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Norfloxacin (NOR), an ionizable antibiotic frequently used in the aquaculture industry, has
aroused public concern due to its persistence, bacterial resistance, and environmental ubiquity.
Therefore, we investigated the photolysis of different species of NOR and the impact of a
ubiquitous component of natural water — dissolved organic matter (DOM), which has a
special photochemical activity and normally acts as a sensitizer or inhibiter in the
photolysis of diverse organics; furthermore, scavenging experiments combined with
electron paramagnetic resonance (EPR) were performed to evaluate the transformation of
NOR in water. The results demonstated that NOR underwent direct photolysis and
self-sensitized photolysis via hydroxyl radical (UOH) and singlet oxygen (1O2) based on the
scavenging experiments. In addition, DOM was found to influence the photolysis of
different NOR species, and its impact was related to the concentration of DOM and type of
NOR species. Photolysis of cationic NOR was photosensitized by DOM at low concentra-
tion, while zwitterionic and anionic NOR were photoinhibited by DOM, where quenching
of UOH predominated according to EPR experiments, accompanied by possible participa-
tion of excited triplet-state NOR and 1O2. Photo-intermediate identification of different
NOR species in solutions with/without DOM indicated that NOR underwent different
photodegradation pathways including dechlorination, cleavage of the piperazine side
chain and photooxidation, and DOM had little impact on the distribution but influenced
the concentration evolution of photolysis intermediates. The results implied that for
accurate ecological risk assessment of emerging ionizable pollutants, the impact of DOM
on the environmental photochemical behavior of all dissociated species should not be
ignored.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Aquaculture industry has experienced an unprecedented increase
in Asia during recent years, accounting for about 90% of the global
aquaculture production (Naylor et al., 2000). Due to the widespread
and unrestricted use of prophylactic antibiotics in this industry, a
series of developments detrimental to the environment and human
lut.edu.cn (Huimin Zhao)

o-Environmental Science
health occurs (Martinez, 2008; Hvistendahl, 2012). The fluoroquin-
olone (FQ) group is one of the most important classes of antibiotics
used worldwide in aquaculture industry (He et al., 2012; Quesada et
al., 2013). Several recent studies have reported the presence of FQs
in surface water in many countries, with detected concentrations
up to a few μg/L (Hirsch et al., 1998; Golet et al., 2002; Xu et al., 2007;
Zou et al., 2011). It is reasonable to deduce that the concentration of
jes
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FQsmay be evenhigher in the aquaculturewater due to the abuseof
FQs.

Photolysis is an important transformation process for FQs in
natural aqueous environments (Burhenne et al., 1999). Most of the
FQs have two proton binding sites, resulting in amixture of different
dissociated species in the aqueous environment. Thus, the photo-
chemical transformation of FQs at various pH conditions has
attractedmuch interest. For example,Wammer et al. (2012) reported
the difference of quantum yields of different dissociated species of
norfloxacin, ofloxacin, and enrofloxacin, respectively. Wei et al.
(2013) explained the distinct photolytic mechanisms for different
dissociated species of ciprofloxacin in pure water based on
computational methods. However, the influences of surface water
components on photolytic transformation of different dissociated
FQ species have been little reported.

Dissolved organic matter (DOM), which is widespread in natural
aquatic environment (Kusari et al., 2009), is considered to be one of
the important factors influencing the photolysis process of organic
contaminants. Studies to date have already demonstrated the dual
function of DOMon the photolysis of antibiotics, which includes the
enhancement of photolysis kinetics through producing various
reactive oxygen species (ROS, including UOH and 1O2) (Andreozzi et
al., 2004; Ge et al., 2009), and inhibition of photolysis kinetics by
behaving as an inner filter to absorb solar light or as a sink for ROS
and triplet excited states of pollutants (Chen et al., 2008;
Prabhakaran et al., 2009; Vione et al., 2009; Wenk et al., 2011).
Some experimental results have indicatedmixed effects of DOM on
the photodegradation of antibiotics. Ge et al. (2010) found inhibition
by DOM through the reduction of UOH and 1O2 produced in the
self-sensitized photooxidation of FQs. Other researchers reported
the promotion effect of DOM on sulfa drug photolysis through the
formation of excited triplet-state DOM (3DOM⁎) to produce UOH and
1O2 (Boreen et al., 2005). To the best of our knowledge, however, few
studies have focused on the impact of DOM on the photolysis of
different dissociated species of ionizable antibiotics.

