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This work investigated the application of several fluorescence excitation–emission matrix
analysis methods as natural organic matter (NOM) indicators for use in predicting the
formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Waters from four
different sources (two rivers and two lakes) were subjected to jar testing followed by 24 hr
disinfection by-product formation tests using chlorine. NOM was quantified using three
common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and
specific ultraviolet absorbance as well as by principal component analysis, peak picking,
and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of
THMs and HAAs, principle component (PC) scores resulted in the lowest mean squared
prediction error of cross-folded test sets (THMs: 43.7 (μg/L)2, HAAs: 233.3 (μg/L)2). Inclusion
of principle components representative of protein-like material significantly decreased
prediction error for both THMs and HAAs. Parallel factor analysis did not identify a
protein-like component and resulted in prediction errors similar to traditional NOM
surrogates as well as fluorescence peak picking. These results support the value of
fluorescence excitation–emission matrix–principal component analysis as a suitable NOM
indicator in predicting the formation of THMs and HAAs for the water sources studied.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Chlorine remains as a common disinfectant used by water
utilities which, when added to natural waters, forms potentially
hazardous organic halides through reactions with natural organic
material (NOM) (Richardson and Postigo, 2012). Disinfection
byproduct (DBP) control and regulation for utilities using chlorine
typically revolve around two organic halide groups, trihalometh-
anes (THMs) and haloacetic acids (HAAs), which are reported to
occur at the highest concentrations (Hua and Reckhow, 2007).

To facilitate DBP control, efforts have been directed towards
developing predictive models. A common source of error in such
onto.ca

o-Environmental Science
models is estimation of NOM concentration. NOM is a complex
mixture of humic and fulvic acids, proteins, carbohydrates, as
well as other groups of organic compound classes (Her et al.,
2003), all of which have unique reactivity with oxidants to form
DBPs (Barrett et al., 2000). Historically, predictive DBP models
most commonly utilize NOM estimation parameters including
total organic carbon (TOC), dissolved organic carbon (DOC),
UV-absorbance (UVA) at 254 nm, and specific UV-absorbance
(SUVA) (Sadiq and Rodriguez, 2004; Chowdhurry et al., 2009).
However, these parameters provide little or no information on
individual NOM fractions. It is postulated that methods which can
separately quantify reactive fractions will improve the accuracy of
DBP formation models.
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Table 1 – Source water characteristics.

Otonabee Lake Lake Ottawa
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Analysis using fluorescence excitation–emissionmatrices (FEEM)
has been gaining traction as a promising method for determining
information regarding organic matter composition and function in
water (Zepp et al., 2004; Bieroza et al., 2010). Several components of
NOM fractions exhibit unique fluorescence signatures that allow
them to be distinguished in a fluorescence spectrum or FEEM. The
excitation–emission position of the peak is representative of
compound and/or functional groups; peak intensity is correlated
with concentration (Bieroza et al., 2010). A variety of FEEM analysis
techniques are described in the literature, with themajority tracking
intensity changes at a fewselectedwavelengths (Murphyet al., 2011),
whereas some incorporate changes to peak shape and position
(Roccaro et al., 2009). Molecular structure has a noted effect on peak
position which may have a degree of commonality among distinct
molecules. By peak picking, the nature of overlapping structural
properties between potentially relevant fluorophores is neglected
(Persson andWedborg, 2001).

To account for this overlapping nature of organic classes
the application of multivariate analysis techniques have been
successful (Stedmon et al., 2003; Peiris et al., 2010). Common
advanced analysis techniques involve using two-way principal
component analysis (PCA) and multi-way parallel factor (PARAFAC)
analysis (Bahram et al., 2006; Stedmon et al., 2003). These techniques
provide significant dimensionality reduction, while incorporating
the entire fluorescence spectrum (Bieroza et al., 2010). Unlike
PARAFAC, PCA models have rotational freedom (Stedmon et al.,
2003) such that loading values do not necessarily represent real
profiles, however will capture a higher degree of variance within the
dataset (Bro, 1997). Further to the lack of rotational freedom when
using PARAFAC, commonly employed constraints of unimodality
and non-negativity allow for much greater interpretability of results
in the context of individual organic matter components.

