 7.12 – 55.4 – – 37.4 111.7
5 wt.% CuOx/TiO2 5.06 – – 50.1 – 44.8 53.7
5 wt.% CuOx/CeO2 5.31 – – – 51.5 43.1 90.1
5 wt.%
CuOx/Mn0.5Ce0.5O2

6.56 37.5 – – 43.5 12.4 39.2

Mn0.5Ce0.5O2 – 41.2 – – 48.3 10.5 39.3
γ-Al2O3 – – – – – – 123.5
TiO2 – – – – – – 61.3
CeO2 – – – – – – 103.6
oxides (Imamura et al., 1996). Therefore, it is more effective in
the deep oxidation of HCHO. This study exploits the advan-
tages of the two metals manganese and cerium by using
MnxCe1 − xO2 mixed oxides. The catalytic activity test (Fig. 4)
indicates that copper loaded on Mn0.5Ce0.5O2 performs best for
HCHO oxidation, and the T100 for the complete oxidation of
HCHO is lower than that of copper supported on γ-Al2O3, TiO2

or CeO2. The supports in order of the activity of 5 wt.% copper
on each are Mn0.5Ce0.5O2 > CeO2 > γ-Al2O3 > TiO2. Table 1
indicates that catalyst activities are not closely correlated
with the specific surface area. Apparently, the redox property
of catalyst is more important in the oxidation of HCHO. The
interaction between copper and MnxCe1 − xO2 support posi-
tively influences both the physicochemical property and the
catalytic performance of the 5 wt.% CuOx/Mn0.5Ce0.5O2 cata-
lysts in the oxidation of HCHO at moderate temperature. A
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strong metal–support interaction (SMSI) improves the release
of oxygen from the support (Gil et al., 1994), improving the
catalytic activity in HCHO oxidation. The crystalline phase of
the solid solution has an ordered crystalline arrangement,
which promotes the activity of the catalyst for HCHO
oxidation.

The kinetics of the catalytic oxidation of HCHO were
studied using the Mars–Van Krevelen Model. Table 2 presents
the activation energies for HCHO removal obtained using
three catalysts. The rate constant (k) is first determined by
assuming the first-order reaction. Thereafter, values of k at
different temperatures are obtained, and a straight line of lnk
versus 1/T is plotted to calculate the activation energy (Ea). The
results indicate that the activation energy over 5 wt.% CuOx/
Mn0.5Ce0.5O2 is 37.8 kJ/mol. Previous investigations indicate
that the activation energies for the catalytic oxidations of
HCHO over 7.1 wt.% Au/Fe–O and MnO2 nano-rods are 26.6
and 79.8 kJ/mol, respectively (Li et al., 2008; Zhou et al., 2011).

The activation energies obtained using the supported
noble metal catalysts are much lower than those obtained
using transition metal catalysts, including ceria and manga-
nese. Fig. 5 reveals that 5 wt.% CuOx/Mn0.5Ce0.5O2 mixed
oxides were highly active in the oxidation of HCHO at
moderate temperature, which had a much lower activation
energy if compared with MnO2 (Zhou et al., 2011). These
results indicate that the use of noble metals rather than
transition metals greatly reduces the activation energy.

2.4. Activities of various catalysts for ozone decomposition

The efficiency of ozone decomposition using a catalyst
depended strongly on the conductivity of the metal of the
oxide, Oyama (2000) suggested that p-type oxides such as
MnOx are more active than n-type oxides in ozone decompo-
sition (Oyama, 2000).

Fig. 6 plots the time courses of ozone decomposition using
various metal oxide catalysts including Mn0.5Ce0.5O2, 5 wt.%
CuOx/Mn0.5Ce0.5O2, Mn2O3, CeO2 and TiO2. All of the metal
oxides that were tested in this investigation catalytically
decompose ozone. The efficiency of ozone decomposition
does not change significantly with time using any catalyst.
The order of catalyst performance in ozone decomposition is
Mn0.5Ce0.5O2 (99.2%) > 5 wt.% CuOx/Mn0.5Ce0.5O2 (97.3%) > Mn2O3

(92.1%) > CeO2(15.1%) > TiO2 (9.81%). Of these oxides, Mn2O3,
CeO2 and CuO2 are p-type oxides. These p-type oxides, except
for CeO2, have high activities for ozone decomposition. On the
other hand, the n-type oxides such as TiO2 have low activities
for ozone decomposition. Among these catalysts, Mn0.5Ce0.5O2

has the highest activity, reflecting the fact that mixed oxides
Table 2 – Activation energies for the oxidation of formaldehyde (HCHO)
under various conditions.

Catalyst Activation
energy
(kJ/mol)

Temperature
range
(°C)

Reference

5 wt.% CuOx/Mn0.5Ce0.5O2 37.8 100–200 This study
7.1 wt.% Au/Fe–O 26.6 20–100 Li et al.

(2008)
MnO2 ramsdellite
nanorods

79.8 80–120 Zhou et al.
(2011)
exhibit improved catalytic activity. Apparently, the catalytic
activity of the metal element is an important parameter in the
decomposition of ozone.