This article presents the photolysis results of different disso-
ciated species of FQs in aqueous solution with DOM, using
norfloxacin (NOR) as a model molecule. NOR is a widely used FQ
antibiotic and is one of the environmental contaminants fre-
quently detected in a variety of surface waters (Zou et al., 2011;
Zhang et al., 2012). The influences of DOM from different sources
on the photodegradation of NOR and its degradation intermedi-
ates were also investigated. The study is expected to be helpful for
developing a full understanding of the influences of DOM on the
photodegradation of ionizable antibiotics.
c.a
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Fig. 1 – Relative irradiance of the 350 W Xenon lamps and
transmittance of the 290 nm cutoff filters.
1. Materials and methods

1.1. Chemicals and reagents

NOR (98%) was obtained from Tokyo Chemical Industry Co.
Ltd. (Japan), sorbic acid (SA, 99%) was purchased from J&K
Scientific Ltd. (Beijing, China). High performance liquid
chromatographic (HPLC)-grade acetonitrile (ACN) was pur-
chased from Sigma-Aldrich (Waters-2695/FD 2475/UV 2996,
Waters, USA). Three kinds of DOM, Suwannee River fulvic acid
(SRFA), Elliott soil humic acid (ESHA), Leonardite humic acid
(LHA), representing aquatic, terrestrial and coal-like DOM
respectively, were obtained from the International Humic
Substance Society. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO)
was purchased from Tokyo Chemical Industry Co. Ltd. (Japan).
Other reagents were of analytical reagent grade and used
without further purification. Ultrapure water was obtained
with a Millipore-MilliQ system. For water pH-value adjust-
ment, HCl (0.1 mol/L) and NaOH (0.1 mol/L) were used.
1.2. Photochemical experiments

All the photochemical experiments were carried out using a
merry-go-round photochemical reactor (SGY-I, Stonetech
Electric Equipment Co. Ltd., Nanjing, China) equipped with a
water-cooled 350 W Xenon lamp surrounded by 290 nm cutoff
filters to simulate sunlight. The emission spectrum of the
light source was measured by a monochromator (Fig. 1).

Aqueous solutions of NOR (5 μmol/L) were adjusted to the
desired pH with HCl/NaOH in order to avoid possible effects of
buffers (Musa and Eriksson, 2009). The pH values changed
slightly (<0.2) during the photolytic experiments. Photolytic
quantum yields (ΦNOR) were calculated by the following
equation (Dulin and Mill, 1982):

ΦNOR ¼ kNOR
ka

X
IλTλελ;aX

IλTλελ;NOR
Φa ð1Þ

where, the subscript a stands for the chemical actinometer
(p-nitroanisole/pyridine); Iλ and Tλ are the relative light
irradiation intensity and the transmission ratio of the filter,
respectively; ελ,a and ελ,NOR are the molar absorptivity of the
actinometer and NOR at λ, respectively. The wavelength
range was 290–400 nm. The chemical actinometer and NOR
were placed in different tubes. Dark controls were performed
under the same conditions. All the experiments were carried
out at least in triplicate.

1.3. Analytical determinations

The concentration of NOR was determined by a 2695 Waters
Alliance system equipped with a Waters 2475 Fluorescence
Detector (FLD). The FLD excitation and emission wavelengths
were at 278 nm and 445 nm, respectively. A SunFire ODS
reverse-phase column (150 mm × 4.6 mm, 5.0 μm)was coupled
with a SunFire C18 guard cartridge (20 mm × 4.6 mm, 5.0 μm).
The column temperaturewas set at 40°C. Themobile phasewas
acetonitrile (A) and phosphoric acid inwater (0.05%) (B) with the
ratio of 10:90. The flow rate was set at 1 mL/min. The retention
time for NOR was about 7.0 min.

The electron paramagnetic resonance (EPR) experiment was
performed at room temperature using a Bruker model EPR 300E
spectrometer equipped with an in situ irradiation source (500 W
jes
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Xenon lamp, λ > 290 nm). Instrument parameters were as
follows: center field = 3,360 G, sweepwidth = 100 G,microwave
frequency =9.78 GHz, microwave power = 12.7 mW andmod-
ulation frequency = 100 kHz. In order to ensure the compa-
rability of the signal intensity of DMPO-OH adducts among
different samples, solutions with different pH values were all
strictly controlled at the same final concentrations of DMPO
(100 mmol/L), NOR (5 μmol/L) or SRFA (2 mg/L TOC), and in
situ irradiation time of 3 min.