Several studies have reported the application of fluorescence-
based measurements to determine NOM reactivity and predict DBP
formation with varying degrees of success. Hao et al. (2012) reported
strong correlations (R2: 0.87 to 0.95) between fluorescence intensity
for selected humic and fulvic acid peaks as well as THM and HAA
formation potential in reclaimedwater. Pifer and Fairey (2012) found
increased correlation strength between a humic-like fluorophore
and chloroform (R2: 0.84) using PARAFAC, in comparison to SUVA
(R2: 0.51). Hua et al. (2010) identified a slight increase in correlation
between two PARAFAC factors and total THM concentrations when
compared to SUVA (R2: 0.58 vs 0.64, 0.54 vs. 057) for a large range of
THM concentrations (100–600 μg/L).

This work set out to apply PCA to fluorescence spectra for the
prediction of THM and HAA formation in four different source
waters to compliment recent results using the PARAFAC ap-
proach. Unlike with PARAFAC, PCA was used with the objective of
reducing dimensionality representation of the FEEM rather than
for identifying individual components in the fluorescence spectra.
It was hypothesized that an increased variance explained by PCA
along with constraints of component orthogonality would ensure
variable independence in the DBP model and could improve
prediction of DBP formation for varying water types and precursor
concentrations. As such, the FEEM–PCA approach is compared to
traditional NOM indicators, including DOC, UVA, SUVA, as well as
PARAFAC and peak picking.
c.a
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River Simcoe Ontario River

DOC (mg/L) 5.6 4.1 2.4 5.9
UVA at 254 nm (1/cm) 0.128 0.065 0.017 0.200
SUVA (L/(mg·m)) 2.29 1.66 0.71 3.39
Alkalinity
(mg/L as CaCO3)

101 121 87 35

pH 8.3 8.2 8.3 7.4

DOC: dissolved organic carbon; UVA: ultraviolet absorbance; SUVA:
specific ultraviolet absorbance.
1. Material and methods

1.1. Source waters

Four distinct natural surface waters in Ontario, Canada, were
selected to cover a range of NOM concentrations (2.4–5.9 mg/L
DOC) and represent both lakes and river sources. Water
quality parameters are provided in Table 1.
1.2. Jar tests

A bench-scale jar test approach was used to simulate conven-
tional water treatment, including coagulation, flocculation,
sedimentation, and filtration. All waters were coagulated with
aluminum sulfate (alum) (General Chemical, Parsippany, New
Jersey, USA). To ensure a range of DOC alumwas dosed between
5 and 70 mg/L (5, 10, 20, 30, 40, 50, 60, 70 mg/L alum or 0.45, 0.89,
1.78, 2.67, 3.56, 4.45, 5.34, 6.23 mg/L as Al). Tests were conducted
using a PB-700 Standard Jar Tester paddle stirrer with six square,
acrylic 2 L square containers (Phipps & Bird, Richmond, Virginia,
USA). The test protocolwas adapted from theUSEPA's Enhanced
Coagulation Guidance Manual (US EPA, 1999). Coagulation was
simulated through rapidmix (100 r/min) for 1.5 min followed by
reducing the mixing speed to 30 r/min for 15 min to provide
flocculation. To simulate sedimentation, the water was then
allowed to stand for 30 min. Vacuumfiltrationwas appliedusing
1.2 micron glass microfiber filters (Whatman, Florham Park, NJ,
USA) to represent anthracite–sand media filters. The finished
water was analyzed for organic material and pH. For DOC
analysis the water was also filtered through 0.45 micron
membrane filters (Pall Corporation, Port Washington, NY, USA)
to ensure that all particulates had been removed (US EPA, 1999).

1.3. Disinfection byproduct formation and analysis

To ensure consistent conditions, the pH of the finished water
was adjusted to 7.0 ± 0.1 using sulfuric acid or sodiumhydroxide
post-filtration, prior to chlorination. Chlorine dosages of 2.5 and
3.5 mg/L were applied to represent those typically used at water
treatment plants associatedwith the source waters. Chlorinated
samples were sealed head space free in pre-cleaned chlorine
demand free (acid washed, distilled water rinse, soaked in dilute
sodiumhypochlorite solution for 8 hr) and incubated at 21 ± 1°C,
for 24 hr. The free chlorine residual was then measured (0.02 to
2.54 mg/L) and the remaining chlorine quenched using ascorbic
acid (50 mg/L) (Westerhoff et al., 2005). Duplicate samples were
then sealed head space free and retained for DBP analysis. All
waters were tested for THM formation and all except Lake
Simcoe were analyzed for formation of nine haloacetic acids
(HAA9).

