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The growth and alkaline phosphatase activity (APA) of two raphidophyceae species Chattonella
marina andHeterosigma akashiwowere investigated in response to P-limitation and subsequent
addition of dissolved inorganic phosphorus (DIP, NaH2PO4) and two dissolved organic
phosphorus (DOP) compounds: guanosine 5-monophosphate (GMP) and triethyl phosphate
(TEP). APA levels increased greatly after P-starvationas the decrease of the cellular phosphorus
quotes (Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in
APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP

values in C. marina indicated its high capacity in P storage. APA of H. akashiwowas maximally
enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers
of C. marina increased in all treatments including the P-free culture, demonstrating the higher
endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in
DIP and GMP cultures. APA increased only after the addition of the monophosphate ester
GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P
storage as well as endurance for P-depletion provide this species an ecological advantage in
phytoplankton community competition under DIP-limited conditions.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Nitrogen (N) and phosphorus (P) are two essential elements for the
growth of phytoplankton (Klug, 2006; Mallin et al., 1999). Tradition-
ally, N is considered to be the limiting element in coastal marine
habitats (Codispoti, 1989). As the increase in N loading, P limitation
has become more evident in many sea areas. P deficiency has
been reported for several open-ocean areas and coastal waters
(Thingstad et al., 2005; Vidal et al., 2003). However, this determina-
tion of P limitation is based on the assumption of dissolved
inorganic P (DIP) as the sole source for the growth of phytoplankton,
and neglects to consider that dissolved organic P (DOP) may pro-
vide an alternative source of P to phytoplankton. Actually, DOP
component can comprise a significant portion of the dissolved
u.cn (Zhao-Hui Wang).

o-Environmental Science
total P (DTP) pool in a variety of aquatic environments (Hoppe,
2003; Lomas et al., 2010).

Alkaline phosphatase (AP) is an important enzyme for DOP
hydrolysis, commonly presented in eukaryotic marine algae
(Dyhrman and Ruttenber, 2006). It is typically surface associated
and hydrolyzes inorganic P from phosphor-monoester for assim-
ilation by the cell (Yamaguchi and Adachi, 2010). AP activity (APA)
is thought to be triggered by low inorganic P availability and has
been used as an indicator of P status in a variety of phytoplankton
communities (Dyhrman and Ruttenber, 2006; Hoppe, 2003; Lomas
et al., 2004; Ou et al., 2010). Quite a few harmful algal bloom (HAB)
taxa such as Alexandrium (Jauzein et al., 2010), Karenia mikimotoi
(Huang et al., 2007), Trichodesmium (Orchard et al., 2010), and
Chattonella (Wang et al., 2011; Yamaguchi et al., 2005, 2008) appear
jes
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to have APA and have the competitive advantages in DIP-limited
conditions in terms of DOP acquisition.

A lot of studies have shown the differences among the AP
characteristics of phytoplankton species (Ou et al., 2008; Rengefors
et al., 2003). Our previous study indicated that the abilities in
DOP utilization and P-depletion tolerance varied among HAB
taxa (Wang et al., 2011). The harmful raphidophyceae species
Chattonella marina grew well under varieties of DOP compounds,
and had high ability to sustain in P-free conditions (Wang et al.,
2011). As a HAB species, the first record of C. marina bloom in China
was in 1991 (Qi et al., 1994), and the blooms occurred again in the
Yellow Sea in 1993 and 1995 (Jiao and Guo, 1996). Blooms of this
species have occurred more frequently in sea areas along the
Chinese coast since 2000 (Li et al., 2005; Wang et al., 2006a). The
P strategy of this species may play important roles in its com-
petition in phytoplankton community as the prevalence of its
bloom coincides with P-limitation in Chinese coastal waters (Dong
et al., 2010; Huang et al., 2007).

In this study, the growth and APA of C. marina and Heterosigma
akashiwo were investigated in response to P-limitation and subse-
quent addition ofDIP andDOP compounds. DTP, DIP concentrations
and particulate phosphorus (PP) were measured simultaneously.
The purpose of this study is to compareAP characteristics of the two
taxa, evaluate the role of AP in DOP utilization, and thus better
understand the potential role of the P strategy in phytoplankton
competition.
c.c
n

1. Material and methods

1.1. Algal cultures

Chattonella marina (Subrahmanyan) Hara et Chihara and
H. akashiwo (Hada) Hada were isolated from Daya Bay in
2003. The cultures were maintained in an autoclaved (121°C,
20 min) f/2 media (Guillard, 1973) at 20 ± 1°C, salinity 32,
under 80 μmol photon/(m2·sec) of cool-white fluorescent illu-
mination with a dark:light cycle of 12:12 hr. The stock cultures
were maintained by transferring aliquots of exponentially
growing culture to new flasks containing fresh f/2 media. In
order to eliminate bacterial contamination, antibiotics were
added in stock cultures for the experiments.