2.5. Removal of HCHO by OZCO

The performances of various catalysts in the removal of HCHO
with OZCO were investigated at room temperature (Fig. 7).
The inlet HCHO concentration was controlled at 61 ppmwhile
ozone concentration was fixed at 203 ppm. The efficiency of
HCHO removal using CeO2 catalyst was only 13.4%; that of
Mn-oxide catalysts was much higher. Mn0.5Ce0.5O2 catalyst
provides an HCHO removal efficiency of up to 83.1%, and HCHO
removal efficiency can also achieve 82% and 78% as 5 wt.%
CuOx/Mn0.5Ce0.5O2 and Mn2O3 are applied, respectively. Overall,
HCHO removal efficiency increases with increasing ozone
decomposition efficiency. Among these, the manganese-oxide
series of catalysts have better catalytic performance than other
metal catalysts. In particular, partial substitution of Ce4+ by
Mn4+ in the CeO2 lattice leads to the formation of a solid
solution with the improvement of ozone decomposition and
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HCHO removal capacity (Luo et al., 1999). However, activity of
5 wt.% CuOx/Mn0.5Ce0.5O2 was slightly lower for HCHO removal
if compared with Mn0.5Ce0.5O2. Presumably, the element of
copper affects area of contact of Mn0.5Ce0.5O2 and ozone,
because copper was loaded on Mn0.5Ce0.5O2 by impregnation
method, hence, it may reduce ozone decomposition efficiency.
A previous study indicates that efficiency of ozone decomposi-
tion was decreased with increasing content of Cu, in addition,
its reaction temperature must be increased to least at 60°C for
effective ozone decomposition, implying that activity of Cu is
lower for ozone decomposition if compared with Mn-based
catalysts (Spasova et al., 2007). Accordingly, Mn0.5Ce0.5O2 is used
as the catalyst removal for HCHO in the following experiments.

2.6. Effect of O3/HCHO ratio on HCHO removal

In the catalytic oxidation process using ozone, the dose of
ozone is an important parameter that affects HCHO removal
efficiency. Each O3 molecule is dissociated into one atomic
oxygen species and one O2 molecule on the catalyst according
to Eq. (4). Owing to the strong capability of intermediate
species to catalyze oxidation, atomic oxygen and active
peroxide species are formed.

O3 þ �→O2 þ O� ð4Þ

where, * denotes an active site on the surface of the catalyst.
According to Eq. (5), the stoichiometric molar ratio of
O3/HCHO = 2 for complete oxidation of HCHO. To improve
the removal efficiency, the amount of ozone is added two to
five times that required by the stoichiometric molar ratio. As
presented in Fig. 8, as O3/HCHO ratio was increased from 3 to
8, the removal HCHO efficiency increased from 83.3% to 100%
while inlet HCHO concentration was controlled at 61 ppm. A
similar trend was reported by Zhao et al. (2012a). However, the
ozone decomposition efficiency was fairly constant, being
97.3% for a range of ozone concentrations.

HCHO gð Þ þ 2O3→CO2 þ H2O gð Þ þ 2O2 gð Þ ð5Þ

2.7. Effect of O3 concentration on HCHO removal efficiency
and mineralization

Under operating conditions of a gas hour space velocity of
10,000 hr−1, O3/HCHO = 3 and a room temperature, CO2 was the
only carbon-containing product detected in the effluent gas
stream. Fig. 8 plots HCHO removal and CO2 formation at various
ratios of O3/HCHO by using Mn0.5Ce0.5O2 catalyst. The results
indicate that themineralization efficiencywas 68% asO3/HCHO
ratio was controlled at 3. As O3/HCHO ratio was increased to 8,
86.1% of mineralization efficiency was achieved. The removal
efficiency of HCHO and the mineralization efficiency increased
with ozone concentration. Therefore, as the O3 concentration
increased, the amount of atomic oxygen thatwas formedon the
surface of the catalyst increased, causing deeper oxidation. In
addition, a previous study indicates that mineralization effi-
ciency can be possibly increased to 100% by introducing small
amount of H2O(g), since hydroxyl radicals are the predominant
oxidative species in the presence of ozone and water vapor
(Zhao et al., 2012b). Furthermore, HCHO can be oxidized to CO2
by the chemisorbed hydroxyl radicals generated from the
ozone decomposition in the presence of H2O(g) on the catalysts
surface. However, the effect of H2O(g) on HCHO removal was not
investigated in this study.

2.8. Durability test

The durability of catalysts is very important in determining
their practical usefulness. Fig. 9 indicates that the removal
efficiency of HCHO was about 7.23% in the initial period of the
reaction (Stage I, without ozone), increasing to 81.2% after 9 hr
(Stage II, with ozone). As presented in Fig. 9, no significant
deactivation was observed following operation for 80 hr,
revealing that the Mn0.5Ce0.5O2 catalyst of HCHO removal
was highly durable.
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3. Conclusions

In this work, incorporation of manganese into CeO2 to form
MnxCe1 − xO2 solid solution increased the mobility of the lattice
oxygen andmarkedly improved the performance of the catalyst
in the oxidation of HCHO. The HCHO removal efficiency was
83.3% at 25°C and O3/HCHO = 3; the same removal efficiency
was obtained when TCO was operated at 185°C. A strong
correlation was observed between the removal efficiencies of
HCHO and ozone. These demonstrate that the reaction tem-
perature, species of catalyst and ozone concentration all had to
be optimized to ensure the complete oxidation of HCHO to CO2.
This work reports on the catalytic oxidation of HCHO with
ozone over supported Mn0.5Ce0.5O2 catalysts at room tempera-
ture. Overall, thisOZCOprocess uses eco-friendly, cost-effective
manganese oxide catalysts to remove HCHO. Adding appropri-
ate amount of ozone to the OZCO system results in the effective
removal of HCHO at room temperature. The method can be
utilized directly to reduce industrial emissions and control the
quality of indoor air.
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