Trihalomethane analysis was conducted using EPA liquid–
liquid extraction Method 551.1 using methyl tert-butyl ether
(MTBE) (US EPA, 1995); for HAA9, EPAMethod 552.3 was used (US
EPA, 2003). This allowed for quantification of four THM species
and nine HAA species listed in the methods. Analyses were
conducted using a Hewlett Packard 5890 Series II Plus gas
jes
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Table 2 – Locations of peaks a and b in each source water.

Peak Excitation/emission of peak (nm/nm)

Otonabee
River

Lake
Simcoe

Lake
Ontario

Ottawa
River

a 280/430 280/437 280/428 280/437
b 340/434 340/431 340/429 340/443
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chromatograph (Hewlett Packard, Mississauga, ON, Canada)
equipped with an electron capture detector and a J&W Science
DB-5.625 durabond column (length: 30 m, inner diameter:
0.25 mm, film: 0.25 μm) (Agilent Technologies Canada Inc.,
Mississauga, ON, Canada). Injections were run in splitless
mode, with helium as the carrier gas and an argon/methane
(95%/5%) mix as make-up gas.

1.4. DOC, TOC, and UVA measurements

Concentrations of DOC and TOC were determined via heated
persulfate oxidation using an Aurora 1030 organic carbon
analyzer (O.I. Analytical, College Station, TX, USA) following
Standard Method 5310 D (APHA, 2005). UVA at 254 nm was
determined using a CE 3055 model spectrophotometer (Cecil
Instruments, Cambridge, UK) with a quartz cuvette following
Standard Method 5910 B (APHA, 2005).

1.5. Fluorescence spectra collection

FEEMs were collected using a Luminescence Spectrometer
LS50B (Perkin-Elmer, Waltham, MA, USA). No pre-treatment of
the samples was applied, except that all had been previously
adjusted to a pH of 7.0 ± 0.1. A common pH among samples
ensured that fluorescence characteristics of the acidic func-
tional groups in humicmolecules remained constant (Mobed et
al., 1996). Possible inner-filtering effects, which cause peak
shifts and intensity reduction, were not accounted for since it
has been reported that effects are not expected below 25 mg/L
TOC (Henderson et al., 2009). Collection of intensity values
occurred within excitation–emission ranges of 250–380 (10 nm
increment) and 300–600 nm (1 nm increments), respectively.
Scan rate was set to 600 nm/min, slit width 10 nm, and
photomultiplier tube voltage 775 V. Instrument settings were
determined basedon rangesused inprevious studies (Bieroza et
al., 2010), that were shown to increase resolution (Peiris et al.,
2009), and in-house testing to optimize FEEM collection.
UV-Grade polymethylmetacrylate cuvettes (VWR, Mississauga,
ON, Canada) with four optical windows were used which have
been shown to be appropriate for the purpose of distinguishing
NOMelements using fluorescence (Peiris et al., 2008). Spectra for
Milli-Q®water were subtracted from intensity values of sample
spectra to reduce background noise effects.

To track any potential instrumental changes, Milli-Q®
samples that were collected over the experimental period
were compared using the uncorrected matrix correlation
method. This method allows comparison of two entire
matrices and indicates similarity using a value from 0 to 1
(1 representing a perfect correlation). Using this technique the
relative mean square error (RMSE) between the matrices can
be estimated (Burdick and Tu, 1989). All matrix correlations
had RMSE values below 0.06 indicating a high degree of
similarity between Milli-Q® spectra and supporting instru-
ment and hardware stability during the experimental period.

1.6. Fluorescence data analysis

Each sample produced a total of 4214 fluorescence intensity
values at unique excitation–emission wavelength pairs. In total,
35 different sampleswere run in duplicate (70 FEEMs collected in
total). Prior to data analysis using PARAFAC or PCA, Rayleigh
scattering regions were removed with a 15 nmmargin. Further-
more, emissions above second order (emission twice the
excitation wavelength) and below first order (emission equal to
excitation wavelength) were removed. For PCA, each variable
(excitation/emission pair), wasmean centered and scaled to unit
variance in order to remove bias towards compounds and
spectral regions with higher variability. PCA was performed
using R V3.0.2 (R Core Team, 2013). PARAFAC analysis was
implemented using the N-way toolbox (Andersson and Bro,
2000) in MATLAB 7.12.0 (MathWorks, Natick, MA, USA). Con-
straints of non-negativity were used in all modes and
un-modality for excitation and emission modes. A second
model was made without constraints for comparison. Spectra
were pre-processed with scaling and centering, as described by
Bro (1997). A peak picking method was implemented using
scripts written in R V3.0.2. Locations of distinctive peaks were
identified from the fluorescence spectra of raw water. The
fluorescence intensity at this excitation/emission pair was then
used to track peak intensity changes between samples.
2. Results and discussion