1.2. Experimental design

The antibiotic-treated axenic algal cells were harvested from
the stock culture at late log-phase by centrifugation (4000 ×g,
15°C, 10 min), and collected into a 2000 mL Erlenmeyer
flask containing 1400 mL of N, P-free f/2 media. APA and PP
were measured before P starvation. The collected cells were
incubated in conditions as the stock cultures for 24 hr to let
the cells recover from the rough treatment of centrifugation.
Each of 100 mL above collected cells was distributed into
twelve 2000 mL Erlenmeyer flasks with 1100 mL N, P-free f/2
media to make the final volume of 1200 mL. The flasks were
incubated in conditions as the stock cultures for another
48 hr. Cell number, DTP and DIP, PP, and APA were measured
every 24 hr.

Different forms of P compounds were added into the test
flasks after P-starvation for 72 hr. Guanosine 5-monophosphate
(GMP) and triethyl phosphate (TEP)were supplied asDOPsources
as examples of the highly and lowly valuable DOP compounds,
respectively, based on our previous study on DOP utilization of
 c.a

HAB species (Wang et al., 2011), and also the representatives
of the monophosphate and non-monophosphate esters. A
DIP culture (served by NaH2PO4) and P-free culture (P0) were
modified. Each treatmentwas set in triplicate.NaNO3was served
as N source in the experiment. The concentrations of N and P
were 36 and 2.4 μmol/L, respectively, approximating maximum
nutrient concentrations in Chinese coastal fish farm waters
(Wang et al., 2006a). In order to reduce the background N and
P concentrations, the media was made with artificial sea salt
(Red Coral Sea, nutrient free formula) with salinity 31–32 and
pH 7.9 ± 0.1. Cell number, DTP, DIP, PP andAPAwere assessed at
0.5, 3, 6, 12, 24, 48 and 96 hr after the addition of P.

1.3. Cell counting and growth rate

Cell counts were performed in a cell counting chamber, by
placing 0.05–0.1 mL culture into the chamber fixed with a drop
of Lugol's fixative, and observed under an inverted micro-
scope (Leica DMIRB, Germany) at a magnification of 200×.
Each sample was counted more than three times until
differences in cell numbers were less than 10%. Specific
growth rate (μ, day−1) was calculated using the following
equation:

μ ¼ lnN1− lnN0ð Þ= t1−t0ð Þ

where, N0 (cells/mL) and N1 (cells/mL) are cell density values
at times t0 (day) and t1 (day).

1.4. Measurement of APA and other parameters

Fifty milliliter algal cultures were sampled periodically and
filtered ontoWhatman GF/F filters. Twenty-five milliliter filtrate
was used for DIP determination, and another 25 mL for DTP
measurement. Residues in the filters were for PP measurement.
The DIP was determined using the molybdenum blue method
described by Murphy and Riley (1962). DTP and PP were
measured using the persulfate digestion method (Lampman
et al., 2001; Wetzel and Likens, 1995). PP standardized by cell
density was represented as the cellular P quota (QP).

APA was determined spectrophotometrically according
to Wynne (1977) and Kruskopf and Plessis (2004), using
p-nitrophenyl phosphate (pNPP) as substrate. Algal culture
of 10 mL was collected on a 0.2 μm filter and the filters
were stored frozen at −20°C until analysis. The filters with
algal cells were placed in 3 mL of extraction buffer
containing 0.05 mol/L Tris–HCl (pH 9), and immediately
disrupted by sonication (Sonopuls Ultrasonic Homogenizer,
Bandelin) for 30 min with a repeating duty cycle of 0.3 sec
in an ice bath. The cellular homogenate was centrifuged at
35000 ×g for 10 min at 4°C, and the supernatant was used
for enzyme assay. One hundred microliter pNPP (10 mmol/L)
was added to 1.5 mL supernatant, and the reaction mixture
incubated at 30°C for 2 hr. The reaction was stopped by
adding 300 μL NaOH (1 mol/L), and the concentration of the
product (p-nitrophenol, NP) was measured spectrophoto-
metrically (410 nm) using a Shimadzu UV-2450 spectropho-
tometer (Japan). Buffer without sample was used as control.
The enzyme activity is expressed as fmol of NP released at
1 hr per cells (fmol/(cells·hr)).
jes
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Table 1 –Maximum specific growth rate (μ, day−1) of
C. marina and H. akashiwo after the addition of different
compounds of phosphorus. DIP: dissolved inorganic
phosphorus, GMP: guanosine 5-monophosphate, TEP:
triethyl phosphate, P0: P-free culture.