Photolytic intermediates were analyzed by an Agilent 1200
HPLC with an Agilent verified 6410 triple-quadrupole mass
spectrometer equipped with an electrospray ionization (ESI)
source (HPLC–MS/MS). The column used for separation was a
XTerra@MS C18 column (100 mm × 2.1 mm, 3.5 μm). The anal-
ysis was performed using 0.1% formic acid in MilliQ water as
eluent A and acetonitrile as eluent B in gradient elution mode at
flow rate of 0.2 mL/min. The elution gradient startedwith 90%A,
linearly decreasing to 70% A over the first 7 min. The composi-
tion of the mobile phase was maintained for 13 min. At
20.06 min, the percentage of eluent A was increased to 100%
and these conditions were held for 0.84 min before the initial
mobile phase compositionwas restored at 23 min. After gradient
elution, the column was equilibrated for 7 min before the next
injection. The mass spectrometer conditions were: ionization
mode: ESI, positive mode; scan range: m/z: 150–500; drying gas
flow: 8 L/min; drying gas temperature: 300°C; fragmentor: 150 V;
nebulizer pressure: 35 psi; capillary voltage: 4000 V.
2. Results and discussion

2.1. Direct and self-sensitized photolysis of different dissociated
species of NOR

NOR, (with pKa,1 of 6.30 and pKa,2 of 8.38), has three dissociated
species at varyingpH, as shown in Fig. 2.Aroundneutral pH (7.5),
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Fig. 2 – The different protonated states of norfloxacin depending
and (d) anionic NOR.
the carboxylic group of NOR is deprotonated and the peripheral
piperazine nitrogen atom is protonated, leading NOR to be
predominantly present as a zwitterion. The fractional distribu-
tion of the three dissociated species was calculated and shown
in Fig. 3a. At pH 9.5 more than 90% of the NOR is in its anionic
form due to the deprotonation of the carboxylic group, whereas
at pH 4.5 the cationic species is prominent due to the proton-
ation of the peripheral piperazine nitrogen atom. Therefore,
pH 4.5, 7.5 and 9.5 were selected in the following work to
investigate the phototransformation behaviors of different
dissociated species of NOR.

The direct and self-sensitized photolysis experiments of
different dissociated species of NOR were conducted first to
enable the comparison between the absence and presence of
some quenchers of reactive species. In the dark controls, no
obvious loss of NOR was observed, indicating that the decay
by microbiological, thermal, or hydrolytic means was negligi-
ble during the photolysis experiments. It is clearly shown in
Table 1 that the photolysis rate constants of NOR (kNOR) in
pure water exhibited strong pH dependence due to changes in
speciation, which is consistent with the previous reports on
FQ photolysis (Ge et al., 2010). Quantum yields for each species
of NOR (Table 1) were calculated according to Eq. (1) based on
the rate constants, absorption spectra (Fig. 3b) and emission
intensities of the lamp. The obvious difference among
quantum yields of the three dissociated species explained
the differences in their photodegradation activity, giving one
primary reason that the observed photolysis rate constants
(kNOR) of the zwitterionic and anionic species were almost
seven times faster than that of the cationic species. Another
important explanation for this difference was exhibited by
EPR spectra of cationic, zwitterionic and anionic NOR solu-
tions in Fig. 7 (dash line). In the spectra, the 4-line character-
istic of the DMPO-OH adduct was clearly observed, and the
signal intensity of cationic NOR was much weaker than the
others, indicating that the quantity of UOH generated from the
jes
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photolysis of cationic NOR was less than that of zwitterionic
and anionic NOR. Thus UOHwas presumably another principal
element inducing the tremendous difference of kNOR between
cationic species and zwitterionic and anionic species. Fur-
thermore, the generation of UOH would probably accelerate
the self-sensitized photolysis of NOR.