2.1. Fluorescence results from jar tests

Fluorescence intensity values for each coordinate pair were
plotted to visualize the spectra. Based on the location of the
two main intensity peaks (Table 2) and comparison to the
literature, peak a was attributed to represent fulvic-acid type
matter (Ex/Em: 270 nm/430 nm) while peak b represented
humic-acid type material common to fresh waters (Ex/Em:
340 nm/435 nm) (Murphy et al., 2008; Chen et al., 2003). Peaks
of high intensity at Ex/Em: 250–300/500–600 nm and Ex/Em:
300–380/300–380 nm are representative of the second and the
first order Rayleigh scattering, respectively, which are related
to the concentration of particulates in the sample (Peiris et al.,
2010). Other studies have reported a third peak in the region
Ex/Em: 250–290/300–350 nm, which is attributed to protein-
like material (Chen et al., 2003). This peak was not apparent in
the raw fluorescence spectra from this study. Each of the four
water sources differed in overall intensity of peaks a and b;
however their presence and location were approximately
consistent, when considering peak locations (Table 2, Fig. 1).

PCA was applied to the dataset of 140 spectra with scat-
tering regions removed (all water sources; 70 unique samples
in duplicate). The majority of the variance in the dataset was
explained by the first two principle components; 87.94% and
7.82% variance explained by PC1 and PC2, respectively (Fig. 2).

Spectral regions represented by each PCwere identified using
loading values. Loading plots for the first 6 principal components
jes
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are shown in Fig. 2 along with the variance explained. PC1 is
generally attributed to humic-like material (Peiris et al., 2010);
however there were no pronounced peaks for the water sources
examined in this study. The broad area of high loading values
(in thenegative direction) in PC1 indicated that this region varied
equally between samples after the data wasmean centered and
scaled. The most pronounced loading values from PC2 in low
excitation/emission regions (Ex/Em: 250–290/300–350 nm) have
been identified to be representative of protein-like substances
(Chen et al., 2003). PC3 indicated high loading values in a region
around Ex/Em: 330/375 nmmay be attributed to the presence of
polycyclic aromatic hydrocarbons (Murphy et al., 2008). As with
PC2, high loadings in low excitation–emission regions for PC4
and PC5were thought to represent solublemicrobial byproducts.
PC6 shows a high degree of similarity to PC3, although there
were pronounced negative loading values in fulvic-acid like
regions. Based on the wide regions in the loading plots, it
should be emphasized that each PC did not represent singular
compounds. As such, labels of humic-like and protein-like are
used to most accurately represent the compound classes
identified. Furthermore, the intention of applying PCA was not
for identification of singular components, but rather to provide a
reduced dimensional mathematical representation of the full
fluorescence spectra.

The optimal number of factors to be included in the
PARAFAC solution was determined to be 2 through analysis
of sum of squared error and core consistency (Andersen and
Bro, 2003). A good fit is indicated by a core consistency close to
100% as well as minimal error reduction through addition of
another factor. A marked drop in core consistency (82% to
26%) from 2 to 3 factors was found for the constrained model
and conformed well to a minimal reduction in sum of squared
errors shown in Fig. 3. Results from the unconstrained model
demonstrated identical trends.

PARAFAC loading plots were analyzed to determine the
two components identified. Excitation and emission loadings
are shown in Fig. 4. Despite broad excitation loadings, both
factors 1 and 2 resided in the humic-acid like region (factor 1:
Ex/Em 360/450 nm; factor 2: Ex/Em 290/385 nm) (Chen et al.,
2003).
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Fig. 1 – Example raw fluorescence spectra of Ottawa River
raw water.
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2.2. Disinfection by-product formation prediction

All NOM estimation parameters showed a decreasing organic
concentration with an increasing alum dose in filtered water;
THM and HAA concentrations resulting from chlorination also
decreased. Total concentrations of THMs and HAAs varied
from 9.2 to 112 μg/L and from 11.7 to 128 μg/L, respectively
for all waters and chlorine doses. A reduction in DBPs with
increasing coagulant dose was more pronounced for the river
sources. Results from other studies have shown similar
results of decreasing DBP concentrations with increasing
NOM removal following coagulation (Sadiq and Rodriguez,
2004).