DIP GMP TEP P0

C. marina 0.82 1.03 0.63 0.64
H. akashiwo 0.51 0.27 −0.05 0.14
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1.5. Data analysis

Mean and standard deviation (SD) values were calculated for
each treatment from the three independent replicate cultures.
Student's t-test was performed to compare the test groups
with the relative controls, and significant difference from
each other was observed using SAS for windows v8 software
(SAS Institute lnc., USA).
2. Results

2.1. Growth of C. marina and H. akashiwo

Cell numbers of C. marina increased gradually in P-free culture
(P0) (Fig. 1a). After adding the nutrients (36 μmol/L NaNO3-N
and 2.4 μmol/L different forms of P), cell numbers increased in
all treatments. The maximum specific growth rates between
0.63–1.03 day−1 were obtained at the first 24 hr after adding
the nutrients (96 hr of the experiment) (Table 1). The growth
in DIP and GMP cultures was comparable, while growth in TEP
was inferior to that in P0 culture.

H. akashiwo experienced a lagphase afterN, P-starvation, and
then cell density doubledat 72 hr after adding thenutrients. The
growth varied among treatment cultures after nutrient addition
(Fig. 1b), displayed by rapid increase in cell number in DIP
culture, a 24 hr lag stage and then an increase in GMP culture.
Cell numbers in P0 culture increased a bit and maintained low
numbers during the experiment. The cell densities in TEP
culture decreased and were significantly lower than those in
P0 culture and the other treatments (p < 0.01), which indicated
that H. akashiwo could not utilize TEP. The maximum growth
rates were 0.51, 0.27, −0.05, 0.14 day−1 for DIP, GMP, TEP and P0
cultures, respectively (Table 1).

2.2. Changes in dissolved total phosphorus and dissolved
inorganic phosphorus

The DTP concentrations decreased gradually from ca. 2 to
1.3–1.5 μmol/L after P-starvation (Fig. 2). DTP concentrations
increased shortly after P additions, and decreased sharply
within 12 hr (72–84 hr of the experiment) in DIP and GMP
cultures of C. marina, and thenmaintained at about 1.5 μmol/L
thereafter. However in these two cultures of H. akashiwo, DTP
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Fig. 1 – Growth of C. marina and H. akashiwo in different forms of
different forms of P compounds were added at 72 hr after P-starv
5-monophosphate, TEP: triethyl phosphate, P0: P-free culture.
decreased all the time during the experiment. DTP was in
high levels in TEP cultures, and decreased to a low level in P0
cultures for both species.

The changes in DIP were comparable with those in DTP
during the P-starvation (Fig. 2). DIP concentration increased
shortly after P addition in DIP cultures, while it reached the
maximum in GMP cultures at 3 hr after P addition (75 hr of the
experiment). DIP wasmaintained in low levels in TEP cultures.

2.3. Cellular phosphorus quota in C. marina and H. akashiwo

Cellular phosphorus quotas (Qp) of C. marina decreased quickly
from 134.7 pg P/cell before P-starvation to 43.1 pg P/cell at the
72 hr of P-starvation (Fig. 3). QP increased in all treatments
within 12 hr of P addition (72–84 hr of the experiment), and
then decreased with exposure time as the increase of cell
number (Fig. 1) and the decrease of DTP and DIP concentra-
tions (Fig. 2). A minimum QP value of 11.7 pg P/cells was
obtained in TEP culture after 96 hr of P addition (168 hr of the
experiment).

Cellular phosphorus quotas of H. akashiwo decreased as
well after P-starvation, from 9.47 to 4.52 pg P/cell at the 72 hr
of P-starvation (Fig. 3). No significant changes in QP were
observed after P addition (p > 0.05). The quick increase of cell
number in the late growth period in DIP and GMP cultures
resulted in low QP, and a lowest value of 2.35 pg P/cells
appeared at 96 hr of P addition in GMP culture. While in TEP
and P0 cultures, QP values maintained low levels all the time.

2.4. Alkaline phosphatase activity in C. marina and
H. akashiwo

APA of C. marina ranged from 4.76 to 46.4 fmol/(cell·hr). APA
increased sharply at 24 hr after P-starvation, and decreased as
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the extension of P-starvation (Fig. 4). APA did not change
significantly after P addition, with a trivial increase in GMP
and P0 cultures and a little decrease in DIP culture. APA kept
almost constant during 24 to 96 hr of P-addition (96–168 hr in
the experiment).