The addition of isopropanol (IPA, UOH quencher) in pure
water induced a pronounced retardation of the photolysis rate
for the three NOR species (Fig. 4), indicating that their
photoreactions involved self-sensitized photooxidation via
UOH. The addition of NaN3 (UOH and 1O2 quencher) in pure
water markedly inhibited the photodegradation of zwitter-
ionic and anionic NOR. The more significant inhibitive effect
of NaN3 than that of isopropanol suggested that the zwitter-
ionic and anionic forms of NOR also underwent 1O2-mediated
self-sensitized photolysis. The contribution of UOH and 1O2

was calculated by the following equations:

R�OH ¼ k�OH
kNOR

≈
kNOR−kIPA

kNOR
ð2Þ

R1O2 ¼
k1O2

kNOR
≈
kIPA−kNaN3

kNOR
ð3Þ

where, RUOH and R1O2 are the contribution ratio of UOH and 1O2,
respectively, k�OH and k1O2 are the self-sensitized photolysis
kinetics rate constants of UOH and 1O2, kNOR, kIPA, and kNaN3 are
the photolysis kinetics rate constants of NOR in pure water
and with the presence of IPA or NaN3, respectively. The
calculated RUOH for cationic, zwitterionic and anionic NOR was
27%, 22%, and 17%, respectively, indicating that the effect of
UOH decreased with increasing pH. The calculated R1O2 for
cationic, zwitterionic and anionic NOR was approximately 0,
5% and 39%, respectively, indicating the effect of 1O2 rose with
c.c
n

Table 1 – Photolytic rate constants ( kNOR ) and quantum
yields (ΦNOR) of different dissociated species of NOR in pure
water.

pH Dissociated species kNOR (hr−1) ΦNOR

4.5 Cationic NOR 0.95 ± 0.02 5.00 × 10−3 ± 0.10 × 10−3

7.5 Zwitterionic NOR 6.98 ± 0.43 4.00 × 10−2 ± 0.25 × 10−2

9.5 Anionic NOR 6.53 ± 0.20 3.96 × 10−2 ± 0.12 × 10−2
 c.a

the increase of pH. As the effects of UOH and 1O2 on the
photolysis of NOR species were opposite, and DOM is
considered a sink both for UOH and 1O2, it was reasonable to
hypothesize that DOM would produce different impacts on
the photolysis of NOR species.

Considering that the formation of UOH and 1O2 in pure
water is caused by the reaction of triplet excited states of NOR
(3NOR⁎) with water molecules and ground state oxygen, the
influence of triplet excited states of NOR species on photolysis
was investigated. The addition of sorbic acid (SA, a triplet
quencher, Velosa et al., 2007) in pure water indeed induced a
significant inhibition on the photolysis of all three NOR
species (Fig. 5), moreover, the inhibition of triplet excited
states increased with the increase of pH. These results
indicated that at pH 7.5 and 9.5, NOR species were easily
transformed to 3NOR⁎ under the irradiation of simulated solar
light. The 3NOR⁎ will further influence the photodegradation
of NOR either by forming UOH and 1O2, or by fragmenting. The
clear existence of kinetic constant difference among the three
NOR species with the addition of SA, meant differences in
their behavior in direct and self-sensitized photolysis in pure
water. Therefore, it is logical to deduce that the effects of DOM
on the degradation of NOR include the influences on direct
photolysis of NOR and fragmenting of NOR caused by 3NOR⁎,
in addition to the quenching of UOH and 1O2 (as mentioned
above).

2.2. Effects of DOM on NOR photolysis

The effect of DOM on the photolysis of NOR was investigated
by the calculation of the light screening factor (Sλ) of DOM and
kDOM, wherein kDOM is the rate constant reflecting the effect of
DOM on NOR photolysis, and Sλ of DOM was calculated as
follows (Miller and Chin, 2002):

Sλ ¼ 1−10−αλ l

2:303αλl
ð4Þ

where, Sλ is the screening factor, the smaller the Sλ value, the
heavier the screening effect; αλ (cm−1) is the wavelength
specific attenuation coefficient of DOM; l (cm) is the path
length of the tubes used in photochemical experiments.

Three kinds of DOM from different sources (SRFA, ESHA,
LHA), which were confirmed to be able to produce UOH by EPR
jes
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Table 2 – Light screening factor of three kinds of dissolved
organic matter (DOM) for wavelengths 290–400 nm.

DOM concentration
(mg/L TOC)

Sλ

SRFA ESHA LHA

2 0.98 0.91 0.90
5 0.89 0.80 0.79
10 0.76 0.63 0.64

SRFA: Suwannee River fulvic acid; ESHA: Elliott soil humic acid;
LHA: Leonardite humic acid.
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detection, were chosen to assess the effect of DOM on NOR
photolysis. As shown in Table 2, the three kinds of DOM were
found to have a light screening effect, without exception, since
all the Sλ values were below 1.0 (Miller and Chin, 2002). The light
screening effect of DOM became stronger with the increase of
concentration. DOM from different sources showed similar
tendencies, with no obvious differences. Thus, DOM competi-
tively absorbed actinic photons (λ = 290–400 nm) in thepresence
of NOR, resulting in the retardation of NOR direct and
self-sensitized photolysis.