For THMs, only trichloromethane (TCM) and
bromodichloromethane (BDCM) were observed above the
method detection limits (MDL) (2.1 to 3.0 μg/L for each specie).
For HAAs, only dichloroacetic acid (DCAA) and trichloroace-
tic acid (TCAA) were greater than the MDL (0.7–9.6 μg/L for
each specie). When considering river source waters at either
chlorine dose, BDCM represented 20%–30% of total THMs and
35%–40% of the total for lake sources. TCAA represented
40%–50% of HAA9 for river sources and 30%–40% for lake
sources. Others have presented similar speciation and total
THM and HAA concentration ranges for waters with low
bromide ion concentrations (<0.01 mg/L) and similar organic
content (2–7 mg/L TOC) (Williams et al., 1996; Ates et al.,
2007).

2.3. DBP modeling

A multi-linear model was developed to fit the DBP data.
Reaction time, chlorination pH, and temperature were con-
trolled to be equal for all waters and samples. Bromide ion
concentrations were not explicitly controlled, although the
only brominated DBP observed above its MDL was BDCM.
Since only organic concentration and chlorine dose were
varied between samples, the model was simplified to only
include these variables:

DBPconcentration ¼ c1 þ c2 � chlorinedoseþ c3

�NOMconcentration

where, c1, c2 and c3 are constants determined via regression.
For NOM measures with more than one variable (i.e. PCA),
each variable was included individually into the model.

Models with respect to DBPs (total THMs and HAA9) and
each NOM indicator (DOC, UVA, SUVA, PC scores, PARAFAC
scores, and peak intensities) were regressed using R. A
cross-fold validation approach was applied where the full
dataset was randomly split into 7 equal sets of 10 samples,
where 6 sets were used to train themodel while the remaining
set was used as test data. Mean squared error (MSE) was
calculated based on the difference between predicted and
actual DBP concentrations in the test set for each cross
validation fold. The average MSE of all folds was used for
comparing model performance. To further ensure that the
average MSE was representative of model performance, a
cross validation was performed 10 times with different ran-
domized training and test sets.
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The optimal number of PCs to be used in the model
was determined by sequentially including PCs 1 to 14 and
observing changes to MSE. A plot of the number of PCs vs.MSE
for prediction of THMs and HAAs is shown as Fig. 5.

Based on the averageMSE of tests sets for prediction of THMs
and HAAs, a clear optimum number of PCs was observed. The
optimum for THMs occurred at 5 PCs while 2 PCs were ideal for
HAAs. Since inclusion of PC3 increased the MSE, modeling with
PCs 1, 2, 4, and 5 resulted in a slightly reduced MSE (change of
1.8 (μg/L)2). MSE of HAAmodelingwas reduced significantlywith
the addition of PC7. However, by combining PCs 1, 2 and 7 error
was not reduced when compared to using only the first two PCs.
Error did not continue to decline with inclusion of greater
 c.a

number of PCs. It is postulated that past an optimum value,
PCs generally represented non-DBP producing fractions and/or
modeled noise in the FEEMs, ultimately introducing error into
the prediction model. Furthermore, it should be noted that
FEEMs can only directly identify fluorescing compounds.
Non-fluorescing compounds, which possibly contribute to DBP
formation, are therefore not directly identifiable through this
method.

PCs 4 to 14 explained less than 1% of the variance in
the dataset; however exhibited a significant impact on THM
modeling error. Inclusion of PC4, which explained 0.55% of
variance, had the most substantial effect. PCs explaining such
low amounts of variance are typically excluded from further
jes
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Table 3 – Results from optimized multi-linear models.