The changes in APA of H. akashiwo to P-starvation were
similar to those of C. marina, except for the delayed response.
APA was between 1.45 and 2.86 fmol/(cell·hr), and was
maximally enlarged about 2.5 times at 48 hr of P-starvation
(Fig. 4). APA in GMP culture decreased at the first 12 hr after P
addition (84 hr in the experiment) and recovered at 24 hr
(96 hr in the experiment), and then decreased. APA decreased
in all the other three cultures, and maintained the low levels
after 24 hr of P-addition (96 hr in the experiment) though
the activity in TEP culture increased at the late period of
exposure.
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Fig. 3 – Cell phosphorus quotas (QP) in C. marina and H. akashiwo
started at 0 hr, and different forms of P compounds were added
phosphorus, GMP: guanosine 5-monophosphate, TEP: triethyl ph
3. Discussion

Cell numbers of C. marina kept on increasing slowly after
nutrient-starvation, and increased in all treatments including
P0 culture after nutrient-addition. The growth in P0 culture
was stimulated by the addition of N in the culture. The results
indicated that C. marina could endure P-limitation, which
coincided with our previous study on nutrient utilization of
C. marina (Wang et al., 2011). On the other hand, H. akashiwo
grew well only at DIP and GMP cultures, suggesting its less
sufferable P limitation than C. marina.

Several methods are applied in themeasurement of APA in
microalgal cells, including cell-specific enzyme-labeled fluo-
rescence measurements (Litchman and Nguyen, 2008; Ou
et al., 2010; Ranhofer et al., 2009), using 3-O-methylfluorescein
jes
c.a

c.c
n

0

2

4

6

8

10

12

0 24 48 72 96 120 144 168

Q
p (

pg
/c

el
l)

noitavats-P retfa sruoH

owihsaka .H

GMP TEP P0

in response to different forms of P compounds. P-starvation
at 72 hr after P-starvation. DIP: dissolved inorganic
osphate, P0: P-free culture.

http://www.jesc.ac.cn


c.c
n

0

10

20

30

40

50

60

0 24 48 72 96 120 144 168
Time (hr)

A
PA

 (f
m

ol
/(c

el
l. h

r)
) C. marina

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 24 48 72 96 120 144 168
Time (hr)

A
PA

 (f
m

ol
/(c

el
l. h

r)
)

H. akashiwo

P-starvation DIP GMP TEP P0

Fig. 4 – Alkaline phosphatase activity (APA) of C. marina and H. akashiwo in response to different forms of P compounds.
P-starvation started at 0 hr, and different forms of P compounds were added at 72 hr after P-starvation. DIP: dissolved
inorganic phosphorus, GMP: guanosine 5-monophosphate, TEP: triethyl phosphate, P0: P-free culture.

5J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 8 ( 2 0 1 5 ) 1 – 7
phosphate (MFP) (Ou et al., 2008), methylumbelliferyl phos-
phate (MUF-P) (Jauzein et al., 2010), pNPP (Kruskopf and
Plessis, 2004), or disodium phenylphosphate (Oh et al., 2010)
as substrate. APA varied greatly amongmicroalgal species, such
as 10–13.4 fmol/(cell·min) (600–804 fmol/(cell·hr)) for toxic dino-
flagellateAlexandrium catenellausingMUF-P as substrate (Jauzein
et al., 2010), 1–3 fmol/(cell·hr) for Prorocentrum donghaiense, and
maximum to 150 fmol/(cell·hr) for Alexandrium catenella, less
than 2 fmol/(cell·hr) for the diatom Skeletonema costatum using
MFP as substrate (Ou et al., 2008), and 0.02–0.7 pmol/(cell·hr)
(20–700 fmol/(cell·hr)) forGymnodinium impudicumusingdisodium
phenylphosphate as substrate (Oh et al., 2010). The APA levels
of 4.76–46.4 fmol/(cell·hr) for C. marina in this study were far
less than those reported for dinoflagellates species A. catenella
(Jauzein et al., 2010; Ou et al., 2008) and G. impudicum (Oh et al.,
2010), howevermuchhigh than those reported for P. donghaiense
and S. costatum (Ou et al., 2008). APA levels for H. akashiwo
were comparable to those of P. donghaiense and S. costatum (Ou
et al., 2008).