The photolysis rate constants (kDOM) caused by the impact
of DOM on NOR photolysis can be described by the following
equation (Miller and Chin, 2002):

kDOM ¼ kobs −kNORSλ ð5Þ
where, kobs is the rate constant of NOR photolysis in the
presence of DOM, kNOR is the direct and self-sensitized
degradation rate constant in pure water. Apparently, a positive
kDOM value indicates that DOM has an enhancing effect on NOR
photolysis, and a negative kDOM value indicates DOM causes
inhibition of NOR photolysis.

The impacts of DOM on sensitized photolysis of three NOR
species were evaluated with different concentrations and
kinds of DOM. A significant difference in DOM influence was
observed on sensitized photolysis of the three NOR species
(Fig. 6). For zwitterionic and anionic NOR, the three kinds DOM
caused obvious inhibition. Nevertheless, the impacts of DOM
on cationic NOR photolysis varied with its concentration,
facilitating cationic NOR photolysis at lower concentrations
(from 2 to 5 mg/L TOC, approximating natural sea water
(Jeong et al., 2014)), and restraining cationic NOR photolysis at
higher concentrations (10 mg/L TOC, approximating natural
estuarine water (Abril et al., 2002)). Because at pH 7.5 and 9.5,
NOR species were more easily transformed to 3NOR⁎ under
simulated solar light irradiation compared with pH 4.5 (Fig. 5),
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http://www.jesc.ac.cn


c.a
c.c

n

-0.4

-0.2

0.0

0.2

0.4

0.6

Concentration (mg C/L)

Concentration (mg C/L)

Concentration (mg C/L)

105

k D
O

M
 (h

r-1
)

k D
O

M
 (h

r-1
)

k D
O

M
 (h

r-1
)

SRFA ESHA LHA

2

a

-5

-4

-3

-2

-1

0

b

10522

-5

-4

-3

-2

-1

0

c

1052

Fig. 6 – kDOM values of three DOM for (a) cationic, (b) zwitterionic
and (c) anionic species of NOR.

X [G]

 Cationic NOR
Cationic NOR+SRFA

3300 3320 3340 3360 3380 3400 3420

 Zwitterionic NOR
 Zwitterionic NOR+SRFA

 Anionic NOR
 Anionic NOR+SRFA

Fig. 7 – Comparisonof the EPR signal intensity of theDMPO-OH
adduct in different NOR species containing solutions in the
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the quenching by DOM of 3NOR⁎ (leading to the inhibition of
fragmenting of NOR caused by 3NOR⁎ and the quenching of
UOH and 1O2) was attributed to the inhibiting effect of DOM on
sensitized photolysis of zwitterionic and anionic NOR. More-
over, with increased DOM concentration, the quenching of
3NOR⁎ by DOM increased, leading to stronger suppression to
zwitterionic and anionic NOR photolysis. Although the
inhibition effect of DOM was also present during photolysis
of cationic NOR (pH 4.5), the enhancement of its photolysis by
DOM outweighed its inhibition at lower concentrations of
DOM, indicating that the cationic NOR photolysis underwent
DOM-mediated sensitized photolysis in this case. At higher
concentration of DOM (10 mg/L TOC), however, the inhibiting
effect of DOM on cationic NOR photolysis outweighed its
enhancement. In addition, DOM from different sources
showed similar influencing tendencies on the photolysis of
NOR species, but to different degrees. These differences were
caused by the diversity of chromophoric functional units
undergoing excitation on DOM from different sources (Nkhili
et al., 2014).