Natural organic matter
(NOM) surrogate

Mean squared error
((μg/L)2)

Trihalomethanes
(THMs)

Haloacetic
acids
(HAAs)

Dissolved organic carbon 137.5 406.1
Ultraviolet absorbance 97.8 247.0
Specific ultraviolet abosrbance 68.2 480.2
Principal components 1, 2, 4, 5 43.7 –a

Principal components 1, 2 –a 233.3
Peak a and b 81.1 242.3
Parallel factors analysis
(2 factors; constrained)

96.3 266.8

Parallel factors analysis
(2 factors; no constraints)

94.9 264.1

a Optimized models for THMs and HAAs required differing
numbers of principal components, non-optimized results are not
shown.
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analysis (Peiris et al., 2010), although appear to be important in
this application and waters studied. Loading values for this PC
showed positive representation of Ex/Em region 300–320/340–
350 nm, which potentially are characteristic of aromatic amino
acids (Murphy et al., 2008). The PC also had negative re-
presentation at lower excitation/emission wavelengths, also
representative of soluble microbial by-products or protein-
like substances. Similarly for HAAs, PC2 which had strong
representation of protein-like material and reduced the average
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MSE of test sets to a minimum. This suggests that a portion of
THM and HAA formation occurred from protein-like material,
which is supported by previous studies (Huang et al., 2009;
Henderson et al., 2008).

In comparison to other NOM characterization measures,
including DOC, UVA, and SUVA, as well as other fluorescence-
based measures, PC scores demonstrated the lowest average
MSE for both THMs and HAAs (Table 3). Errors for all THM
models were markedly lower than those for HAAs. Example
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THM models using each organic matter surrogate are shown
in Fig. 6. Using PC scores, the line of best fit for actual vs.
predicted THM values conformed well with the ideal 1:1 slope;
all other surrogates showed underestimation at high concen-
trations and overestimation at low concentrations. Similar
results for HAA prediction were also observed (not shown).
DOC did not represent NOM reactivity for formation of THMs
or HAAs well and, in particular, when considering low organic
content samples from Lake Ontario. Fluorescence and UV
based measures better accounted for NOM reactivity for DBP
formation, likely due to better representation of aromatic
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structures which have been shown to be correlated with DBP
formation (Chen et al., 2003; Barrett et al., 2000).

Error rates from PARAFAC results were similar to SUVA
and peak picking for both THMs and HAAs. The constraints of
non-negativity and unimodality applied to the PARAFAC
model were chosen for better representation of individual
fluorophores. In this way, two modeling approaches, one
utilizing more pure representation of individual components
and the other with abstract mathematical representations
(PCA), were compared. While the components identified
from PARAFAC were much more interpretable, it resulted
jes
c.a

c.c
n

Pr
ed

ic
te

d 
TH

M
s (

μg
/L

)
Pr

ed
ic

te
d 

TH
M

s (
μg

/L
)

Actual THMs (μg/L)

Actual THMs (μg/L)

Pr
ed

ic
te

d 
TH

M
s (

μg
/L

)

Actual THMs (μg/L)

1:1 relationship Best fit for training data

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

DOC

SUVA

PARAFAC: 2 factors; constrained

s) vs. predicted THMs) using dissolved organic carbon (DOC),
c ultraviolet absorbance (SUVA), and parallel factors analysis

http://www.jesc.ac.cn


166 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 7 ( 2 0 1 5 ) 1 5 9 – 1 6 7
in increased modeling error when compared to PCA. To
identify the impact of applied constraints, a non-constrained
PARAFAC model was also fitted, which did not yield a
substantial reduction in error.
3. Conclusions

Results from this modeling study demonstrated FEEM–PCA to
be a strong indicator ofNOM reactivity forDBP formation.Multi-
linear modeling using PC scores resulted in the lowest
prediction error for test sets (THMs: 43.7 (μg/L)2, HAAs:
233.3 (μg/L)2) when compared to DOC, UVA, SUVA, PARAFAC,
and fluorescence peak picking. A pronounced optimum number
of PCs were identified which included components representing
less than 1% of the variance in the dataset. For both THMs and
HAAs, inclusion of protein-like components resulted in reduced
prediction error. Modeling results were conducted using pooled
data for four unique water sources, thereby in part identifying
the ability of NOM surrogates to represent reactivity under
different source conditions. Due to variability in NOM compo-
nents in source waters as well as resulting from treatment, the
optimized models of this study are not universally applicable.
Further work is needed to identify suitability of the proposed
approach to a wider range of source waters. While resulting PCs
have vague physical representations of individual NOM compo-
nents, it is hypothesized that the orthogonality of principle
components and limited constraints makes PCA an attractive
method for dimensionality reduction of fluorescence spectra
when results are subsequently utilized in a statistical correlation
model.
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