APA is inducible by low extracellular DIP concentrations for
manymarine phytoplankton species (Ivancic et al., 2009; Jauzein
et al., 2010; Oh et al., 2010), and increased with decreasing DIP
concentrations in both natural sea waters and batch cultures
(Duhamel et al., 2010; Dyhrman and Ruttenber, 2006; Hoppe,
2003; Huang et al., 2007; Ou et al., 2010). However the threshold
DIP concentrations for AP induction varied greatly among
species, e.g., 0.83 μmol/L for G. impudicum (Oh et al., 2010);
0.4–1 μmol/L for A. catenella (Jauzein et al., 2010), 3.3 μmol/L for
Gymnodinium catenatum (Oh et al., 2002), 1 μmol/L for the natural
phytoplankton community in the southern Baltic Sea (Nausch,
1998), and 0.1 μmol/L in the transition zone of theNorth-western
African upwelling system (Sebastián et al., 2004). Meanwhile the
intracellular P pool and the internal N:P ratio have often been
reported as the potential controlling factor thatmay regulate AP
synthesis (Hoppe, 2003; Lomas et al., 2004; Vidal et al., 2003). In
this study, APA of both species increased quickly as the decline
of DIP levels. The DIP concentrations were about 2 μmol/L
at the maximum enzyme activity. Meanwhile, the synthesis of
AP by C. marina and H. akashiwo appears to be induced and
maximized as soon as P limitation sets in. The responses of
C. marina to P limitation were quicker and stronger, and APA
increased about 10-folds within 24 hr after P-starvation.

After P addition, APA increased only in themonophosphate
ester GMP cultures, and decreased or showed no significant
 c.a

differences in other treatments. The results suggest that
enzyme is required for the utilization of monophosphate
substrates such as GMP, in agreement with that AP is one of
the most common and important enzymes for phosphate
monoester utilization (Yamaguchi and Adachi, 2010). Further-
more the production of AP was not completely inhibited but
only decreased after the relief of P-limitation (DIP culture) as
the same with the results conducted by Štrojsova et al. (2008).

The range of QP values gives an indication of potential
P-storage capacities of algal cells as the ratio between the
maximum and the minimum quotas (Droop, 1974). Large
ranges of minimal and maximal QP values have been
reported for marine phytoplankton species (Jauzein et al.,
2010; Ou et al., 2008; Sakshaug et al., 1984), and suggest
different P requirements and P-storage capacities between
species (Jauzein et al., 2010). In this study, the minimal
(11.7 pg P/cell) and maximal (134.7 pg P/cell) QP values were
recorded for C. marina compared to 2.35 and 9.47 pg P/cell for
H. akashiwo, suggesting high P-storage capacity of C. marina.
Previous studies also showed high P-storage in Chattonella
species (Kimura et al., 1999). The result explained why the cell
number of C. marina kept increasing in P-free culture in this
study and our previous studies (Wang et al., 2011). Another
possibility to overcome P limitation could be the ability of algal
cells to lower their physiological P demand (Bertilsson et al.,
2003; Geider and La Roche, 2002; Krauk et al., 2006). In regions of
oligotrophic oceans where DIP is scarce, phytoplankton reduces
their cellular P requirements by substituting phospholipids with
non-phosphorus membrane lipids (Van Mooy et al., 2009).

Chattonella marina is a HAB specieswhosemassive presence
in Chinese sea waters has been documented since the 1990s,
with recurrent blooms in some coastal areas (Jiao and Guo,
1996; Li et al., 2005; Qi et al., 1994; Wang et al., 2006a), pointing
to the possibility that these massive proliferations have been
favored by some changes in environmental conditions. The
high occurrence of C. marina bloom in the Chinese coastal
waters followed a long-term decrease in DIP concentrations
and increase of N:P ratios (Wang et al., 2006a). For example,
DIP concentrations in Daya Bay, a sea area with frequent
Chattonella blooms, were in an average of 30–40 μg/L at the end
of 1980s, and decreased to about 10 μg/L averagely since
middle 1990s (Wang et al., 2006b). However, dissolved inor-
ganic nitrogen (DIN) concentrations increased about four to
five-folds during the same time period and resulted in about
jes
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40-fold increase of N:P ratio (Wang et al., 2006b). DOP
contributes significantly to DTP in coastal waters (Sebastián
et al., 2004), such as 70%–95% in Daya Bay, a frequent C. marina
bloom sea area (Sun et al., 2002). Therefore, the dominance
of C. marina may be explained by its competitive capacity for
P-storage and by its ability to use DOP resources. DIP limitation
and rich DOP compounds in the Chinese coastal waters may
have led to the outbreaks of its blooms in recent years.
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