Considering the similarity of DOM in natural water and the
smaller difference among the influences of the three kinds of
DOM on NOR photolysis (Fig. 6), SRFA (an aquatic DOM) was
chosen as representative DOM to perform the EPR experi-
ments to observe its influence on the concentration of UOH
generated during photolysis of different NOR species. Com-
paring the signal intensity of the DMPO-OH adduct generated
in solutions of different NOR species with and without SRFA
shown in Fig. 7, it was apparent that concentrations of UOH
generated in zwitterionic and anionic NOR solutions were
reduced to a great degree in the presence of SRFA, meaning
the quenching of UOH by SRFA, which was attributed to the
inhibiting effect of SRFA on sensitized photolysis of zwitter-
ionic and anionic NOR. However, SRFA at the current
concentration caused little inhibition of the photosensitiza-
tion of cationic NOR, indicating that the facilitation of cationic
NOR photolysis at lower DOM concentration was not caused
by UOH enhancement. Nevertheless, DOM is composed of
multiple chromophoric functional units, such as carboxyl and
phenolic groups (Thurman and Malcolm, 1981), which can be
influenced by the circumambient pH value. Therefore, the
addition of SRFA with low concentration would give rise to
enhancement of other reactive species (3NOR⁎, 1O2) rather
than UOH at pH 4.5, and thus induced the outweighing of
sensitization compared to inhibition of SRFA. The results
suggested that the impact of DOM on NOR photolysis was
related to the direct and self-sensitive photolysis activity of
NOR species and the concentration and components of DOM.
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2.3. Identification of the intermediates of NOR photolysis

Some selected intermediates of different NOR species during
the photolysis process in the presence or absence of DOM were
identified and quantified by HPLC–MS/MS (Fig. 8), referring to
themechanism of FQ photolysis proposed in previous literature
(Burhenne et al., 1997; Sturini et al., 2012). Considering the
0 100 150
0.0

0.5

1.0

1.5

2.0

2.5

×104

×104

×104

a

Time (min)

A
re

a

P294 P294
P233 P233

0 100 150
0.0

0.4

0.8

1.2 b

Time (min)

A
re

a

P276
P276

P318
P318

P302
P302

0 5

0 5

0 50 100 150
0.0

0.4

0.8

1.2

Time (min)

A
re

a

P263
P263

P318
P318

c

Pure water:
SRFA:

Pure water:
SRFA:

Pure water:
SRFA:

Fig. 8 – Evolution profiles of the photoproducts of cationic
(a), zwitterionic (b) and anionic (c) species NOR in pure water
and 5 mg/L TOC SRFA.
similarity of DOM in natural water and minor differences
among the influences of three kinds of DOM onNOR photolysis
(Fig. 6), SRFA (an aquatic DOM) was chosen as representative
DOM to comparatively investigate the influence of DOM on the
photolysis pathways of NOR species. SRFA had little impact on
the distribution of photolysis intermediates, but showed its
impact on the concentration evolution of intermediates. It
should be noted that the photolysis intermediates of different
NOR species and the influences of SRFA on the intermediate
concentrations of different NOR species were quite different.
For example, P294 and P233 (the chemical structures of all
intermediates are shown inFig. 8)were onlydetectedduring the
photolysis of cationic NOR, P276, P318 and P302 were the
intermediates detected during the photolysis of zwitterionic
NOR, and P263and P318were the intermediates detectedduring
the photolysis of anionic NOR. Comparing the intermediate
concentrations with SRFA or not, it was found that SRFA
facilitated the production of P294 and P233 as the intermediates
of cationic NOR, however, it inhibited the production of P276,
P318 and P302 as the intermediates of zwitterionic NOR and the
production of P263 and P318 as the intermediates of anionic
NOR. The results suggested that DOM had different influences
on the photolysis of NOR species, which is consistent with the
results from the comparison of kDOM values of different NOR
species (Fig. 6).

P294 and P233 were formed by cleavage of the piperazine
side chain. P302 and P318 were generated by defluorination,
and P276 was the further cleavage product of the piperazine
ring of P302. P263 was formed by oxidation of the piperazine
ring. According to the identified intermediates and the
changes in their concentrations, and combined with the
photolysis intermediates of NOR and the primary photolytic
pathways for other FQs proposed by other researchers
(Burhenne et al., 1997; Wei et al., 2013; Sturini et al., 2012),
the primary photolytic pathways were inferred to include
defluorination, cleavage of the piperazine side chain, and
photooxidation (Fig. 9).
3. Conclusions

The present work demonstrates the impact of DOM on the
photolysis of different dissociated species of NOR, and discusses
the mechanism of the DOM effect on NOR photodegradation.
The impact of DOM is related to the photolysis mechanisms of
different NOR species and their concentration and components.
Clearly the mechanism of DOM influence on the photolysis of
NOR species in real natural water is more complicated than the
one proposed in the present work, since the components in
natural water are more complicated than in the experimental
conditions. However, the results presented by this work are
helpful for accurate risk assessment of ionizable organic
chemicals, like many antibiotics.
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